
Publ. Math. Debrecen

89/3 (2016), 321–330

DOI: 10.5486/PMD.2016.7565

The dilogarithm function and the Abel functional equation

By ZOLTÁN DARÓCZY (Debrecen) and GYULA MAKSA (Debrecen)

Dedicated to the 60th birthday of Professor Zsolt Páles

Abstract. In the literature, mostly the identities, the applications and the special

values of the dilogarithm functions are investigated. In this note, we deal with the prob-

lem of the connection between a famous identity, namely the so-called Abel equation,

and the dilogarithm functions, and show the close connection between the dilogarithm

functions and the measurable solutions of the Abel equation.

1. Introduction

The complex dilogarithm function is defined by the power series

z 7→
∞∑
n=1

zn

n2
, |z| < 1, z ∈ C (the set of all complex numbers)

and it has a unique analytic continuation to the domain C \ [1,+∞[. A real

variant Li2 of this function is defined by

Li2(x) =

∞∑
n=1

xn

n2
, x ∈ [−1, 1].
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This function and also its complex variant have appearances in several areas of

mathematics. Some of its values can exactly be given (for example, in the real

case)

Li2(1) =
π2

6
and Li2(ω) =

π2

10
− ln2

(√
5 + 1

2

)
(1.1)

where ω =
√
5−1
2 , and Li2 satisfies several identities. For the details and the

historical background, see Zagier [15] and Lewin [9]. One of the numerous

variants of the dilogarithm functions is the so-called Rogers dilogarithm (see [15]

and Rogers [14]), defined on I =]0, 1[ by

L(x) = Li2(x) +
1

2
ln(x) ln(1− x). (1.2)

In the third section, we shall prove that the function F = L− L(ω) satisfies

the so-called Abel functional equation (see [1], Daróczy–Kiesewetter [3])

F (u) + F (v) + F (1− uv) + F

(
1− u
1− uv

)
+ F

(
1− v

1− uv

)
= 0 (1.3)

for all u, v ∈ I, moreover, there we characterize it.

In this paper, firstly, we determine all the measurable solutions of (1.3). This

result can also be found in [7] but we use another approach to find the differen-

tiable solutions. We remark that, in the literature, mostly the identities satisfied

by the dilogarithm function (or some of its variants) are dealt with. The only

exceptional cases we found are in Daróczy–Kiesewetter [3] and Járai [7],

where the connection between the solutions of (1.3) and the dilogarithm function

was investigated also in the reverse direction, and all the Lebesgue integrable

solutions F : [0, 1] → R (the set of all real numbers) and all the Lebesgue mea-

surable solutions, respectively were determined supposing that (1.3) holds for all

u, v ∈ [0, 1[ and u, v ∈]0, 1[ respectively.

2. Preliminaries

The regularity improvement results have a very important role in the the-

ory of functional equations. With their help – supposing only weak regularity

(say, measurability in the Lebesgue sense) on the solution of the considered func-

tional equation – one can often prove that the solution is infinitely many times

differentiable, and the functional equation can be reduced to ordinary or partial
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differential equation. Nowadays, there can be found a lot of these kind of results

in the literature. Some of them refer to the functional equation of the form

f(t) = h(t, y, f(y), f(g1(t, y)), . . . , f(gn(t, y)))

(see Járai [5], [6]), but there are regularity improvement methods also for func-

tional equations containing composite unknown functions (see Páles [11], [12],

[13], Gilányi–Páles [4]).

In what follows, we would use the expression “infinitely many times differen-

tiable” frequently. Instead of this, we write that the function is C∞, which means

that the function is real-valued, it is defined on a non-void open subset of R or

R2 and it is infinitely many times differentiable.

The following lemma is proved in [7]:

Lemma 2.1. Suppose that the function F : I → R is a measurable solution

of (1.3). Then F is C∞.

The following observation can be found in [3] (see Satz 1). For the sake

of completeness, we present a little bit modified version of it, together with the

proof.

