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On a class of projective Ricci flat Finsler metrics

By XINYUE CHENG (Chongqing), YULING SHEN (Chongqing)
and XIAOYU MA (Chongqing)

Abstract. The projective Ricci curvature is an important projective invariant in

Finsler geometry. In this paper, we study the projective Ricci curvature and charac-

terize projective Ricci flat Randers metrics. As a natural application, we characterize

projective Ricci flat Randers metrics with isotropic S-curvature. In this case, the metrics

are acturally weak Einstein Finsler metrics.

1. Introduction

The Ricci curvature in Finsler geometry is a natural extension of the Ricci

curvature in Riemannian geometry and plays an important role in Finsler geome-

try. A Finsler metric F on an n-dimensional manifold M is called a weak Einstein

metric if it satisfies the following equation on the Ricci curvature:

Ric = (n− 1)

(
3θ

F
+ σ

)
F 2, (1)

where σ is a scalar function and θ = θiy
i is a 1-form on M . F is called an Einstein

metric if θ = 0 in (1), that is,

Ric = (n− 1)σF 2. (2)
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In particular, a Finsler metric F is said to be of Ricci constant if F satisfies (2)

with a constant σ. F is called a Ricci flat metric if F satisfies (2) with σ = 0,

that is, Ric = 0.

The S-curvature S is an important non-Riemannian quantity in Finsler ge-

ometry, which was introduced by Z. Shen when he studied volume comparison

in Riemann–Finsler geometry [7]. Z. Shen proved that the S-curvature and the

Ricci curvature determine the local behavior of the Busemann–Hausdorff measure

of small metric balls around a point [8]. He also established a volume comparison

theorem for the volume of metric balls under a lower Ricci curvature bound and

a lower S-curvature bound, and generalized Bishop–Gromov volume comparison

theorem in the Riemannian case [8]. Recent studies confirm the importance of

S-curvature in Finsler geometry (see [3], [5] and [8]).

It is natural to consider the geometric quantities derived from Ricci curvature

and S-curvature. In [9], Z. Shen considered the projective spray G̃ associated

with a given spray G on an n-dimensional manifold which is defined by G and

its S-curvature S as

G̃ = G +
2S

n+ 1
Y,

where Y := yi ∂
∂yi is the vertical radial field on TM . Then G̃ is projectively

invariant, and it is easy to see that the Ricci curvature R̃ic of G̃ is given by

R̃ic = Ric +
n− 1

n+ 1
S|my

m +
n− 1

(n+ 1)2
S2,

where “ | ” denotes the horizontal covariant derivative with respect to Berwald

connection of G. Z. Shen also introduced the so-called Berwald–Weyl curvature

of G by the Ricci scalar of G̃, which is the Ricci curvature of G̃ divided by n− 1

(see Section 13.6 in [9] for more details). Recently, Z. Shen defined the concept

of projective Ricci curvature for a Finsler metric F in Finsler geometry as

PRic := Ric + (n− 1)
{
S̄|my

m + S̄2
}
, (3)

where S̄ := 1
n+1S, and “ | ” denotes the horizontal covariant derivative with

respect to the Berwald connection (or the Chern connection) of F . Actually, we

can rewrite the projective Ricci curvature as

PRic = Ric +
n− 1

n+ 1
S|my

m +
n− 1

(n+ 1)2
S2. (4)

It is easy to see that if two Finsler metrics are pointwise projectively related on

a manifold with a fixed volume form, then their projective Ricci curvatures are
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equal. In other words, the projective Ricci curvature is projective invariant with

respect to a fixed volume form. On the other hand, the projective Ricci curvature

is actually a kind of weighted Ricci curvatures. See [6] and the definition of S-

curvature in Section 2. A Finsler metric is called projective Ricci flat if PRic = 0.

Randers metrics are among the simplest non-Riemannian Finsler metrics.

