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On inequalities for alternating trigonometric sums

By HORST ALZER (Waldbröl) and MAN KAM KWONG (Hong Kong)

Abstract. We present various inequalities for alternating trigonometric sums.

Among others, we prove that the double-inequality

1−
√
2

3
≤

n∑
k=1

(−1)k−1 sin2((2k − 1)x)

2k − 1
≤ 1

is valid for all natural numbers n and real numbers x. Both bounds are sharp.

1. Introduction and statement of results

Two classical results on trigonometric polynomials state that for all n ∈ N

and x ∈ (0, π),

0 <

n∑
k=1

sin(kx)

k
(1.1)

and

−1 <

n∑
k=1

cos(kx)

k
. (1.2)

Both bounds are sharp. The validity of (1.1) was conjectured by Fejér in 1910,

and the first proofs were published by Jackson [9] and Gronwall [8] in 1911

and 1912, respectively. The counterpart (1.2) was established by Young [14]

in 1913.
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The inequalities of Fejér–Jackson–Gronwall and Young have stimulated the

research of many mathematicians, who discovered remarkable new proofs, gen-

eralizations, refinements and numerous variants of (1.1) and (1.2). Moreover, it

was shown that inequalities for trigonometric polynomials have interesting appli-

cations in various fields, like, for example, the theory of univalent functions and

Fourier analysis.

Here, we demonstrate that the inequalities (1.1) and (1.2) have an applica-

tion in the theory of absolutely monotonic functions. An infinitely differentiable

function defined on an interval I is said to be absolutely monotonic if the func-

tion and all its derivatives are nonnegative on I. A detailed study of absolutely

monotonic functions can be found in Widder [13, Chapter IV].

For x ∈ (−1, 1) and θ ∈ (0, π), we define the two functions

fθ(x) =
1

1− x
arctan

x sin(θ)

1− x cos(θ)

and

gθ(x) =
1

1− x

(
x− 1

2
log
(
1− 2x cos(θ) + x2

))
.

Proposition. For all θ ∈ (0, π), the functions fθ(x) and gθ(x) are absolutely

monotonic on (0, 1).

Proof. Using the identities (see Gould [7, (2.23), (2.24)])

∞∑
n=1

sin(nθ)

n
xn = arctan

x sin(θ)

1− x cos(θ)

and
∞∑
n=1

cos(nθ)

n
xn = −1

2
log
(
1− 2x cos(θ) + x2

)
,

which are valid for |x| < 1, we arrive at the series representations

fθ(x) =

∞∑
n=1

n∑
k=1

sin(kθ)

k
xn

and

gθ(x) =

∞∑
n=1

(
1 +

n∑
k=1

cos(kθ)

k

)
xn.

It follows that if θ ∈ (0, π), then

dn

dxn
fθ(x) > 0 and

dn

dxn
gθ(x) > 0 (0 ≤ n ∈ Z; 0 < x < 1).

This means that fθ and gθ are absolutely monotonic on (0, 1). �
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We remark that Askey and Gasper [4] proved that the function x 7→
(1/x)fθ(x) is absolutely monotonic on (0, 1) if θ ∈ (0, π).

The inequalities (1.1) and (1.2) can be refined if we assume that n ≥ 2. We

have

x2
(

cot
x

2
− π − x

2

)
<

n∑
k=1

sin(kx)

k
(2 ≤ n ∈ N; 0 < x < π) (1.3)

and

−5

6
≤

n∑
k=1

cos(kx)

k
(2 ≤ n ∈ N; 0 < x < π). (1.4)

The constant −5/6 is best possible. Proofs for (1.3) and (1.4) can be found in

Alzer and Koumandos [1], and in Brown and Koumandos [6], respectively.

We note that inequality (1.4) plays an important role in the proof of Theorem 1

below.

Among the many variants and analogues of (1.1) and (1.2) given in the

literature, we mention three inequalities which have motivated our work. They

are all concerned with sums having only terms involving odd multiples of x. The

first is an elegant counterpart of (1.1) due to Koschmieder [10]:

0 <

n∑
k=1

sin((2k − 1)x)

2k − 1
(n ∈ N; 0 < x < π).

This is a special case of a more general result. If (ak)k≥1 is a decreasing sequence

of positive numbers, then

0 <

n∑
k=1

ak sin((2k − 1)x) (n ∈ N; 0 < x < π).

Proofs for the next inequalities are given in Alzer and Koumandos [2]:

− 1

18

√
3 ≤

n∑
k=1

(−1)k−1
sin((2k − 1)x)

k
(n ∈ N; 0 < x < π) (1.5)

and

−Si(π) <

n∑
k=1

(−1)k−1
cos((2k − 1)x)

k
< Si(π) (n ∈ N;x ∈ R). (1.6)

Here, Si(x) =
∫ x
0

(
sin(t)/t

)
dt denotes the sine integral. The constant bounds

in (1.5) and (1.6) are sharp. For more information on inequalities connected
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with trigonometric sums, we refer to Askey [3], Askey and Gasper [5], Milo-

vanović, Mitrinović and Rassias [12, Chapter 4], and the references given

therein.

