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Exponential dichotomies in average for flows and admissibility

By LUIS BARREIRA (Lisboa), DAVOR DRAGIČEVIĆ (Sydney)

and CLAUDIA VALLS (Lisboa)

Abstract. For a measurable cocycle over a flow or a semiflow acting on L1 func-

tions, we consider the general notion of an exponential dichotomy in average, and we

characterize it in terms of an admissibility property. As a nontrivial application, we

establish in a simple manner the robustness of the notion under sufficiently small linear

perturbations, both for cocycles over a flow and a semiflow.

1. Introduction

1.1. Exponential behavior. The notion of an exponential dichotomy, essen-

tially introduced by Perron in [17], is central in several parts of the theory of dif-

ferential equations and dynamical systems. It essentially corresponds to assuming

the existence of uniform contraction and uniform expansion along complementary

directions. In particular, the existence of an exponential dichotomy implies that

there are stable and unstable invariant manifolds for any sufficiently small non-

linear perturbation. The consequent local instability of the trajectories, together

with the nontrivial recurrence caused by the presence of a finite invariant measure,

is one of the main mechanisms for the occurrence of stochastic behavior. We refer

the reader to the books [2], [4], [5], [11], [23] for details and further references.
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On the other hand, the existence of an exponential dichotomy is a strong

requirement, and, particularly in view of its central role in the theory, it is of

interest to look for more general types of hyperbolic behavior.

In this paper, for a measurable cocycle over a flow or a semiflow acting on

L1 functions, we consider the more general notion of an exponential dichotomy

in average. As it happens with the classical notion of an exponential dichotomy

and some of its variants, it essentially corresponds to assuming the existence of

uniform contraction and uniform expansion along complementary directions but

now in average, with respect to a given probability measure. This includes as a

special case any (linear) cocycle over a measure-preserving flow with nonzero Lya-

punov exponents almost everywhere, by considering families of Lyapunov norms

along each trajectory (see [4] for details). On the other hand, the notion includes

many dynamics for which the exponential behavior is uniform on a set of positive

measure but which may even fail to be exponential on the complement of that

set (due to the presence of some parabolic behavior, such as in Example 3).

We emphasize that we do not require the measure µ to be invariant, and thus

we are not able to use results from ergodic theory.

1.2. Admissibility. Our main objective is to characterize the notion of an ex-

ponential dichotomy in average in terms of an admissibility property.

The study of admissibility goes back to the pioneering work of Perron

in [17], and referred originally to the existence of bounded solutions of the equation

x′ = A(t)x+ f(t) (1)

in Rn for any bounded continuous function f : R+
0 → Rn (where R+

0 = [0,+∞)).

This property can be used to deduce the stability or the conditional stability

under sufficiently small perturbations of a linear equation. More precisely, the

following result was established by Perron in [17], for n×n matrices A(t) varying

continuously with t ≥ 0.

Theorem 1. If equation (1) has at least one bounded solution in R+
0 for

each bounded continuous function f , and the equation x′ = A(t)x has k ≤ n

bounded linearly independent solutions, then for each r > 0 there exists δ > 0

such that if g is a continuous function satisfying

‖g(t, x)‖ ≤ δ and ‖g(t, x)− g(t, y)‖ ≤ δ‖x− y‖

for t ≥ 0 and x, y ∈ Rn with ‖x‖, ‖y‖ < r, then the equation

x′ = A(t)x+ g(t, x)
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has a k-parameter family of bounded solutions. If in addition g(t, 0) = 0 for t ≥ 0,

then all these solutions tend to zero when t→ +∞.

The assumption in Theorem 1 is called the admissibility of the pair of spaces

in which we take the perturbation f and look for the solution x. The theorem is

probably the first step in the literature towards a study of the relation between

admissibility, and the notions of stability and conditional stability. We note that

one can consider the admissibility of many other pairs of spaces, where we re-

spectively take the perturbation and look for the solution. For the same reason,

in order to refer to the type of relation studied in our paper, we shall only use

loosely the expression “admissibility”, instead of introducing linear operators and

then using them only once.

There is an extensive literature concerning the relation between admissi-

bility and stability, also in infinite-dimensional spaces. For some of the most

relevant early contributions in the area, we refer to the books by Massera and

Schäffer [14] (see also [13]), and by Dalec’kĭı and Krĕın [10]. For many

related references, we refer the reader to [4], [5], [7].

In order to obtain a criterion for the existence of an exponential dichotomy,

one can also use a Fredholm alternative for the nonlinear perturbations. In par-

ticular, related work is due to Palmer [16] for ordinary differential equations,

Lin [12] for functional equations, Blázquez [6], Rodrigues and Silveira [21],

Zeng [24] and Zhang [25] for parabolic evolution equations, and Chow and

Leiva [8], Sacker and Sell [22], and Rodrigues and Ruas-Filho [20] for

abstract evolution equations.

1.3. A nontrivial application: robustness. As a nontrivial application of the

characterization of the notion of an exponential dichotomy in average, we establish

in a simple manner its robustness under sufficiently small linear perturbations,

both for cocycles over a flow and a semiflow.

Due to the central role played by the notion of an exponential dichotomy, it

is crucial to understand whether it persists under linear perturbations. This is the

so-called robustness problem. An exponential dichotomy associated to a linear

equation x′ = A(t)x is said to be robust in some class of linear perturbations if

for any arbitrarily small perturbation B(t) in that class, the equation

x′ = [A(t) +B(t)]x

still admits an exponential dichotomy. The study of robustness has a long history.

In particular, it was discussed by Massera and Schäffer [13], Coppel [9], and

Dalec’kĭı and Krĕın [10]. For more recent works, we refer the reader to [8],
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[15], [18], [19], and the references therein. Moreover, we refer to [3] for related

results in the case of discrete time.

2. Basic notions

2.1. Cocycles. Let Ω = (Ω, µ) be a probability space. A measurable map

ϕ : R+
0 × Ω→ Ω is said to be a semiflow on Ω if:

(1) ϕ(0, ω) = ω for ω ∈ Ω;

(2) ϕ(t+ s, ω) = ϕ(t, ϕ(s, ω)) for t, s ≥ 0 and ω ∈ Ω.

We also consider the measurable maps ϕt = ϕ(t, ·). We shall always assume that

ϕt is invertible for t ≥ 0.