Lemma 2.2. Let the function F : I → R be a C∞ solution of (1.3) and

f(x) = x(1− x)F ′(x) (x ∈ I). (2.1)

Then the function f is C∞ and

f(1− x) + (1− x)f

(
y

1− x

)
= f(1− y) + (1− y)f

(
x

1− y

)
(2.2)

holds for all (x, y) ∈ ∆, where ∆ = {(x, y) : x, y ∈ I, x+ y < 1}.

Proof. It is obvious that the function f is C∞. Differentiating both sides

of (1.3) with respect to u, we get that

F ′(u)−vF ′(1−uv)− 1− v
(1− uv)2

F ′
(

1− u
1− uv

)
+
v(1− v)

(1− uv)2
F ′
(

1− v
1− uv

)
= 0 (2.3)

holds for all u, v ∈ I. Taking into consideration (2.1), we find that

f(u) + uf

(
1− v

1− uv

)
= f

(
1− u
1− uv

)
+

1− u
1− uv

f(1− uv) = 0 (u, v ∈ I). (2.4)

Let now (x, y) ∈ ∆ and

u = 1− x, v =
1− x− y

(1− x)(1− y)

in (2.4). Then we have (2.2). �
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The lemma above and the next lemma show that there is a close connection

between the C∞ solutions of (1.3) and (2.2).

Lemma 2.3. Let the function f : I → R be a C∞ solution of (2.2) and

F (x) =

∫ x

ω

f(t)

t(1− t)
dt (x ∈ I). (2.5)

Then the function F is a C∞ solution of (1.3).

Proof. It is obvious that the function F is C∞ and (2.1) holds. Therefore,

(2.2) implies that

F ′(1− x) +
y(1− x− y)

x(1− x)2
F ′
(

y

1− x

)
=
y(1− y)

x(1− x)
F ′(1− y) +

1− x− y
(1− x)(1− y)

F ′
(

x

1− y

)

for all (x, y) ∈ ∆. Let now u, v ∈ I and

x = 1− u, y =
u(1− v)

1− uv
.

Then (x, y) ∈ ∆ and – after some calculation – the equation above implies that

(2.3) holds for all u, v ∈ I. Define the function Φ on I2 by

Φ(u, v) = F (u) + F (v) + F (1− uv) + F

(
1− u
1− uv

)
+ F

(
1− v

1− uv

)
.

We shall prove that Φ is identically zero. Indeed, Φ is C∞, furthermore,

Φ(u, v) = Φ(v, u) and Φ(ω, ω) = 0 (u, v ∈ I). (2.6)

Here, the first identity is trivial, while the second equality follows from (2.5) and

the fact that ω2 + ω− 1 = 0. Furthermore, (2.3) implies that ∂1Φ(u, v) = 0, that

is, the partial derivative of Φ with respect to its first variable is identically zero.

Therefore, Φ(u, v) = g(v) for all u, v ∈ I and for some g : I → R. Because of the

first part of (2.6) g is constant, and, by the second part of (2.6), this constant

must be zero. �
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3. The main results

Functional equation (2.2) is very similar to the fundamental equation of

information (see Aczél–Daróczy [2]) and its general solution is known (see

Maksa [10]). However, here we use an elementary method to solve it by using

that the solutions are C∞ functions (in fact, we use only that the solutions are

twice differentiable), and the idea in [2, pp. 94–102]. From now on, we denote the

set of all positive real numbers by R+.

Theorem 3.1. Let the function f : I → R be C∞. Then f is a solution

of (2.2) if and only if there exist a, b ∈ R such that

f(v) = a(v ln(v) + (1− v) ln(1− v)) + b(v − 2) (v ∈ I). (3.1)

Proof. Suppose first that the function f is C∞ and it is a solution of (2.2).

Define the function H on R2
+ by

H(u, v) = (u+ v)f

(
v

u+ v

)
. (3.2)

Then H is a C∞ function again and

H(tu, tv) = tH(u, v) (t, u, v ∈ R+), (3.3)

H(w, u+ v) +H(u, v) = H(v, u+ w) +H(u,w) (u, v, w ∈ R+). (3.4)

Here (3.3) is an obvious consequence of (3.2), while (3.4) follows from (2.2)

and (3.2) with the substitutions

x =
w

u+ v + w
, y =

v

u+ v + w
.

