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Dedicated to Professor Lajos Tamássy

Abstract. We obtain the characterization of the natural diagonal Kähler mani-

folds (TM,G, J) which have constant holomorphic sectional curvature, or equivalently,

which are H-projectively Euclidean. Moreover, we classify the natural diagonal Kähler

manifolds (TM,G, J) which are horizontally H-projectively flat (resp. vertically H-

projectively flat).

1. Introduction

The holomorphically planar curves were introduced in 1954 by Otsuki and

Tashiro [19] to generalize in some extent, in the Kählerian context, the notion

of geodesics from the Riemannian case. In this sense, the projective transfor-

mations, i.e. the transformations preserving the geodesics (see [2], [8], [9], [26]),

have as a Kählerian correspondent the holomorphically projective transforma-

tions, i.e. the transformations preserving the holomorphically planar (H-planar)

curves (see [19]). A well-known result is that a Kählerian space holomorphically

projective to an Euclidean space (called also H-projectively Euclidean space) has

constant holomorphic sectional curvature (see [27]).
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The (para-)holomorphically-projective (i.e. (para-)H-projective) curvature

tensor fields, which are invariant with respect to (para-)hollomorphically pro-

jective transformations, were studied in the context of the Kähler manifolds

(e.g. in [30], [22]) and resp. para-Kähler manifolds (e.g. in [20], [21]). The

holomorphically-projective transformations (i.e. preserving H-planar curves) were

generalized by the holomorphically–projective mappings (see e.g. [14], [23], [24]

and the references therein).

On the other hand, the theory of the natural metrics on the total space TM

of the tangent bundle of a (pseudo-)Riemannian manifold (M, g), initiated by

Kowalski and Sekizawa in [13], was developed by Abbassi, Sarih, Oproiu,

Calvaruso, Perrone and others, including the present authors, in papers such

as [1], [3]–[7], [10]–[12], [15]–[18], [25].

A natural diagonal metric on TM was obtained in [17], by lifting the metric g

from the base manifold M , using four smooth functions depending on the energy

density t on TM .

In [6], it was shown that the constant holomorphic sectional curvature of TM ,

endowed with a Kähler structure (G, J) of natural diagonal lift type, is propor-

tional to the constant sectional curvature of the base manifold. We go further,

and show that (TM,G, J) has constant holomorphic sectional curvature if and

only if the base manifold in flat, and a coefficient involved in the definition of

the metric G is a real constant. Moreover, the natural diagonal Kähler manifold

(TM,G, J) cannot have nonzero constant holomorphic sectional curvature.

Then, we classify the natural diagonal Kähler manifolds (TM,G, J) for which

the H-projective curvature tensor, restricted to the horizontal (resp. vertical) dis-

tribution, vanishes, and we call them horizontally (resp. vertically) H-projectively

Euclidean Kähler manifolds.

Note that we will use throughout this paper the well-known Einstein sum-

mation convention.

2. The holomorphic sectional curvature of the tangent bundle

endowed with a natural diagonal Kähler structure

Consider a Riemannian manifold (M, g), and denote by ∇̇ the Levi–Civita

connection of g. Let π : TM → M be the tangent bundle of M , and let

(x1, . . . , xn) (resp. (x1, . . . , xn, y1, . . . , yn)) be the local coordinates on an open

subset U of M (resp. on π−1(U) ⊂ TM).

There are many ways of lifting a vector field from the base manifold M to the
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total space of the tangent bundle, TM . We shall use here the horizontal lift XH

and the vertical lift XV of a vector field X to TM . More precisely, if X is locally

expressed on U as X = Xi ∂
∂xi , then, on π−1(U), we have

XH = Xiδi, XV = Xi∂i,

where {δi, ∂j}i,j=1,n is the adapted local frame on π−1(U), given by:

δi =
∂

∂xi
− Γhkiy

k ∂

∂yh
, ∂i =

∂

∂yi
, ∀i = 1, n,

Γhki(x) being the Christoffel symbols of ∇̇.