Moreover, let X be a Banach space and let L(X) be the set of all invertible

bounded linear operators acting on X. A strongly measurable map Φ: R+
0 ×Ω→

L(X) (this means that (t, ω) 7→ Φ(t, ω)x is Bochner measurable for each x ∈ X)

is said to be a cocycle over ϕ if:

(1) Φ(0, ω) = Id for ω ∈ Ω;

(2) Φ(t+ s, ω) = Φ(t, ϕs(ω))Φ(s, ω) for t, s ≥ 0 and ω ∈ Ω.

Example 1. In the particular case when the map t 7→ Φ(t, ω)x is of class C1

for each ω and x, the cocycle can be described as follows. Let

A(ω) =
d

dt
Φ(t, ω)

∣∣
t=0

.

One can easily verify that the unique solution of the problem

x′ = A(ϕt(ω))x, x(0) = x0

is then given by x(t) = Φ(t, ω)x0. Note that under the above assumption, the

map t 7→ A(ϕt(ω))x is continuous for each ω and x.

2.2. Exponential dichotomies in average. Let F be the Banach space of

all Bochner measurable functions, sometimes simply referred to as measurable

functions, z : Ω→ X such that

‖z‖1 :=

∫
Ω

‖z(ω)‖dµ(ω) <∞,

identified if they are equal µ-almost everywhere (we note that F is simply the set of

all Bochner integrable functions identified if they are equal µ-almost everywhere,



Exponential dichotomies in average for flows and admissibility 419

sometimes denoted by L1
µ(Ω, X)). Given a cocycle Φ, we shall always assume in

the paper that there exist K, a > 0 such that∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) ≤ Kea|t−τ |
∫

Ω

‖z(ω)‖dµ(ω) (2)

for z ∈ F and t, τ ≥ 0, where

Φω(t, s) = Φ(t, ω)Φ(s, ω)−1.

A cocycle Φ is said to admit an exponential dichotomy in average if there exist

projections Pτ : F → F for τ ≥ 0 such that:

(1) for each t, τ ≥ 0 and z, z̄ ∈ F such that z̄(ω) = Φω(t, τ)z(ω) for µ-almost

every ω ∈ Ω, we have

(Ptz̄)(ω) = Φω(t, τ)(Pτz)(ω) (3)

for µ-almost every ω ∈ Ω;

(2) there exist constants D,λ > 0 such that for each z ∈ F, we have∫
Ω

‖Φω(t, s)(Psz)(ω)‖dµ(ω) ≤ De−λ(t−s)
∫

Ω

‖z(ω)‖dµ(ω) for t ≥ s, (4)

and∫
Ω

‖Φω(t, s)(Qsz)(ω)‖dµ(ω) ≤ Deλ(t−s)
∫

Ω

‖z(ω)‖dµ(ω) for t ≤ s, (5)

where Qs = Id− Ps.

Example 2. Any uniformly hyperbolic cocycle admits an exponential di-

chotomy in average. We recall that a cocycle Φ is uniformly hyperbolic if there

exist projections P̃t : X → X for t ∈ R such that:

(1) for each t, τ ≥ 0 and ω ∈ Ω, we have

PtΦω(t, τ) = Φω(t, τ)Pτ ;

(2) there exist constants D,λ > 0 such that for each ω ∈ Ω, we have

‖Φω(t, τ)P̃τ‖ ≤ De−λ(t−τ) for t ≥ τ,

and

‖Φω(t, τ)Q̃τ‖ ≤ Deλ(t−τ) for t ≤ τ,

where Q̃t = Id− P̃t.
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Defining projections Pt : F → F for t ∈ R by

(Ptz)(ω) = P̃t(z(ω)),

we find that each uniformly hyperbolic cocycle admits an exponential dichotomy

in average, with respect to any probability measure µ on Ω.

Example 3. Now, we describe examples of cocycles that admit an exponential

dichotomy in average but that are not uniformly hyperbolic. Consider a partition

Ω =
⋃N
i=0 Ωi of Ω (N may be finite or infinite) with µ(Ω0) = 0, and numbers

λ0 = 0 and λi > 0 for i ∈ N with infi∈N λi > 0. We assume that∫
Ωi

‖Φω(t, s)(Psz)(ω)‖dµ(ω) ≤ De−λi(t−s)
∫

Ωi

‖z(ω)‖dµ(ω) for t ≥ s,

and ∫
Ωi

‖Φω(t, s)(Qsz)(ω)‖dµ(ω) ≤ Deλi(t−s)
∫

Ωi

‖z(ω)‖dµ(ω) for t ≤ s,

for all z ∈ F and i ∈ N0 ∩ [0, N ]. Then the cocycle admits an exponential

dichotomy in average. If the set Ω0 is nonempty, then the cocycle is not uniformly

hyperbolic. For example, the set Ω0 can contain parabolic fixed points, or, more

generally, parabolic periodic points.

2.3. Auxiliary spaces. We will need two additional Banach spaces. Namely,

let Y = (Y, ‖·‖∞) be the set of all functions x : R+
0 → F such that

‖x‖∞ = sup
t≥0
‖x(t)‖1 < +∞,

and W = (W, ‖·‖∞) the set of all Bochner measurable functions y : R+
0 ×Ω→ X

such that

‖y‖∞ = ess sup
t≥0

∫
Ω

‖y(t, ω)‖dµ(ω) < +∞,

identified if they are equal (Lebesgue×µ)-almost everywhere.

3. Admissibility in R+
0

3.1. Characterization of exponential dichotomies. In this section, we ob-

tain a complete characterization of the notion of an exponential dichotomy in

average in terms of an admissibility property.
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Our first result shows that the existence of an exponential dichotomy in

average yields an admissibility property. For simplicity of the notation, we shall

write

x(t)(ω) = x(t, ω) = xt(ω).

Theorem 2. Let Φ be a cocycle over a semiflow. If Φ admits an exponential

dichotomy in average, then for each y ∈ W there exists a unique x ∈ Y with

x0 ∈ ImQ0 satisfying

xt(ω) = Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, s)ys(ω)ds (6)

for t ≥ τ ≥ 0 and µ-almost every ω ∈ Ω.

Proof. Take y ∈ W . We first show that the integral in (6) is well defined

for µ-almost every ω ∈ Ω. Indeed,∫
Ω

∫ t

τ

‖Φω(t, s)ys(ω)‖ds dµ(ω) =

∫ t

τ

∫
Ω

‖Φω(t, s)ys(ω)‖dµ(ω)ds

≤
∫ t

τ

Kea|t−s|
∫

Ω

‖ys(ω)‖dµ(ω)ds ≤ K‖y‖∞
∫ t

τ

ea|t−s|ds < +∞.