They are defined by a Riemannian metric α =
√
aijyiyj and a 1-form β = biy

i

as the sum F = α+ β. To state our main results, let us introduce some common

notations for Randers metrics. Let F = α + β be a Randers metric on an n-

dimensional manifold M . Put

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

where “ ; ” denotes the covariant derivative with respect to the Levi–Civita con-

nection of α. Further, put

rij := aimrmj , sij := aimsmj , rj := bmrmj , sj := bmsmj ,

qij := rims
m
j , tij := sims

m
j , qj := biqij = rms

m
j , tj := bitij = sms

m
j ,

where
(
aij
)

:= (aij)
−1

and bi := aijbj . We will denote ri0 := rijy
j , si0 := sijy

j

and r00 := rijy
iyj , r0 := riy

i, s0 := siy
i, etc. Let b := ‖βx‖α, ρ := ln

√
1− b2 and

ρi := ρxi .

In [1], Bao–Robles derive the formula for the Ricci curvature of a Randers

metric and find two equations on α and β that characterize Einstein Randers

metrics. Later, Z. Shen and G. C. Yildirim characterize weak Einstein Randers

metrics and prove the following theorem: a Randers metric F = α + β on an

n-dimensional manifold M is a weak Einstein metric satisfying (1) if and only if

α and β satisfy

αRic = (n−1)[(σ−3c2)α2+(σ+c2)β2+(3θ−c0)β−s0;0−s20]+2t00+α2tmm, (5)

sm0;m = (n− 1)

[
(σ + c2)β + 2cs0 + t0 +

3θ + c0
2

]
, (6)

r00 = −2s0β + 2c(α2 − β2), (7)

where c is a scalar function on M and c0 = cxi(x)yi. See Theorem 7.1.1 in [4].

In this paper, we first derive a formula for the projective Ricci curvature of

a Randers metric in Section 3. Based on this, we can prove the following main

theorem.
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Theorem 1.1. Let F = α + β be a Randers metric on a manifold M of

dimension n. Then F is a projective Ricci flat metric if and only if α and β

satisfy the following equations:

(i) αRic = tmmα
2 + 2t00 + (n− 1)(ρ0;0 − ρ20);

(ii) sm0;m = −(n− 1)ρms
m
0;

(iii) s0 = 0 or r00 + 2βs0 = 0,

where αRic denotes the Ricci curvature of α and we have put ρ0 := ρiy
i.

By the definition of ρ, we have

ρxi = −ri + si
1− b2

.

Then

ρ0 = −r0 + s0
1− b2

(8)

and

ρms
m
0 = − 1

1− b2
(q0 + t0). (9)

Further,

ρ0;0 = −r0;0 + s0;0
1− b2

− 2(r0 + s0)2

(1− b2)2
= −r0;0 + s0;0

1− b2
− 2ρ20. (10)

Hence, we can restate Theorem 1.1 as follows.

Theorem 1.2. Let F = α + β be a Randers metric on a manifold M of

dimension n. Then F is a projective Ricci flat metric if and only if α and β

satisfy the following equations:

(i) αRic = tmmα
2 + 2t00 − (n− 1)

[
r0;0+s0;0

1−b2 + 3(r0+s0)
2

(1−b2)2

]
;

(ii) sm0;m = n−1
1−b2 (q0 + t0);

(iii) s0 = 0 or r00 + 2βs0 = 0.

2. Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M . The geodesics

of F are characterized locally by the following system of second-order ordinary

differential equations(
xi
)′′

+ 2Gi (x, ẋ) = 0, i ∈ {1, · · · , n},
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where

Gi =
1

4
gil
{[
F 2
]
xkyl

yk −
[
F 2
]
xl

}
, (11)

gij(x, y) := 1
2

[
F 2
]
yiyj

(x, y) and (gij) := (gij)
−1. The functions Gi are called

the geodesic coefficients of F . Let σ = σ(t)(a ≤ t ≤ b) be a geodesic on a

Finsler manifold (M,F ). Let H(t, s) be a variation of σ such that each curve

σs(t) := H(t, s)(a ≤ t ≤ b) is a geodesic. Let

J(t) :=
∂H

∂s
(t, 0).