Differentiate both sides of (3.4) with respect to u and with respect to w, respec-

tively we obtain that

∂2H(w, u+ v) + ∂1H(u, v) = ∂2H(v, u+ w) + ∂1H(u,w)

and

∂1H(w, u+ v) = ∂2H(v, u+ w) + ∂2H(u,w)

hold, respectively for all u, v, w ∈ R+. (Here ∂iH denotes the partial derivative

function of H with respect to its i-th variable.) Combining these equations, we

get that

∂1H(u, v) = ∂1H(w, u+ v)− ∂2H(w, u+ w)− ∂2H(u,w) + ∂1H(u,w) (3.5)
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holds for all u, v, w ∈ R+. Substituting w = 1 in (3.5) and integrating both sides

of the equation so obtained with respect to u, we get that H must be of the form

H(u, v) = α(u+ v) + β(u) + γ(v) (u, v ∈ R+) (3.6)

with some C∞ functions α, β, γ : R+ → R. This form of H and (3.4) imply that

γ(u+v)+α(u+v) = γ(u+w)+α(u+w)+β(v)−γ(v)+γ(w)−β(w) (u, v, w ∈ R+).

Differentiate both sides of this equation with respect to v, we obtain that

γ′(u+ v) + α′(u+ v) = β′(v)− γ′(v) (u, v ∈ R+). (3.7)

Because of the symmetry in u and v of the left hand side of (3.7), we get that

(β − γ)′(v) = c1 (v ∈ R+) (3.8)

for some c1 ∈ R. Hence (3.7) implies that

(α+ γ)′(t) = c1 (t ∈ R+). (3.9)

Finally, it follows from (3.9), (3.8) and (3.6) that

H(u, v) = α(u+ v)− α(u)− α(v) + c1(2u+ v) + c2 (u, v ∈ R+) (3.10)

holds for all u, v ∈ R+ and for some c2 ∈ R. At this point, we use the homogeneity

(3.3) of H to have that

α(t(u+ v))− α(tu)− α(tv) + c2 = t(α(u+ v)− α(u)− α(v)) + c2t

holds for all t, u, v ∈ R+. Differentiating both sides of this equation with respect

to u and then the equation so obtained with respect to v, we get that

α′′(t(u+ v)) =
1

t
α′′(u+ v) (t, u, v ∈ R+),

which, with the substitution u = v = 1
2 , implies that α′′(t) = 1

tα
′′(1) holds for all

t ∈ R+. Solving this differential equation, we find that

α(t) = α′′(1)t ln(t) + d1t+ d2 (t ∈ R+) (3.11)

for some d1, d2 ∈ R. Taking into consideration (3.2), (3.10) and (3.11), we obtain

that

f(v) = a(v ln(v) + (1− v) ln(1− v)) + b(v − 2) + c (v ∈ I)

for some a, b, c ∈ R. Finally, substituting this form of f into (2.2), we get that it

is satisfied by f if and only if c = 0. Thus we obtain (3.1). �
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The following theorem is an easy consequence of Lemma 2.1, Lemma 2.2,

Theorem 3.1 and Lemma 2.3, see also [7].

Theorem 3.2. Let F : I → R be a measurable function. Then F is a

solution of Abel functional equation (1.3) if and only if there exist a, b ∈ R such

that

F (u) = a

∫ u

ω

(
ln(t)

1− t
+

ln(1− t)
t

)
dt+ b ln

(
u2

1− u

)
(u ∈ I). (3.12)

In the next theorem, we list some properties of the Rogers dilogarithm func-

tion L defined in (1.2).

Theorem 3.3. The Rogers dilogarithm function L has the following prop-

erties.

(a) L is measurable and non-constant,

(b) L− L(ω) is a solution of (1.3), and

(c) L(t) + L(1− t) = π2

6 for all t ∈ I.

Proof. (a) is obvious. To prove (b), first compute the derivative function

L′ for all t ∈ I:

L′(t) =

∞∑
n=1

tn−1

n
+

1

2

ln(1− t)
t

− 1

2

ln(t)

1− t
=

1

t
(− ln(1− t)) +

1

2

ln(1− t)
t

− 1

2

ln(t)

1− t

= −1

2

(
ln(t)

1− t
+

ln(1− t)
t

)
.