Therefore,
∫ t
τ
‖Φω(t, s)ys(ω)‖ds < +∞ for µ-almost every ω ∈ Ω.

For t ≥ 0 and ω ∈ Ω, we define

xt(ω) =

∫ t

0

Φω(t, τ)(Pτyτ )(ω)dτ −
∫ ∞
t

Φω(t, τ)(Qτyτ )(ω)dτ.

It follows from (4) and (5) that∫
Ω

∫ t

0

‖Φω(t, τ)(Pτyτ )(ω)‖dτ dµ(ω) +

∫
Ω

∫ ∞
t

‖Φω(t, τ)(Qτyτ )(ω)‖dτ dµ(ω)

=

∫ t

0

∫
Ω

‖Φω(t, τ)(Pτyτ )(ω)‖dµ(ω)dτ +

∫ ∞
t

∫
Ω

‖Φω(t, τ)(Qτyτ )(ω)‖dµ(ω)dτ

≤ D‖y‖∞
(∫ t

0

e−λ(t−τ)dτ +

∫ ∞
t

e−λ(τ−t)dτ

)
= D

(
1

λ
+

1

λ

)
‖y‖∞ (7)

for t ≥ 0. This shows that xt is well defined for every t ≥ 0, and it also follows

from (7) that x = (xt)t≥0 ∈ Y . Moreover, given t ≥ τ ≥ 0, we have

xt(ω) =

∫ t

τ

Φω(t, s)ys(ω)ds−
∫ t

τ

Φω(t, s)(Psys)(ω)ds−
∫ t

τ

Φω(t, s)(Qsys)(ω)ds
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+

∫ t

0

Φω(t, s)(Psys)(ω)ds−
∫ ∞
t

Φω(t, s)(Qsys)(ω)ds

=

∫ t

τ

Φω(t, s)ys(ω)ds+

∫ τ

0

Φω(t, s)(Psys)(ω)ds−
∫ ∞
τ

Φω(t, s)(Qsys)(ω)ds

= Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, s)ys(ω)ds

for µ-almost every ω ∈ Ω. This establishes (6). Moreover, it follows from (7) that

x ∈ Y . Finally, by (3) we have x0 ∈ ImQ0.

Now, we show that x is the unique function in Y with x0 ∈ ImQ0 and

satisfying (6). We note that it is sufficient to consider the case when y = 0. Take

x ∈ Y with x0 ∈ ImQ0, and let xt(ω) = Φω(t, τ)xτ (ω) for t ≥ τ ≥ 0. It follows

from (3) and (5) that∫
Ω

‖(Q0x0)(ω)‖dµ(ω) =

∫
Ω

‖Φω(0, t)(Qtxt)(ω)‖dµ(ω)

≤ De−λt
∫

Ω

‖xt(ω)‖dµ(ω) ≤ De−λt‖x‖∞

for t ≥ 0. Letting t → ∞, we obtain x0 = Q0x0 = 0, and hence x = 0. This

completes the proof of the theorem. �

Now we establish the converse of Theorem 2.

Theorem 3. For a cocycle Φ over a semiflow, assume that there exists a

closed subspace Z ⊂ F such that for each y ∈W there exists a unique x ∈ Y with

x0 ∈ Z satisfying (6). Then Φ admits an exponential dichotomy in average.

Proof. Let YZ be the set of all x ∈ Y such that x(0) ∈ Z. Clearly, YZ is

a closed subspace of Y . Moreover, let H : D(H) → W be the linear operator

defined by Hx = y on the domain D(H) formed by all x ∈ YZ for which there

exists y ∈W satisfying (6).

Lemma 1. The operator H is well defined.

Proof of the lemma. Assume that there exist x ∈ YZ and y1, y2 ∈ W

such that both pairs (x, y1) and (x, y2) satisfy (6). For each t ≥ τ ≥ 0, we have∫ t

τ

Φω(t, s)(y1
s(ω)− y2

s(ω))ds = 0 (8)

for µ-almost every ω ∈ Ω. Now take t0 ≥ 0. Applying Φω(t0, t) to (8), we obtain

1

n

∫ τ+ 1
n

τ

Φω(t0, s)(y
1
s(ω)− y2

s(ω))ds = 0 (9)
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for τ ≥ 0 and µ-almost every ω ∈ Ω. We also show that for µ-almost every ω ∈ Ω,

the map s 7→ Φω(t0, s)(y
1
s(ω) − y2

s(ω)) is locally integrable. Let I be any finite

interval containing t0. It follows from (3) that∫
Ω

∫
I

‖Φω(t0, s)(y
1
s(ω)−y2

s(ω))‖ds dµ(ω)=

∫
I

∫
Ω

‖Φω(t0, s)(y
1
s(ω)−y2

s(ω))‖dµ(ω)ds

≤
∫
I

Kea|t0−s|
∫

Ω

‖y1
s(ω)− y2

s(ω)‖dµ(ω)ds ≤ ‖y1 − y2‖∞
∫
I

Kea|t0−s|ds <∞.

Therefore, ∫
I

‖Φω(t0, s)(y
1
s(ω)− y2

s(ω))‖ds <∞

for t0 ≥ 0 and µ-almost every ω ∈ Ω. Finally, letting n→∞ in identity (9) yields

that y1 = y2. �

Lemma 2. The operator H : D(H)→W is closed.

Proof of the lemma. Let (xn)n∈N be a sequence in D(H) converging to

x ∈ YZ such that yn = Hxn converges to y ∈W . For each t ≥ τ ≥ 0, there exists

a subsequence pn such that

xpnt (ω)→ xt(ω) and Φω(t, τ)xpnτ (ω)→ Φω(t, τ)xτ (ω)

when n→∞, for µ-almost every ω ∈ Ω. Moreover,∫
Ω

∥∥∥∥∫ t

τ

Φω(t, s)yns (ω)ds−
∫ t

τ

Φω(t, s)ys(ω)ds

∥∥∥∥dµ(ω)

≤ K
∫

Ω

∫ t

τ

ea|t−s|‖yns (ω)− ys(ω)‖ds dµ(ω)

≤ Kea|t−τ |
∫ t

τ

∫
Ω

‖yns (ω)− ys(ω)‖dµ(ω)ds ≤ Kea|t−τ |‖yn − y‖∞(t− τ).