An almost complex structure on TM , obtained as a natural diagonal lift of

the Riemannian metric g, was characterized in [17] by:

JXH
y = a1(t)XV

y + b1(t)gπ(y)(X, y)yVy ,

JXV
y = − 1

a1(t)
XH
y +

b1(t)

a1(t)(a1(t) + 2tb1(t))
gπ(y)(X, y)yHy ,

for every tangent vector y ∈ TM and every vector field X on M , where a1, b1
are smooth functions on R+, and t is the energy density of y, i.e.,

t =
1

2
gπ(y)(y, y). (1)

With respect to the adapted local frame {δi, ∂j}i,j=1,n, the almost complex

structure J has the expression:

Jδi = (J1)ji∂j , J∂i = −(J2)ji δj , (2)

where the M -tensor fields (Jα)ji , α = 1, 2 are defined by:

(J1)ji = a1(t)δji + b1(t)g0iy
j ,

(J2)ji =
1

a1(t)
δji −

b1(t)

a1(t)(a1(t) + 2tb1(t))
g0iy

j , ∀i, j = 1, n. (3)

It was proved in [17] that the almost complex structure J on TM is integrable

(i.e. a complex structure) if and only if the base manifold (M, g) has constant

sectional curvature c and

b1(t) =
a1(t)a′1(t)− c
a1(t)− 2ta′1(t)

. (4)
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A natural diagonal metric G on TM , has the expression:
G(XH

y , Y
H
y ) = c1(t)gπ(y)(X,Y ) + d1(t)gπ(y)(X, y)gπ(y)(Y, y),

G(XV
y , Y

V
y ) = c2(t)gπ(y)(X,Y ) + d2(t)gπ(y)(X, y)gπ(y)(Y, y),

G(XV
y , Y

H
y ) = 0,

(5)

for all X,Y ∈ Γ(TM), y ∈ TM , where c1, c2, d1, d2 are smooth functions on R+.

The metric G is positive definite if and only if the functions c1, c2, x 7→
c1(x) + 2xd1(x), x 7→ c2(x) + 2xd2(x) on R+ are strictly positive.

Remark 2.1. Hereafter, unless otherwise stated, all the functions a1, b1,

c1, c2, d1, d2 are evaluated at the energy density t, given by (1).

In the adapted local frame {δi, ∂j}i,j=1,n, the matrix of the metric G is(
G

(1)
ij 0

0 G
(2)
ij

)
=

(
c1gij + d1g0ig0j 0

0 c2gij + d2g0ig0j

)
, (6)

where g0i(y) = gijy
j , and its inverse has the form(

Hij
(1) 0

0 Hij
(2)

)
=

(
1
c1

(gij − d1
c1+2td1

yiyj) 0

0 1
c2

(gij − d2
c2+2d2t

yiyj)

)
. (7)

Adapting a result from [16] to the diagonal case (i.e. the case when the

coefficients with the index 3 vanish), we have that (TM,G, J) is a Hermitian

manifold of natural diagonal type if and only if the integrability conditions for J

and the following relations hold good:

c1
a1

=
c2
a2

= λ,
c1 + 2td1

a1 + 2tb1
=
c2 + 2td2

a2 + 2tb2
= λ+ 2tµ, (8)

where the proportionality coefficients λ > 0 and λ + 2tµ > 0 are some functions

on R+, depending on the energy density t.