In this paper, we present new inequalities for certain alternating trigonomet-

ric sums. Our first theorem offers a relative of (1.1).

Theorem 1. For all natural numbers n and real numbers x, we have

− 1

8
≤

n∑
k=1

(−1)k−1
sin2(kx)

k
. (1.7)

The lower bound is sharp.

Using the summation by parts method, we obtain the following extension

of (1.7).

Corollary 1. Let (ak)k≥1 be a sequence of nonnegative real numbers such

that (kak)k≥1 is decreasing. Then, for n ∈ N and x ∈ R,

− a1
8
≤

n∑
k=1

(−1)k−1 ak sin2(kx).

In particular, for any α ∈ [0, 1),

− 1

8(1− α)
≤

n∑
k=1

(−1)k−1
sin2(kx)

k − α
.

The next theorem provides a generalization of (1.7) involving two parameters.

Theorem 2. Let λ and µ be real numbers with λ ≥ µ ≥ 0. For all natural

numbers n and real numbers x, we have

5µ− λ
8

≤
n∑
k=1

(−1)k−1
λ sin2(kx) + µ cos2(kx)

k
. (1.8)

The lower bound is sharp.

Remark 1. We denote the sum given in (1.8) by Dn(λ, µ;x). If λ > µ, then

lim
n→∞

D2n(λ, µ;π/2) = µ

∞∑
k=1

(−1)k−1

k
+ (λ− µ)

∞∑
k=1

1

2k − 1
=∞.

This implies that there are no constant upper bounds for the sums in (1.8)

and (1.7).
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An application of Theorem 2 leads to a class of nonnegative trigonometric

sums.

Theorem 3. Let c be a real number. The inequality

0 ≤
n∑
k=1

(−1)k−1
sin2(kx) + c cos2(kx)

k
(1.9)

holds for all natural numbers n and real numbers x if and only if c ∈ [1/5, 1].

The following result is a striking companion of (1.7).

Theorem 4. For all natural numbers n and real numbers x, we have

1−
√

2

3
≤

n∑
k=1

(−1)k−1
sin2((2k − 1)x)

2k − 1
≤ 1. (1.10)

Both bounds are sharp.

Again, the summation by parts method yields the next corollary.

Corollary 2. Let (bk)k≥1 be a sequence of nonnegative real numbers such

that ((2k − 1)bk)k≥1 is decreasing. Then, for n ∈ N and x ∈ R,

1−
√

2

3
b1 ≤

n∑
k=1

(−1)k−1 bk sin2((2k − 1)x) ≤ b1.

In particular, for any β ∈ [1, 2),

1−
√

2

3(2− β)
≤

n∑
k=1

(−1)k−1
sin2((2k − 1)x)

2k − β
≤ 1

2− β
.

Finally, we offer an analogue of (1.8), an extension of (1.10).

Theorem 5. Let λ and µ be real numbers with λ ≥ µ ≥ 0. For all natural

numbers n and real numbers x, we have

(1 +
√

2)µ+ (1−
√

2)λ

3

≤
n∑
k=1

(−1)k−1
λ sin2((2k − 1)x) + µ cos2((2k − 1)x)

2k − 1
≤ λ. (1.11)

Both bounds are sharp.

In the next section, we collect some lemmas which we need to establish

Theorem 4. The proofs of our theorems are given in Section 3.
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2. Lemmas

Throughout this paper, we maintain the following notations:

Cn(x) =

n∑
k=1

(−1)k−1
1− cos((2k − 1)x)

2k − 1

=

∫ x

0

n∑
k=1

(−1)k−1 sin((2k − 1)t)dt = (−1)n−1
∫ x

0

sin(2nt)

2 cos(t)
dt,

Fm(x) =

∫ x

0

sin(mt)

2 sin(t)
dt = Cn(x+ π/2)− Cn(π/2) (m = 2n),

and

xk =
kπ

m
.

Lemma 1. If m ≥ 6, then

Fm(x1)− Fm(x2) < 0.263.

Proof. We obtain

Fm(x1)− Fm(x2) =
1

2m

∫ 2π

π

− sin(t)

t

t

sin(t/m)
dt.

Since t 7→ t/ sin(t) is increasing on (0, π], we obtain for t ∈ [π, 2π]:

t

sin(t/m)
≤ π

3 sin(π/3)
m ≤ 1.21m.