Since yn converges to y in W , there exists a subsequence qn of pn such that

lim
n→∞

∫ t

τ

Φω(t, s)yqns (ω)ds =

∫ t

τ

Φω(t, s)ys(ω)ds

for µ-almost every ω ∈ Ω. Therefore,

xt(ω)− Φω(t, τ)xτ (ω) = lim
n→∞

(
xqnt (ω)− Φω(t, τ)xqnτ (ω)

)
= lim
n→∞

∫ t

τ

Φω(t, s)yqns (ω)ds =

∫ t

τ

Φω(t, s)ys(ω)ds

for µ-almost every ω ∈ Ω and (6) holds. Hence, Hx = y and x ∈ D(H). �
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It follows from the closed graph theorem that the operator H has a bounded

inverse G : W → Y . For each τ ≥ 0, let

Fsτ =

{
z ∈ F : sup

t≥τ

∫
Ω

‖Φω(t, τ)z(ω)‖ dµ(ω) < +∞
}
, (10)

and let Fuτ be the set of all functions z ∈ F for which there exists z̄ ∈ Z such that

z(ω) = Φω(τ, 0)z̄(ω) for ω ∈ Ω.

One can easily verify that Fsτ and Fuτ are subspaces of F.

Lemma 3. For τ ≥ 0, we have F = Fsτ ⊕ Fuτ .

Proof of the lemma. Take z ∈ F and τ ≥ 0. We define y : R+
0 × Ω→ X

by the formula

y(t, ω) = χ[τ,τ+1](t)Φω(t, τ)z(ω). (11)

By (2) we have

ess sup
t≥0

∫
Ω

‖y(t, ω)‖dµ(ω) = ess sup
t∈[τ,τ+1]

∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω)

≤ Kea
∫

Ω

‖z(ω)‖dµ(ω) < +∞

and y ∈ W . Hence, there exists x ∈ YZ such that Hx = y. It follows from (6)

that

xt(ω) = Φω(t, τ)(z(ω) + xτ (ω)) (12)

for t ≥ τ + 1 and µ-almost every ω ∈ Ω. Similarly,

xt(ω) = Φω(t, τ)xτ (ω) (13)

for 0 ≤ t ≤ τ and µ-almost every ω ∈ Ω. Now we define z1, z2 ∈ F by

z1(ω) = xτ (ω) and z2(ω) = z(ω) + xτ (ω) (14)

for ω ∈ Ω. Since x0 ∈ Z, it follows from (13) that z1 ∈ Fuτ . Moreover, it follows

from (2) and (12) that z2 ∈ Fsτ . Finally, since z = z2 − z1, we have z ∈ Fsτ + Fuτ .

In order to show that the spaces form a direct sum, take z ∈ Fsτ ∩ Fuτ , and

let z̄ ∈ Z be such that z(ω) = Φω(τ, 0)z̄(ω) for ω ∈ Ω. We define x = (xt)t≥0

by xt(ω) = Φω(t, 0)z̄(ω). It follows from (2) and (10) that x ∈ YZ . Moreover,

Hx = 0. Since H is invertible, we have x = 0, and thus z = 0. �
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Let Pτ : F → Fsτ and Qτ : F → Fuτ be the projections associated with the

decomposition F = Fsτ ⊕ Fuτ .

Lemma 4. The projections Pt satisfy condition (3).

Proof of the lemma. Take z, z̄ ∈ F and t ≥ τ such that

z̄(ω) = Φω(t, τ)z(ω)

for µ-almost every ω ∈ Ω. It follows directly from the definitions that ω 7→
Φω(t, τ)(Pτz)(ω) belongs to Fst , and ω 7→ Φω(t, τ)(Qτz)(ω) belongs to Fut . This

readily implies that condition (3) is satisfied. �

Lemma 5. There exists M > 0 such that∫
Ω

‖(Pτz)(ω)‖ dµ(ω) ≤M
∫

Ω

‖z(ω)‖ dµ(ω) (15)

for z ∈ F and τ ≥ 0.

Proof of the lemma. Using the notation in the proof of Lemma 3, it

follows from (2) that∫
Ω

‖(Pτz)(ω)‖dµ(ω) =

∫
Ω

‖z(ω) + xτ (ω)‖dµ(ω) ≤
∫

Ω

‖z(ω)‖dµ(ω) + ‖x‖∞

=

∫
Ω

‖z(ω)‖dµ(ω) + ‖Gy‖∞ ≤
∫

Ω

‖z(ω)‖dµ(ω) + ‖G‖ · ‖y‖∞

≤ (1 +K‖G‖ea)

∫
Ω

‖z(ω)‖dµ(ω).

Hence, inequality (15) holds with M = 1 +K‖G‖ea. �

Now we establish the exponential bounds.

Lemma 6. There exist constants D,λ > 0 such that∫
Ω

‖Φω(t, τ)(Pτz)(ω)‖ dµ(ω) ≤ De−λ(t−τ)

∫
Ω

‖z(ω)‖ dµ(ω) (16)

for z ∈ F and t ≥ τ ≥ 0.

Proof of the lemma. Take z ∈ Fsτ and define a function ϕ : R+
0 → R by

ϕ(t) =


0, 0 ≤ t ≤ τ,
t− τ, τ ≤ t ≤ τ + 1,

1, τ + 1 ≤ t.
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Moreover, define x = (xt)t≥0 and y : R+
0 × Ω→ Y by

xt(ω) = ϕ(t)Φω(t, τ)z(ω) and y(t, ω) = χ[τ,τ+1](t)Φω(t, τ)z(ω). (17)

One can easy verify that x ∈ YZ , y ∈W and Hx = y. Moreover,

sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [τ + 1,+∞)

}
= sup

{∫
Ω

‖ϕ(t)Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [τ + 1,+∞)

}
= sup

{∫
Ω

‖xt(ω)‖dµ(ω) : t ∈ [τ + 1,+∞)

}
≤ ‖x‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖∞

= ‖G‖ sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [τ, τ + 1]

}
≤K‖G‖ea

∫
Ω

‖z(ω)‖dµ(ω),

using (2) in the last inequality. Using again (2), we obtain∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) ≤ C
∫

Ω

‖z(ω)‖dµ(ω) for t ≥ τ, (18)

where C = Kea max{1, ‖G‖}.
Now, we show that there exists an integer N ∈ N such that for each τ ≥ 0

and z ∈ Fsτ , we have∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) ≤ 1

2

∫
Ω

‖z(ω)‖dµ(ω) for t− τ ≥ N. (19)

Take t0 > τ such that∫
Ω

‖Φω(t0, τ)z(ω)‖dµ(ω) >
1

2

∫
Ω

‖z(ω)‖dµ(ω).