Moreover, the Hermitian manifold (TM,G, J) is a Kähler manifold if and

only if

µ = λ′. (9)

Remark 2.2. The natural diagonal Kähler structures on TM depend on two

essential coefficients, a1 and λ, which must satisfy the conditions a1 > 0, a1 +

2tb1 > 0, λ > 0, λ+ 2tλ′ > 0, where b1 is given by (4).
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In [5], we obtained the following:

Proposition 2.1. The Levi–Civita connection ∇ of G has the following

expression in the adapted local frame {∂i, δj}i,j=1,n:{
∇∂i∂j = Qhij∂h, ∇δi∂j = Γhij∂h + Phjiδh,

∇∂iδj = Phijδh, ∇δiδj = Γhijδh + Shij∂h,

where Γhij are the Christoffel symbols of ∇̇ and the coefficients involved in the

above expressions are given as
Qhij = 1

2 (∂iG
(2)
jk + ∂jG

(2)
ik − ∂kG

(2)
ij )Hkh

(2),

Phij = 1
2 (∂iG

(1)
jk +Rl0jkG

(2)
li )Hkh

(1),

Shij = − 1
2 (∂kG

(2)
ij +Rl0ijG

(2)
lk )Hkh

(2),

where Rhkij are the components of the curvature tensor field of the base manifold

(M, g), and ∂i denotes the derivative with respect to the tangential coordinates yi.

The curvature tensor field K of the connection ∇, defined by the well-known

formula

K(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TM),

has the following components with respect to the adapted local frame {δi, ∂j}i,j=1,n:

K(δi, δj)δk = (PhliS
l
jk − PhljSlik +Rl0ijP

h
lk +Rhkij)δh,

K(δi, δj)∂k = (P lkjS
h
il − P lkiShjl +Rl0ijQ

h
lk +Rhkij)∂h,

K(∂i, ∂j)δk = (∂iP
h
jk − ∂jPhik + P ljkP

h
il − P likPhjl)δh,

K(∂i, ∂j)∂k = (∂iQ
h
jk − ∂jQhik +QljkQ

h
il −QlikQhjl)∂h,

K(∂i, δj)δk = (∂iS
h
jk + SljkQ

h
il − P likShjl − ∇̇jRr0ikG

(2)
rl H

(1)
hl )∂h,

K(∂i, δj)∂k = (∂iP
h
kj + P lkjP

h
il −QlikPhlj)δh. (10)

The curvature tensor field K0 of a Kähler manifold (TM,G, J) of constant

holomorphic sectional curvature k is given by:

K0(X,Y )Z =
k

4
[G(Y,Z)X −G(X,Z)Y +G(JY, Z)JX

−G(JX,Z)JY + 2G(X, JY )JZ], ∀X,Y, Z ∈ Γ(TM),
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and it has the following components with respect to {δi, ∂j}i,j=1,n:

K0(δi, δj)δk =
k

4

[
G

(1)
jk δ

h
i −G

(1)
ik δ

h
j

]
δh

K0(δi, δj)∂k =
k

4

[
(J1)hi (J1)ljG

(2)
lk − (J1)hj (J1)liG

(2)
lk

]
∂h,

K0(∂i, δj)δk =
k

4

[
G

(1)
ik δ

h
j + (J1)hj (J2)liG

(1)
lk + 2(J1)hk(J1)ljG

(2)
il

]
∂h,

K0(∂i, δj)∂k = −k
4

[
G

(2)
ik δ

h
j + (J2)hi (J1)ljG

(2)
lk + 2(J2)hk(J1)ljG

(2)
il

]
δh,

K0(∂i, ∂j)δk =
k

4

[
(J2)hi (J2)ljG

(1)
lk − (J2)hj (J2)liG

(1)
lk

]
δh,

K0(∂i, ∂j)∂k =
k

4

[
G

(2)
jk δ

h
i −G

(2)
ik δ

h
j

]
∂h.

Now we prove the following result.

Proposition 2.2. Let (M, g) be a Riemannian manifold and TM the total

space of its tangent bundle. The natural diagonal Kähler manifold (TM,G, J)

is a complex space form (or equivalently, it is H-projectively flat) if and only if

the base manifold is flat and the coefficient c1 of G is an arbitrary real constant.

Moreover, the natural diagonal Kähler manifold (TM,G, J) cannot have nonzero

constant holomorphic sectional curvature.