This implies that

L(x)− L(ω) = −1

2

∫ x

ω

(
ln(t)

1− t
+

ln(1− t)
t

)
dt (x ∈ I). (3.13)

Hence, by Theorem 3.2, we get (b). On the other hand, since L′(t) = L′(1− t) for

all t ∈ I, we obtain that the function t 7→ L(t) +L(1− t), t ∈ I must be constant.

However,

lim
t→0

L(t) = 0 and, by (1.1), lim
t→1

L(t) = Li2(1) =
π2

6
.

Thus we have (c). �

The next theorem together with Theorem 3.2. shows that the properties

(a)− (b)− (c) characterize the Rogers dilogarithm.



328 Zoltán Daróczy and Gyula Maksa

Theorem 3.4. Suppose that the function G : I → R has the following

properties

(i) G is measurable and non-constant,

(ii) G− Li2(ω)− 1
2 ln(ω) ln(1− ω) is a solution of (1.3), and

(iii) G(t) +G(1− t) = π2

6 for all t ∈ I.
Then G is identical with the Rogers dilogarithm L.

Proof. Because of (i) and (ii), Theorem 3.2. implies that there exist a, b ∈ R
such that

G(u)−Li2(ω)− 1

2
ln(ω) ln(1− ω) = a

∫ u

ω

(
ln(t)

1− t
+

ln(1− t)
t

)
dt+ b ln

(
u2

1− u

)
holds for all u ∈ I. Therefore,

G′(u) = a

(
ln(u)

1− u
+

ln(1− u)

u

)
+ b

(
2− u

u(1− u)

)
(u ∈ I). (3.14)

Taking into consideration (iii), we have that G′(u) = G′(1 − u) for all u ∈ I.

Therefore, by (3.14), we obtain that b = 0 and so

G′(u) = a

(
ln(u)

1− u
+

ln(1− u)

u

)
(u ∈ I).

Thus

G(t)−G(ω) = a

∫ t

ω

(
ln(u)

1− u
+

ln(1− u)

u

)
du (t ∈ I).

But every solution of (1.3) vanishes at ω. Thus, by (ii), G(ω) = L(ω), so

G(t) = L(ω) + a

∫ t

ω

(
ln(u)

1− u
+

ln(1− u)

u

)
du (t ∈ I),

whence, by (3.13), we get that

G(t) + 2aL(t) = (1 + 2a)L(ω) (t ∈ I). (3.15)

Applying now (iii) and (c), we have that (2a+ 1)π
2

6 = 2(2a+ 1)L(ω). If a 6= − 1
2 ,

then it would follow that

π2

6
= 2L(ω) =

π2

5
− 2 ln2

(√
5 + 1

2

)
+ ln(ω) ln(1− ω),

which, by the definition of ω, is equivalent with ln(ω) ln
(
ω2

1−ω

)
= π2

3 , which is a

contradiction, since ln
(
ω2

1−ω

)
=0. Thus a=− 1

2 and (3.15) implies that G=L. �
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Finally, we make a remark on the non-measurable solutions of (1.3).

Remark. It is easy to see that if F is a solution of (1.3) and A : R → R is

any additive function, that is, A satisfies the additive Cauchy functional equation

A(x+ y) = A(x) +A(y) (x, y ∈ R),

then the composite function A ◦ F is also a solution of (1.3). It is well-known

(see e.g. Kuczma [8]) that there are non-measurable additive functions. Thus, if

A : R→ R is a non-measurable additive function and ` : R+ → R is a logarithmic

function (which means that ` satisfies the logarithmic Cauchy functional equation

`(xy) = `(x) + `(y) (x, y ∈ R+)), then among the functions F : I → R defined by

F (u) = A

(∫ u

ω

(
ln(t)

1− t
+

ln(1− t)
t

)
dt

)
+ `

(
u2

1− u

)
(u ∈ I)

there are non-measurable solutions of (1.3).
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