It follows from (18) that

1

2C

∫
Ω

‖z(ω)‖dµ(ω) <

∫
Ω

‖Φω(s, τ)z(ω)‖dµ(ω) ≤ C
∫

Ω

‖z(ω)‖dµ(ω) (20)

for τ ≤ s ≤ t0. Now we consider the functions

y(t, ω) = χ[τ,t0](t)Φω(t, τ)z(ω)

and
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vt(ω) = Φω(t, τ)z(ω)

∫ t

0

χ[τ,t0](s)ds,

for t ≥ 0 and ω ∈ Ω. One can easily verify that v = (vt)t≥0 ∈ YZ , y ∈ W and

Hv = y. Therefore,

‖G‖ sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [τ, t0]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞,

and it follows from (20) that

C‖G‖
∫

Ω

‖z(ω)‖dµ(ω) ≥
∫

Ω

‖vt0(ω)‖dµ(ω)c

≥ (t0 − τ)

∫
Ω

‖Φω(t0, τ)z(ω)‖dµ(ω) ≥ 1

2C
(t0 − τ)

∫
Ω

‖z(ω)‖dµ(ω).

Therefore, property (19) holds taking N > 2C2‖G‖. Now take t ≥ τ and write

t− τ = kN + r, with k ∈ N and 0 ≤ r < N . By (15), (18) and (19), we obtain∫
Ω

‖Φω(t, τ)(Pτz)(ω)‖dµ(ω)

=

∫
Ω

‖Φω(τ+kN+r, τ)(Pτz)(ω)‖dµ(ω) ≤ 1

2k

∫
Ω

‖Φω(τ+r, τ)(Pτz)(ω)‖dµ(ω)

≤ C

2k

∫
Ω

‖(Pτz)(ω)‖dµ(ω) ≤ 2CMe−(t−τ) log 2/N

∫
Ω

‖z(ω)‖dµ(ω), (21)

for x ∈ X. Inequality (16) holds taking D = 2CM and λ = log 2/K. �

Lemma 7. There exist constants D,λ > 0 such that∫
Ω

‖Φω(t, τ)(Qτz)(ω)‖ dµ(ω) ≤ De−λ(τ−t)
∫

Ω

‖z(ω)‖ dµ(ω) (22)

for z ∈ F and 0 ≤ t ≤ τ .

Proof of the lemma. We first show that there exists L > 0 such that∫
Ω

‖Φω(t, 0)z(ω)‖dµ(ω) ≤ L
∫

Ω

‖Φω(τ, 0)z(ω)‖dµ(ω) (23)

for τ ≥ t ≥ 0 and z ∈ Z. Given τ > 0 and z ∈ Z, for a sufficiently small h > 0 let

ψ : R+
0 → R be a smooth function supported on [0, τ ] such that ψ = 1 on [0, τ−h]

and supt≥0|ψ′(t)| ≤ 2. For t ≥ 0 and ω ∈ Ω, we define

xt(ω) = ψ(t)Φω(t, 0)z(ω) and y(t, ω) = ψ′(t)Φω(t, 0)z(ω).



428 Luis Barreira, Davor Dragičević and Claudia Valls

One can easily verify that x = (xt)t≥0 ∈ YZ , y ∈W and Hx = y. Hence,

sup

{∫
Ω

‖Φω(t, 0)z(ω)‖dµ(ω) : t ∈ [0, τ − h]

}
= sup

{∫
Ω

‖ψ(t)Φω(t, 0)z(ω)‖dµ(ω) : t ∈ [0, τ − h]

}
= sup

{∫
Ω

‖xt(ω)‖dµ(ω) : t ∈ [0, τ − h]

}
≤ ‖x‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖∞

= ‖G‖ sup

{∫
Ω

‖ψ′(t)Φω(t, 0)z(ω)‖dµ(ω) : t ∈ [τ − h, τ ]

}
≤ 2‖G‖ sup

{∫
Ω

‖Φω(t, 0)z(ω)‖dµ(ω) : t ∈ [τ − h, τ ]

}
≤ 2Keah‖G‖

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω),

using (2) in the last inequality. Finally, letting h → 0, we conclude that (23)

holds taking L = 2K‖G‖.
Now, we show that there exists an integer N ∈ N such that for each τ ≥ 0

and z ∈ Z, we have∫
Ω

‖Φω(t, 0)z(ω)‖dµ(ω) ≥ 2

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω) for t− τ ≥ N. (24)

Take t0 > τ such that∫
Ω

‖Φω(t0, 0)z(ω)‖dµ(ω) < 2

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω).

It follows from (23) that

1

2L

∫
Ω

‖Φω(t0, 0)z(ω)‖dµ(ω) <

∫
Ω

‖Φω(s, 0)z(ω)‖dµ(ω)

≤ L
∫

Ω

‖Φω(t0, 0)z(ω)‖dµ(ω) (25)

for τ ≤ s ≤ t0. Now we consider the functions

y(t, ω) = −χ[τ,t0](t)Φω(t, 0)z(ω)

and

vt(ω) = Φω(t, 0)z(ω)

∫ ∞
t

χ[τ,t0](s)ds,
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for t ≥ 0 and ω ∈ Ω. One can easily verify that v = (vt)t≥0 ∈ YZ , y ∈ W and

Hv = y. Therefore, using (25) we obtain

‖v‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖∞ ≤ L‖G‖
∫

Ω

‖Φω(t0, 0)z(ω)‖dµ(ω).

Hence,

L‖G‖
∫

Ω

‖Φω(t0, 0)z(ω)‖dµ(ω) ≥ ‖v‖∞

≥ (t0 − τ)

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω) ≥ 1

2L
(t0 − τ)

∫
Ω

‖Φω(t0, 0)z(ω)‖dµ(ω),

and (24) holds taking N > 2L2‖G‖.
Now take t ≥ τ ≥ 0 and write t − τ = kN + r, with k ∈ N and 0 ≤ r < N .