Proof. We have to study the conditions of vanishing of the difference be-

tween the curvature tensor fields K and K0.

After some straightforward computations, the components of K–K0 with

respect to the adapted local frame have some expressions of the form

α1δ
h
i gjk + α2gikδ

h
j + α3gijδ

h
k + α4g0ig0jδ

h
k + α5g0ig0kδ

h
j + α6g0jg0kδ

h
i

+ α7gjkg0iy
h + α8gikg0jy

h + α9gijg0ky
h + α10g0ig0jg0ky

h, (11)

and according to [7, Lemma 3.2], they vanish if and only if αi = 0, ∀i = 1, 10,

where the coefficients αi are some smooth functions on R+, depending on a1, λ,

their three first order derivatives, the energy density t, the constant sectional cur-

vature c of the base manifold, and the constant holomorphic sectional curvature k

of TM .

In the expression of (K −K0)(∂i, δj)∂k, the coefficient of δhkgij is

α3 =
a2

1a
′
1λ− 2a1cλ− a2

1kλ
2 + a3

1λ
′ + 2a′1cλt+ 2a1a

′
1kλ

2t− 2a1cλ
′t

2a2
1λ(a1 − 2a′1t)

,
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hence it vanishes if and only if

λ′ = −λa
2
1a
′
1 − 2a1c− a2

1kλ+ 2a′1ct+ 2a1a
′
1kλt

a1(a2
1 − 2ct)

. (12)

By replacing this value of λ′ into the expression of (K − K0)(∂i, ∂j)∂k, we

obtain that in this component, the coefficient of gikδ
h
j is

α2 = −α1 =
4a1c+ a2

1kλ+ 2ckλt

4a1(a2
1 + 2ct+ 2a1kλt)

,

and it is zero if and only if

k = − 4ca1

λ(a2
1 + 2ct)

. (13)

Now we study two cases:

Case I) When c 6= 0, or equivalently k 6= 0, we have

λ = − 4ca1

k(a2
1 + 2ct)

. (14)

Then, replacing (14) into (12), the expressions of the coefficients α1 and α2

from (K −K1)(δi, δj)δk take the form:

α1 = −α2 =
2a2

1c

a2
1 + 2ct

, (15)

which cannot vanish for c 6= 0, hence Case I) is not a valid one.

Case II) When c = 0 it follows that k = 0, and (12) becomes:

λ′ = −λa
′
1

a1
, (16)

which has the solution:

λ =
c0
a1
, (17)

where c0 is an arbitrary real constant.

Replacing (17) into (8), we obtain:

c1 = c0 ∈ R.

Now, it is easy to verify that the flatness of the base manifold and the

constancy of the coefficient c1 are the necessary and sufficient conditions for

(TM,G, J) to be a complex space form. Moreover, from (13), it follows that

TM cannot have nonzero constant holomorphic sectional curvature. �
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3. The H-projective curvature of (TM,G, J)

The projective curvature tensor field associated to a linear connection on a

manifold, introduced in [29] and studied e.g. in [5], [28] and the references therein,

is invariant under any projective transformation of the connection. Similarly, the

H-projective curvature tensor field associated to a J-connection ∇ on a Kähler

manifold is invariant under a H-projective transformation of ∇, i.e. a transfor-

mation which preserves the H-planar paths (see [19] and [22]). It was shown that

a connected Kähler manifold is H-projectively flat if and only if it has constant

holomorphic sectional curvature (see e.g. [22]).