Then the vector field J is a Jacobi field along σ, satisfying the Jacobi equation

Dσ̇Dσ̇J(t) + Rσ̇

(
J(t)

)
= 0,

where R denotes the Riemann curvature of F . Locally, for any x ∈ M and

y ∈ TxM\{0}, the Riemann curvature Ry = Rik
∂
∂xi ⊗ dxk of F is given by

Rik = 2
∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm

∂2Gi

∂ym∂yk
− ∂Gi

∂ym
∂Gm

∂yk
. (12)

The Ricci curvature is the trace of the Riemann curvature, i.e.,

Ric = Rmm. (13)

For a Finsler metric F on M , let (bi)
n
i=1 be a basis for TxM , and

(
ωi
)n
i=1

be

the basis for T ∗xM dual to (bi)
n
i=1. Define the Busemann–Hausdorff volume form

by

dVBH := σBH(x)ω1 ∧ · · · ∧ ωn,

where

σBH(x) :=
Vol
(
Bn(1)

)
Vol {(yi) ∈ Rn|F (x, yibi) < 1}

.

Here Vol{·} denotes the Euclidean volume function on Rn.

If F =
√
gijyiyj is a Riemannian metric, then

σBH(x) =
√
det(gij).

However, in general, for a Finsler metric F , σBH(x) 6=
√
det(gij). Define

τ(x, y) := ln

[√
det(gij(x, y))

σBH(x)

]
.
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Then τ is well-defined and it is called the distortion of F . The distortion τ

characterizes the geometry of tangent space (TxM,Fx). It is well-known that a

Finsler metric F is Riemannian if and only if its distortion vanishes.

It is natural to study the rate of change of the distortion along geodesics.

For a vector y ∈ TxM \ {0}, let σ be the geodesic with σ(0) = x and σ̇ = y. Put

S(x, y) :=
d

dt
[τ (σ(t), σ̇(t))] |t=0.

Equivalently,

S(x, y) := τ|m(x, y)ym, (14)

where “ | ” denotes the horizontal covariant derivative with respect to the Berwald

connection (or the Chern connection) of (M,F ). The function S is called the S-

curvature of Finsler metric F .

By the definition, the S-curvature measures the rate of change of (TxM,Fx)

in the direction y ∈ TxM . It is easy to see that for any Berwald metric, S = 0.

In particular, S = 0 for Riemannian metrics ([5]). Hence, S-curvature is a non-

Rimannian quantity. For a Finsler metric F , the S-curvature is given by

S =
∂Gm

∂ym
− ym ∂

∂xm
[lnσBH ] . (15)

We say that F is of isotropic S-curvature if there exists a scalar function c

on M such that S = (n+ 1)cF , equivalently,

τ|my
m

F
= (n+ 1)c(x). (16)

Equation (16) means that the rate of change of the tangent space (TxM,Fx)

along the direction y ∈ TxM at each x ∈ M is independent of the direction y

(but dependent on the point x). If c is constant, we say that F has constant

S-curvature.

We recall that a Randers metric is a Finsler metric of the form F = α + β,

where α =
√
aijyiyj is a Riemannian metric and β = biy

i is a 1-form on M . It

is positive definite if and only if b := ‖βx‖α < 1, x ∈M (see, e.g., [5]).

For a Randers metric F = α+ β on M , let Gi and αGi denote the geodesic

coefficients of F and α, respectively. Then Gi and αGi are related by

Gi = αGi + αsi0 +
1

2F
{−2αs0 + r00}yi. (17)
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Furher, the Ricci curvature of F = α+ β is given by

Ric = αRic +
(
2αsm0;m − 2t00 − α2tmm

)
+ (n− 1)Ξ, (18)

where

Ξ :=
3

4F 2
(r00 − 2αs0)

2
+

1

2F
[4α(q00 − αt0)− (r00;0 − 2αs0;0)] . (19)

By (15) and (17), we obtain

S = (n+ 1)
[e00

2F
− (s0 + ρ0)

]
, (20)

where e00 = r00 + 2βs0. For more details about Randers metrics, see [4].

3. Projective Ricci flat Randers metrics

In this section, we first derive a formula for the projective Ricci curvature

of a Randers metric. Next, we characterize projective Ricci flat Randers metrics.

By (4), the projective Ricci curvature is given by

PRic = Ric +
n− 1

n+ 1
S|my

m +
n− 1

(n+ 1)2
S2. (21)

By (17), we have

Gim = αGim + αyms
i
0 + αsim −

Fym

2F 2
(−2αs0 + r00)yi

+
1

F
(−αyms0 − αsm + rm0)yi +

1

2F
(−2αs0 + r00)δim.