By (23) and (24), we obtain∫
Ω

‖Φω(t, 0)z(ω)‖ dµ(ω) =

∫
Ω

‖Φω(τ + kN + r, 0)z(ω)‖dµ(ω)

≥ 2k
∫

Ω

‖Φω(τ + r, 0)z(ω)‖dµ(ω) ≥ 2k

L

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω)

for z ∈ Z. Hence,∫
Ω

‖Φω(t, 0)z(ω)‖dµ(ω) ≤ 2Le−(τ−t) log 2/N

∫
Ω

‖Φω(τ, 0)z(ω)‖dµ(ω) (26)

for 0 ≤ t ≤ τ and z ∈ Z. Writing Q(τ)z in the form Φω(τ, 0)z, it follows from (15)

and (26) that inequality (22) holds taking D = 2(1 +M)L and λ = log 2/N . �

It follows readily from Lemmas 4, 6 and 7 that the cocycle Φ admits an

exponential dichotomy in average. �

3.2. Robustness as an application. As a nontrivial application, in this section

we establish the robustness of the notion of an exponential dichotomy in average,

using the characterization given in the former section.

Given a cocycle Φ over a semiflow ϕ, and an essentially bounded strongly

measurable function B : Ω → L(X), we consider a strongly measurable map

Ψ: R+
0 × Ω→ L(X) satisfying

Ψω(t, s) = Φω(t, s) +

∫ t

s

Φω(t, τ)B(ϕτ (ω))Ψω(τ, s) dτ (27)
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for t, s ≥ 0 and µ-almost every ω ∈ Ω, where

Ψω(t, s) = Ψ(t, ω)Ψ(s, ω)−1.

We shall always assume that Φ is such that equation (27) has a unique solution Ψ

for any such B. In particular, if the cocycle Φ is continuous in t, then Ψ is unique

and is also a cocycle over ϕ (see, for example, [1]). This provides a large class of

examples.

Example 4. It turns out that there are many examples even under much

more restrictive assumptions, although natural in the context of the theory of

differential equations. Namely, assume in addition that:

(1) the map t 7→ Φ(t, ω)x is of class C1 for each ω and x;

(2) the map t 7→ B(ϕt(ω))x is continuous for each ω and x.

Using also Example 1, one can then easily verify that the unique solution of the

problem

x′ = [A(ϕt(ω)) +B(ϕt(ω))]x, x(0) = x0

is given by x(t) = Ψω(t, 0)x0, with Ψω(t, s) specified (uniquely) by (27).

Now, we establish the robustness of the notion of an exponential dichotomy

in average. In comparison to proofs of the robustness for other notions in the

literature, the present proof must be considered simple. This is made possible

precisely by the characterization of the notion of an exponential dichotomy in

average in terms of an admissibility property.

Theorem 4. Assume that the cocycle Φ admits an exponential dichotomy

in average. If

c := ess sup
ω∈Ω

‖B(ω)‖ (28)

is sufficiently small, then the cocycle Ψ defined by (27) also admits an exponential

dichotomy in average.

Proof. We first show that there exist K ′, a′ > 0 such that∫
Ω

‖Ψω(t, τ)z(ω)‖dµ(ω) ≤ K ′ea
′|t−τ |

∫
Ω

‖z(ω)‖dµ(ω) (29)

for z ∈ F and t, τ ≥ 0. By (2) we have
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∫
Ω

‖Ψω(t, τ)z(ω)‖dµ(ω)

=

∫
Ω

∥∥∥∥Φω(t, τ)z(ω) +

∫ t

τ

Φω(t, s)B(ϕs(ω))Ψω(s, τ)z(ω)ds

∥∥∥∥dµ(ω)

≤ Kea(t−τ)‖z‖1 +Kc

∫ t

τ

ea(t−s)
∫

Ω

‖Ψω(s, τ)z(ω)‖dµ(ω)ds

≤ Kea(t−τ)‖z‖1 + cK

∫ t

τ

ea(t−s)
∫

Ω

‖Ψω(t, τ)z(ω)‖dµ(ω)ds

for z ∈ F and t ≥ τ . Hence, the function

ψ(t) = e−at
∫

Ω

‖Ψω(t, τ)z(ω)‖dµ(ω)

satisfies

ψ(t) ≤ Kψ(τ) + cK

∫ t

τ

ψ(s)ds,

and it follows from Gronwall’s lemma that

ψ(t) ≤ Kψ(τ)ecK(t−τ)

for t ≥ τ . This establishes property (29) for t ≥ τ . A similar argument can be

used for t ≤ τ , and so property (2) holds for the cocycle Ψ.

Since the cocycle Φ admits an exponential dichotomy in average, by Theo-

rem 2 there exists a closed subspace Z ⊂ F such that for each y ∈W there exists

a unique x ∈ YZ such that (6) holds. Let L be the linear operator associated to

the cocycle Ψ, defined by Lx = y on the domain D(L) formed by all x ∈ YZ for

which there exists y ∈W such that

xt(ω) = Ψω(t, τ)xτ (ω) +

∫ t

τ

Ψω(t, s)ys(ω)ds

for t ≥ τ ≥ 0 and µ-almost every ω ∈ Ω. Proceeding in a similar manner to

that in the proof of Lemma 1, one can show that L is well defined. For each

x = (xt)t≥0 ∈ YZ and y ∈W such that Lx = y, we have

xt(ω) = Ψω(t, τ)xτ (ω) +

∫ t

τ

Ψω(t, s)ys(ω)ds

= Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, s)B(ϕs(ω))Ψω(s, τ)xτ (ω)ds



432 Luis Barreira, Davor Dragičević and Claudia Valls

+

∫ t

τ

Φω(t, s)ys(ω)ds+

∫ t

τ

∫ t

s

Φω(t, r)B(ϕr(ω))Ψω(r, s)ys(ω)dr ds

= Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, r)B(ϕr(ω))Ψω(r, τ)xτ (ω)dr

+

∫ t

τ

Φω(t, s)ys(ω)ds+

∫ t

τ

∫ r

τ

Φω(t, r)B(ϕr(ω))Ψω(r, s)ys(ω)ds dr

= Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, s)ys(ω)ds

+

∫ t

τ

Φω(t, r)B(ϕr(ω))

(
Ψω(r, τ)xτ (ω) +

∫ r

τ

Ψω(r, s)ys(ω) ds

)
dr

= Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, r)
(
yr(ω) +B(ϕr(ω))xr(ω)

)
dr,

that is,

xt(ω) = Φω(t, τ)xτ (ω) +

∫ t

τ

Φω(t, r)
(
yr(ω) +B(ϕr(ω))xr(ω)

)
dr (30)

for t ≥ τ . Now we introduce a linear operator R : YZ →W by

(Rx)(t, ω) = B(ϕt(ω))xt(ω).