Definition 3.1. On an n-dimensional Kähler manifold (M, g, J), the H-pro-
jective curvature tensor field associated to a J-connection ∇, is the (1, 3)-tensor
field HP , defined by:

HP (X,Y )Z = R(X,Y )Z − L(Y,Z)X + L(X,Z)Y + [L(X,Y )− L(Y,X)]Z

+ L(Y, JZ)JX − L(X, JZ)JY − [L(X, JY )− L(Y, JX)]JZ, ∀X,Y, Z ∈ Γ(TM),

where R and Ric are respectively the curvature tensor field and the Ricci tensor
field of ∇, and L is the Brinkman tensor field, given by:

L(X,Y ) =
1

2(n + 1)
{Ric(X,Y ) +

1

n− 1
[R̃ic(X,Y ) + R̃ic(Y,X)]}, ∀X,Y ∈ Γ(TM),

where

2R̃ic(X,Y ) = Ric(X,Y )− Ric(JX, JY ), ∀X,Y ∈ Γ(TM).

A Kähler manifold (M, g, J) is called H-projectively flat (or H-projectively

Euclidean) if the H-projective curvature tensor field associated to the Levi–Civita

connection of g vanishes identically.

Since the Ricci tensor associated to the Levi–Civita connection is symmet-

ric, and the Ricci tensor on a Kähler manifold is hybrid, it follows that the

H-projective curvature tensor field associated to the Levi–Civita connection on a

Kähler manifold has the expression:

HP (X,Y )Z = R(X,Y )Z − 1

2(n+ 1)
[Ric(Y,Z)X − Ric(X,Z)Y

− Ric(Y, JZ)JX + Ric(X, JZ)JY + 2 Ric(X, JY )JZ], (18)

for every X,Y, Z ∈ Γ(TM).

Now we introduce the following definition, for further use.
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Definition 3.2. The Kähler manifold (TM,G, J) is called horizontally (resp.

vertically) H-projectively flat if the H-projective curvature tensor field associated

to the Levi–Civita connection of G vanishes on the horizontal (resp. vertical)

distribution of TTM .

In the sequel, we shall characterize the H-projectively Euclidean Kähler tan-

gent bundles of natural diagonal type.

Theorem 3.1. Let (M, g) be a Riemannian manifold. The Kähler manifold

(TM,G, J) of natural diagonal type is horizontally H-projectively flat if and

only if the base manifold is flat and the coefficient c1 of G is an arbitrary real

constant, i.e. if and only if (TM,G, J) isH-projectively Euclidean, or equivalently,

(TM,G, J) has constant holomorphic sectional curvature.

Proof. We consider the H-projective curvature tensor field HP associ-

ated to the Levi–Civita connection ∇ on the natural diagonal Kähler manifold

(TM,G, J). On the horizontal distribution we have:

HP
(
δi, δj

)
δk = K

(
δi, δj

)
δk +

1

2(n+ 1)

[
Ric

(
δi, δk

)
δj − Ric

(
δj , δk

)
δi

]
, (19)

where K and Ric are, respectively, the curvature tensor field of ∇ and the corre-

sponding Ricci tensor field, given by:

Ric(δi, δk) = Kh
ihk +K h̄

ih̄k, ∀i, j, k, h, h̄ = 1, n, (20)

where the indices i, j, k, h correspond to the horizontal arguments and h̄ to the

vertical argument.

Now we study the conditions under which (TM,G, J) is horizontally H-

projectively flat, i.e. HP (δi, δj)δk vanishes identically.

From (10), (19) and (20), we obtain:

HP (δi, δj)δk =

[
A1 +B1n

N1
gjkδ

h
i +

A2 +B2n

N2
gikδ

h
j +

A3

N3
gijδ

h
k +

A4

N4
g0ig0jδ

h
k

+
A5 +B5n

N5
g0ig0kδ

h
j +

A6 +B6n

N6
g0jg0kδ

h
i +

A7

N7
(gikg0j − gkjg0i)y

h

]
δh, (21)

where Aα, Bα, Nα, α = 1, 7 have some quite long expressions, depending on

a1, λ, their first three order derivatives, the constant sectional curvature c of the

base manifold, and the energy density t of y ∈ TM .
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According to [7, Lemma 3.2], the above expression vanishes if and only if

Aα +Bαn = 0, α = 1, 7. Moreover, since we study the conditions of vanishing of

the expression of HP (δi, δj)δk for the tangent bundle of a Riemannian manifold

of arbitrary dimension n, it follows that Aα +Bαn = 0, α = 1, 7 for every n > 1,

i.e. if and only if Aα = Bα = 0, α = 1, 7.