Thus

S|my
m = ym

∂S

∂xm
−Glmym

∂S

∂yl
= S;my

m −
[
2αsm0 +

1

F
(−2αs0 + r00)ym

]
∂S

∂ym

= S;my
m − 2αsm0Sym −

S

F
(−2αs0 + r00). (22)

From (20) we obtain

S;my
m = (n+ 1)

{
1

2F
r00;0 +

1

F
r00s0 +

1

F
βs0;0 −

1

2F 2
e00r00 − s0;0 − ρ0;0

}
=
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= (n+ 1)

{
1

2F
r00;0 +

1

2F 2
(2αs0 − r00)r00 −

1

F
αs0;0 − ρ0;0

}
, (23)

2αsm0Sym =
2(n+ 1)

F
αq00+

2(n+1)

F
αs20−

2(n+1)

F
α2t0−2(n+1)α(ρms

m
0), (24)

S

F
(−2αs0+r00)=

n+1

F

{
− 2

F
αr00s0+

2

F
α2s20+

1

2F
r200+(2αs0−r00)ρ0

}
, (25)

where we have used sms
m
0 = t0. Plugging (23), (24) and (25) into (22) yields

n−1

n+1
S|my

m(n−1)

{
1

2F
r00;0+

3

F 2
αr00s0−

1

F 2
r200−

1

F
αs0;0−ρ0;0 −

2

F
αq00

− 4

F 2
α2s20−

2

F 2
αβs20+

2

F
α2t0 +2α(ρms

m
0)− 2

F
αs0ρ0+

1

F
ρ0r00

}
. (26)

Further, we have

n− 1

(n+ 1)2
S2

= (n− 1)

{
1

4F 2
r200 +

1

F 2
α2s20 −

1

F 2
αr00s0 +ρ20 −

1

F
ρ0r00 +

2

F
αρ0s0

}
. (27)

Substituting (18), (26) and (27) into (21), we obtain the following formula for the

projective Ricci curvature of F = α+ β:

PRic = αRic + 2αsm0;m − 2t00 − α2tmm

+ (n− 1)

{
−2αβ

F 2
s20 + 2α(ρms

m
0)− ρ0;0 −

α

F 2
r00s0 + ρ20

}
. (28)

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. The proof of the sufficiency of the condition in

Theorem 1.1 is immediate. To prove the necessity, let us assume that PRic = 0,

or, equivalently, F 2PRic = 0. By (28), we obtain

F 2αRic + 2F 2αsm0;m − 2F 2t00 − α2F 2tmm

+ (n− 1){−2αβs20 + 2F 2α(ρms
m
0)− F 2ρ0;0 − αr00s0 + F 2ρ20} = 0. (29)

Equation (29) is equivalent to

Ξ4α
4 + Ξ3α

3 + Ξ2α
2 + Ξ1α+ Ξ0 = 0, (30)
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where

Ξ4 = −tmm, (31)

Ξ3 = 2
[
sm0;m − βtmm + (n− 1)ρms

m
0

]
, (32)

Ξ2 = αRic + 4βsm0;m − 2t00 − β2tmm + 4(n− 1)β(ρms
m
0)

− (n− 1)ρ0;0 + (n− 1)ρ20, (33)

Ξ1 = 2βαRic + 2β2sm0;m − 4βt00 − 2(n− 1)βs20 + 2(n− 1)β2(ρms
m
0)

− 2(n− 1)βρ0;0 + 2(n− 1)βρ20 − (n− 1)r00s0, (34)

Ξ0 =
[
αRic− 2t00 − (n− 1)ρ0;0 + (n− 1)ρ20

]
β2. (35)

From (30) we obtain the following fundamental equations:

Ξ4α
4 + Ξ2α

2 + Ξ0 = 0, (36)

Ξ3α
2 + Ξ1 = 0. (37)

Rewrite (36) as

(Ξ4α
2 + Ξ2)α2 + Ξ0 = 0. (38)

Because α2 and β2 are relatively prime polynomials in y, by (38) and the definition

of Ξ0 it follows that there exists a scalar function λ on M such that

αRic− 2t00 − (n− 1)ρ0;0 + (n− 1)ρ20 = λ(x)α2. (39)

Substituting (39) into (38) yields

Ξ4α
2 + Ξ2 + λ(x)β2 = 0. (40)