It follows from (28) that∫
Ω

‖B(ϕt(ω))xt(ω)‖dµ(ω) ≤ c
∫

Ω

‖xt(ω)‖dµ(ω) ≤ c‖x‖∞ (31)

for t ≥ 0, and so the operator R is well defined and bounded. Moreover, it follows

from (30) that D(H) = D(L) and H = L + R. For x ∈ D(H) we consider the

graph norm

‖x‖′∞ = ‖x‖∞ + ‖Hx‖∞.

Clearly, the operator

H : (D(H), ‖·‖′∞)→ (Y, ‖·‖∞)

is bounded, and for simplicity we denote it simply by H. Since H is closed,

(D(H), ‖·‖′∞) is a Banach space. By (31) we have

‖(H − L)x‖∞ = ‖Rx‖∞ ≤ c‖x‖∞ ≤ c‖x‖′∞ (32)

for x ∈ D(H). On the other hand, by Theorem 2, the operator H is invertible, and

hence it follows from (32) that if c is sufficiently small, then L is also invertible.

Applying Theorem 3 yields that the cocycle Ψ admits an exponential dichotomy

in average. �
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4. Admissibility in R

4.1. Preliminaries. Again let (Ω, µ) be a probability space. A measurable map

ϕ : R× Ω→ Ω is said to be a flow on Ω if:

(1) ϕ(0, ω) = ω for ω ∈ Ω;

(2) ϕ(t+ s, ω) = ϕ(t, ϕ(s, ω)) for t, s ∈ R and ω ∈ Ω.

Now let X be a Banach space. A strongly measurable map Φ: R× Ω→ L(X) is

said to be a cocycle over ϕ if:

(1) Φ(0, ω) = Id for ω ∈ Ω;

(2) Φ(t+ s, ω) = Φ(t, ϕs(ω))Φ(s, ω) for t, s ∈ R and ω ∈ Ω.

We shall always assume that there exist K, a > 0 such that (2) holds for z ∈ F

and t, τ ∈ R. A cocycle Φ is said to admit an exponential dichotomy in average

if there exist projections Pτ : F → F for τ ∈ R such that:

(1) for each t, τ ∈ R and z, z̄ ∈ F such that z̄(ω) = Φω(t, τ)z(ω) for µ-almost

every ω ∈ Ω, property (3) holds;

(2) there exist constants D,λ > 0 such that for every z ∈ F properties (4) and

(5) hold, respectively, for t ≥ s and t ≤ s.

4.2. Characterization of exponential dichotomies. Let Y = (Y, ‖·‖∞) be

the set of all functions x : R→ F such that

‖x‖∞ = sup
t∈R
‖x(t)‖1 < +∞,

and W = (W, ‖·‖∞) the set of all Bochner measurable functions y : R × Ω → X

such that

‖y‖∞ = ess sup
t∈R

∫
Ω

‖y(t, ω)‖dµ(ω) <∞,

identified if they are equal (Lebesgue×µ)-almost everywhere. One can easily

verify that both Y and W are Banach spaces.

We first show that the existence of an exponential dichotomy in average yields

an admissibility property.

Theorem 5. Let Φ be a cocycle over a flow. If Φ admits an exponential

dichotomy in average, then for each y ∈ W there exists a unique x ∈ Y such

that (6) holds for t ≥ τ and µ-almost every ω ∈ Ω.

Proof. We proceed in a similar manner to that in the proof of Theorem 2.

Take y ∈W . For t ∈ R and ω ∈ Ω, we define

xt(ω) =

∫ t

−∞
Φω(t, τ)(Pτyτ )(ω)dτ −

∫ ∞
t

Φω(t, τ)(Qτyτ )(ω)dτ.
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As in the proof of Theorem 2, one can show that x = (xt)t∈R ∈ Y satisfies (6) for

t ≥ τ and µ-almost every ω ∈ Ω.

In order to establish the uniqueness of x, take x = (xt)t∈R such that xt(ω) =

Φω(t, τ)xτ (ω) for t ≥ τ and µ-almost every ω ∈ Ω. It follows from (3) and (4) that

‖Pτxτ‖1 =

∫
Ω

‖Φω(τ, t)(Ptxt)(ω)‖dµ(ω)

≤ De−λ(τ−t)
∫

Ω

‖xt(ω)‖dµ(ω) ≤ De−λ(τ−t)‖x‖∞

for t ≤ τ . Letting t→ −∞ yields that Pτxτ = 0. Similarly, Qτxτ = 0, and hence

xτ = 0. Since τ ∈ R is arbitrary, we conclude that x = 0. �

Now we establish the converse of Theorem 5.

Theorem 6. For a cocycle Φ over a flow, if for each y ∈ W there exists a

unique x ∈ Y satisfying (6), then Φ admits an exponential dichotomy in average.

Proof. LetH be the linear operator defined byHx = y on the domainD(H)

formed by all x ∈ Y for which there exists y ∈W satisfying (6). Proceeding as in

the proofs of Lemmas 1 and 2, one can show that H is a well-defined closed linear

operator. Hence, by the closed graph theorem, the operator H has a bounded

inverse G : W → Y .

For each τ ∈ R, let

Fsτ =

{
z ∈ F : sup

t≥τ

∫
Ω

‖Φω(t, τ)z(ω)‖ dµ(ω) < +∞
}

and

Fuτ =

{
z ∈ F : sup

t≤τ

∫
Ω

‖Φω(t, τ)z(ω)‖ dµ(ω) < +∞
}
.

Clearly, Fsτ and Fuτ are subspaces of F.

Lemma 8. For τ ∈ R, we have F = Fsτ ⊕ Fuτ .

Proof of the lemma. Take z ∈ F and τ ∈ R. We define y : R × Ω → X

by (11). Proceeding as in the proof of Lemma 3, one can show that y ∈ W .

Hence, there exists x ∈ Y such that Hx = y, and proceeding as in (14) yields

that z ∈ Fsτ + Fuτ .

Now take z ∈ Fsτ ∩ Fuτ . We define x = (xt)t∈R by xt(ω) = Φω(t, τ)z(ω). One

can easily verify that x ∈ Y and Hx = 0. Since H is invertible, we have x = 0,

and thus z = 0. �
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Let Pτ : F → Fsτ and Qτ : F → Fuτ be the projections associated to the

decomposition F = Fsτ ⊕Fuτ . Again property (3) holds, and, proceeding as in the

proof of Lemma 5, we find that there exists M > 0 such that (15) holds for z ∈ F

and τ ∈ R. It remains to establish the exponential bounds.