After the computations, the coefficient B1 has the form

B1 = (a1 − 2a′1t)(λ+ 2λ′t)(a2
1a
′
1λ− 2a1cλ+ a3

1λ
′ + 2a′1cλt− 2a1cλ

′t).

Since the integrability conditions (4) must be satisfied, and taking into ac-

count Remark 1, it follows that B1 = 0 if and only if

λ′ =
2a1c− a′1(a2

1 + 2ct)

a1(a2
1 − 2ct)

λ. (22)

After replacing this value of λ′, the coefficients B1 and A2 vanish, and the

expressions of other coefficients become very simple:

A1 = B2 = −A3 = a2
1c, A4 = c2, A7 = −2a2

1c
2,

hence they vanish if and only if the base manifold is flat.

Then, replacing c = 0 into (22), it follows that λ has the same expression

as in the case of the natural diagonal tangent bundle of constant holomorphic

sectional curvature, which leads to the constancy of the coefficient c1, and thus

the proof is complete. �

Theorem 3.2. The natural diagonal Kähler manifold (TM,G, J) is verti-

cally H-projectively flat if and only if the base manifold is flat, and the coeffi-

cient c1 of G is a real constant, i.e. (TM,G, J) is H-projectively flat, or equiva-

lently a complex space form.

Proof. On the vertical distribution, the component of the H-projective

curvature tensor corresponding to the Levi–Civita connection of G is:

HP (∂i, ∂j)∂k = K(∂i, ∂j)∂k +
1

2(n+ 1)

[
Ric(∂i, ∂k)∂j − Ric(∂j , ∂k)∂i

]
, (23)

where K is the curvature tensor field of ∇ and Ric is the corresponding Ricci

tensor, whose component on the vertical distribution is given as:

Ric
(
∂i, ∂k

)
= Kh

īhk
+K h̄

īh̄k
, ∀i, k, h, ī, k̄, h̄ = 1, n, (24)
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where the indices i, k, h correspond to the horizontal arguments and ī, k̄, h̄ to the

vertical arguments.

Using (10), (23) and (24), we obtain:

HP
(
∂i, ∂j

)
∂k =

[
Ā1 + B̄1n

N̄1
(gjkδ

h
i − gikδhj ) +

Ā2

N̄2
gijδ

h
k +

Ā3

N̄3
g0ig0jδ

h
k

+
Ā4 + B̄4n

N̄4
g0kg0jδ

h
i +

Ā5 + B̄5n

N̄5
g0ig0kδ

h
j +

Ā6

N̄6
(gikg0j − gkjg0i)y

h

]
∂h,

where Āα, B̄α, α = 1, 6, have some quite long expressions, depending on a1,

their first two order derivatives, the constant sectional curvature c of the base

manifold, and the energy density t of y ∈ TM .

It follows that HP
(
∂i, ∂j

)
∂k = 0, ∀i, j, k = 1, n, if and only if Āα = B̄α = 0,

α = 1, 6.

Then, after some computations and a reasoning similar to that in the previous

proof, it follows that the natural diagonal Kähler manifold (TM,G, J) is vertically

H-projectively flat if and only if (TM,G, J) is H-projectively flat, or equivalently,

is a complex space form. �
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[7] S. Druţă and V. Oproiu V., General natural Kähler structures of constant holomor-

phic sectional curvature on tangent bundles, An. Ştiinţ. Univ. ”Al.I.Cuza” Iaşi (N. S.),
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ROMANIA

POSTAL ADDRESS:

SEMINARUL MATEMATIC

UNIV. “AL. I. CUZA”

BD. CAROL I, NO. 11

700506 IAŞI
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