Besides, by (33), we have

Ξ2 = λ(x)α2 + 4βsm0;m − β2tmm + 4(n− 1)β(ρms
m
0). (41)

Rewrite (39) as

αRic = λ(x)α2 + 2t00 + (n− 1)[ρ0;0 − ρ20]. (42)

Substituting (41) into (40) and by (31), we get

(λ− tmm)(α2 + β2) = −4β[sm0;m + (n− 1)(ρms
m
0)],

which implies the following:
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λ = tmm, (43)

sm0;m = −(n− 1)(ρms
m
0). (44)

Further, by (42), (43) and (44) we obtain

Ξ1 = 2tmmα
2β − (n− 1)s0(r00 + 2βs0), (45)

Ξ3 = −2βtmm. (46)

Then, from (37), we get

s0(r00 + 2βs0) = 0.

From this we conclude that s0 = 0 or r00 + 2βs0 = 0. This completes the proof

of Theorem 1.1. �

4. Application: projective Ricci flat Randers metrics

with isotropic S-curvature

Let F be a Finsler metric on an n-dimensional manifold M . Assume that

F is of isotropic S-curvature, i.e., S = (n+ 1)cF . Then

S|m = (n+ 1)cmF,

PRic = Ric + (n− 1)c0F + (n− 1)c2F 2,

where cm := cxm and c0 := cmy
m. In this case, F is a projective Ricci flat metric

if and only if F is a weak Einstein metric satisfying

Ric = (n− 1)

(
3θ

F
+ σ

)
F 2 (47)

with θ = −c0/3, σ = −c2.

Now, suppose that F = α + β is a Randers metric of isotropic S-curvature,

S = (n+ 1)cF . Then, by Lemma 3.1 in [2], α and β satisfy

r00 + 2βs0 = 2c(α2 − β2), (48)

that is,

rij = −bisj − bjsi + 2c(aij − bibj).
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We have
ri = −b2si + 2c(1− b2)bi, (49)

qi = −b2ti + 2c(1− b2)si (50)

and

q0 + t0 = (1− b2)(t0 + 2cs0). (51)

From Theorem 1.1 and Theorem 1.2, we obtain the following result.

Theorem 4.1. Let F = α + β be a Randers metric on a manifold M of

dimension n. Assume that F is of isotropic S-curvature, S = (n + 1)cF . Then

F is a projective Ricci flat metric if and only if one of the following cases occurs:

(i) α and β satisfy the equations

αRic = tmmα
2 + 2t00 − (n− 1)[s0;0 + s20], (52)

sm0;m = (n− 1)t0, (53)

r00 + 2βs0 = 0. (54)

In this case F is a Ricci flat metric.

(ii) α and β satisfy the equations

αRic = tmmα
2 + 2t00 − 2(n− 1)(2c2α2 + c0β), (55)

sm0;m = 0, (56)

s0 = 0. (57)

Proof. Case 1: r00 + 2βs0 = 0. Then, by (48), we know that c = 0 and

ri = −b2si, r0 = −b2s0.

Further, we have

r0;0 = −2(r0 + s0)s0 − b2s0;0 = −2(1− b2)s20 − b2s0;0,

q0 = −b2smsm0 = −b2t0.

By Theorem 1.2, we get (52) and (53).

Case 2: s0 = 0. Now, by (48), we know that r00 = 2c(α2 − β2) and

ri = 2c(1− b2)bi, r0 = 2c(1− b2)β.

Further, we have

r0;0 = 2(1− b2)(c0β + 2c2α2 − 6c2β2),

q0 = rms
m
0 = 2c(1− b2)bms

m
0 = 2c(1− b2)s0 = 0, t0 = sms

m
0 = 0.

By Theorem 1.2, we get (55) and (56). �
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As we mentioned in the first paragraph of this section, a Finsler metric F of

isotropic S-curvature with S = (n+1)cF is projective Ricci flat if and only if F is

a weak Einstein metric satisfying (47) with 3θ + c0 = 0, σ + c2 = 0. It is easy to

see that Theorem 4.1 is consistent with Theorem 7.1.1 in [4], which characterizes

weak Einstein Randers metrics. That is, we can also deduce Theorem 4.1 from

(5), (6) and (7) with 3θ + c0 = 0, σ + c2 = 0.
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