Lemma 9. There exist constants D,λ > 0 such that (16) holds for z ∈ F

and t ≥ τ .

Proof of the lemma. Take z ∈ Fsτ , and define a function ϕ : R→ R by

ϕ(t) =


0, t ≤ τ,
t− τ, τ ≤ t ≤ τ + 1,

1, τ + 1 ≤ t.

Moreover, let x = (xt)t∈R and y : R × Ω → Y be as in (17). One can verify that

x ∈ Y , y ∈ W and Hx = y. Proceeding as in the proof of Lemma 6 yields that

(18) holds, where C = Kea max{1, ‖G‖}.
Now, we show that there exists an integer N ∈ N such that property (19)

holds for each τ ∈ R and z ∈ Fsτ . We define

y(t, ω) = χ[τ,t0](t)Φω(t, τ)z(ω)

and

vt(ω) = Φω(t, τ)z(ω)

∫ t

−∞
χ[τ,t0](s)ds.

One can verify that v = (vt)t∈R ∈ Y , y ∈ W and Hv = y. Proceeding as in the

proof of Lemma 6 yields that

C‖G‖
∫

Ω

‖z(ω)‖ dµ(ω) ≥ 1

2C
(t0 − τ)

∫
Ω

‖z(ω)‖dµ(ω),

which implies that property (19) holds taking N > 2C2‖G‖. Proceeding as in (21)

yields inequality (16) taking D = 2CM and λ = log 2/K. �

Lemma 10. There exist constants D,λ > 0 such that (22) holds for z ∈ F

and t ≤ τ .

Proof of the lemma. Take z ∈ Fuτ , and define a function ϕ : R→ R by

ϕ(t) =


1, t ≤ τ − 1,

τ − t, τ − 1 ≤ t ≤ τ,
0, τ ≤ t.
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Moreover, we define x = (xt)t∈R and y : R× Ω→ Y by

xt(ω) = ϕ(t)Φω(t, τ)z(ω) and y(t, ω) = −χ[τ−1,τ ](t)Φω(t, τ)z(ω).

One can easily verify that x ∈ Y , y ∈W and Hx = y. Hence,

sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ (−∞, τ − 1]

}
= sup

{∫
Ω

‖ϕ(t)Φω(t, τ)z(ω)‖dµ(ω) : t ∈ (−∞, τ − 1]

}
= sup

{∫
Ω

‖xt(ω)‖dµ(ω) : t ∈ (−∞, τ − 1]

}
≤ ‖x‖∞ = ‖Gy‖∞ ≤ ‖G‖ · ‖y‖∞

= ‖G‖ sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [τ−1, τ ]

}
≤ K‖G‖ea

∫
Ω

‖z(ω)‖dµ(ω),

using (2) in the last inequality. Therefore, using again (2), we obtain∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) ≤ C
∫

Ω

‖z(ω)‖dµ(ω) for t ≤ τ, (33)

where C = Kea max{1, ‖G‖}.
Now, we show that there exists an integer N ∈ N such that for each τ ∈ R

and z ∈ Fuτ , we have∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) ≤ 1

2

∫
Ω

‖z(ω)‖dµ(ω) for t ≤ τ −N. (34)

Take t0 < τ such that∫
Ω

‖Φω(t0, τ)z(ω)‖dµ(ω) >
1

2

∫
Ω

‖z(ω)‖dµ(ω).

It follows from (33) that

1

2C

∫
Ω

‖z(ω)‖dµ(ω) <

∫
Ω

‖Φω(s, τ)z(ω)‖dµ(ω) ≤ C
∫

Ω

‖z(ω)‖dµ(ω), (35)

for t0 ≤ s ≤ τ . Now we consider the functions

y(t, ω) = χ[t0,τ ](t)Φω(t, τ)z(ω)

and

vt(ω) = −Φω(t, τ)z(ω)

∫ ∞
t

χ[t0,τ ](s)ds.
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One can verify that v = (vt)t∈R ∈ Y , y ∈W and Hv = y. Therefore,

‖G‖ sup

{∫
Ω

‖Φω(t, τ)z(ω)‖dµ(ω) : t ∈ [t0, τ ]

}
≥ ‖G‖ · ‖y‖∞ ≥ ‖v‖∞.

Hence, it follows from (35) that

C‖G‖
∫

Ω

‖z(ω)‖dµ(ω) ≥
∫

Ω

‖vt0(ω)‖dµ(ω) ≥ (τ − t0)

∫
Ω

‖Φω(t0, τ)z(ω)‖dµ(ω)

≥ 1

2C
(τ − t0)

∫
Ω

‖z(ω)‖dµ(ω),

and property (34) holds taking N > 2C2‖G‖.
Now take t ≤ τ and write τ − t = kN + r, with k ∈ N and 0 ≤ r < N .

By (15), (33) and (35), we obtain

∫
Ω

‖Φω(t, τ)(Qτz)(ω)‖dµ(ω)

=

∫
Ω

‖Φω(τ−kN−r, τ)(Qτz)(ω)‖dµ(ω) ≤ 1

2k

∫
Ω

‖Φω(τ−r, τ)(Qτz)(ω)‖ dµ(ω)

≤ C

2k

∫
Ω

‖(Qτz)(ω)‖dµ(ω) ≤ 2C(1 +M)e−(τ−t) log 2/N

∫
Ω

‖z(ω)‖dµ(ω),

for x ∈ X. Taking D = 2C(1 +M) and λ = log 2/K yields (22). �

This completes the proof of the theorem. �

Let Φ be a cocycle over a flow ϕ, and let B : Ω → L(X) be an essentially

bounded strongly measurable function. We consider the cocycle Ψ satisfying (27)

for t, s ∈ R and µ-almost every ω ∈ Ω (again we assume that it is uniquely

defined).

Theorem 7. Assume that the cocycle Φ admits an exponential dichotomy

in average. If the constant c in (28) is sufficiently small, then the cocycle Ψ also

admits an exponential dichotomy in average.

The proof is analogous to the proof of Theorem 4 (using Theorems 5 and 6

instead of Theorems 2 and 3) and so it is omitted.
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[13] J. Massera and J. Schäffer, Linear differential equations and functional analysis. I, Ann.

of Math. (2) 67 (1958), 517–573.
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