Thus,

Fm(x1)−Fm(x2)≤−1.21

2

∫ 2π

π

sin(t)

t
dt=

1.21

2

(
Si(π)−Si(2π)

)
=0.2624 . . . . �

Lemma 2. If m = 2n ≥ 2, then

Fm(π/2)− Fm(x1) = Cn(π/2− x1).

Proof. We have

2(−1)n−1
(
Fm(π/2)− Fm(x1)− Cn(π/2− x1)

)
= 2 (−1)n−1

(
Cn(π)− Cn(π/2 + x1)− Cn(π/2− x1)

)
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=

(∫ π

0

−
∫ π/2+x1

0

−
∫ π/2−x1

0

)
sin(2nt)

cos(t)
dt

=

(∫ π

π/2−x1

−
∫ π/2+x1

0

)
sin(2nt)

cos(t)
dt = 0. �

Lemma 3. Let m ≥ 6 be an even integer. If r = [(m− 2)/4] and s = [m/4],

then

Fm(x1) > Fm(x3) > · · · > Fm(x2r+1) (2.1)

and

0 = Fm(x0) < Fm(x2) < Fm(x4) < · · · < Fm(x2s). (2.2)

Proof. As shown in Kwong [11], integration by parts yields, for 1 ≤ k ≤ r,

Fm(x2k+1)− Fm(x2k−1) =

∫ x2k+1

x2k−1

sin(mt)

2 sin(t)
dt

= −
∫ (2k+1)π/m

(2k−1)π/m

(1 + cos(mt)) cos(t)

2m sin2(t)
dt < 0

and, for 0 ≤ k ≤ s− 1,

Fm(x2k+2)− Fm(x2k) =

∫ (2k+2)π/m

2kπ/m

(1− cos(mt)) cos(t)

2m sin2(t)
dt > 0.

This leads to (2.1) and (2.2). �

Lemma 4. Let m ≥ 6 be an even integer. Then, for x ∈ [0, π/2],

0 ≤ Fm(x) ≤ Fm(x1). (2.3)

Proof. Since Fm is increasing on [x2k, x2k+1] (k = 0, ..., [(m − 2)/4]), and

decreasing on [x2k+1, x2k+2] (k = 0, ..., [(m− 4)/4]), we conclude that Fm attains

a local maximum at x2k+1, and a local minimum at x2k. Let s = [m/4]. If m/2

is odd, then x2s+1 = π/2, and if m/2 is even, then x2s = π/2. This means that

π/2 is either a local maximum or a local minimum of Fm. Using (2.1) and (2.2)

gives

Fm(0) = 0 ≤ Fm(π/2) ≤ Fm(x1).

This implies that (2.3) is valid for all x ∈ [0, π/2]. �
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Remark 2. A proof of the right-hand side of (2.3) is also given in Alzer and

Koumandos [1].

Lemma 5. If n ≥ 3 and x ∈ [0, π], then

Cn(π/2− x1) ≤ Cn(x).

Proof. Let m = 2n. We show that

Fm(x− π/2) ≥ Fm(−x1). (2.4)

Case 1. 0 ≤ x ≤ π/2. Then, 0 ≤ π/2 − x ≤ π/2. Applying Fm(−x) =

−Fm(x) and Lemma 4 gives

Fm(x− π/2) = −Fm(π/2− x) ≥ −Fm(x1) = Fm(−x1).

Case 2. π/2 ≤ x ≤ π. We have 0 ≤ x− π/2 ≤ π/2, so that Lemma 4 yields

Fm(x− π/2) ≥ 0 ≥ −Fm(x1) = Fm(−x1).

From (2.4) we conclude that

Cn(x) = Fm(x− π/2) + Cn(π/2) ≥ Fm(−x1) + Cn(π/2) = Cn(π/2− x1). �

Lemma 6. Let n ≥ 1 be an odd integer. Then, for x ∈ [0, π],

Cn(x) ≤ 2.

Proof. We have

C1(x) = 1− cos(x) ≤ 2.

Let n ≥ 3 be odd and m = 2n. We consider two cases.

Case 1. 0 ≤ x ≤ π/2. Then, 0 ≤ π/2 − x ≤ π/2. Applying Fm(−x) =

−Fm(x), Lemma 4 and

Cn(π/2) =

n∑
k=1

(−1)k−1

2k − 1
≤ C3(π/2) =

13

15
(2.5)

gives

Cn(x) = Cn(π/2)− Fm(π/2− x) ≤ Cn(π/2) ≤ 13

15
.
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Case 2. π/2 ≤ x ≤ π. From Lemma 4 we obtain

Cn(x) = Cn(π/2) + Fm(x− π/2) ≤ Cn(π/2) + Fm(x1). (2.6)

If s ∈ (0, π], then x 7→ x sin(s/x) is increasing on [1,∞), so that for m ≥ 6,

Fm(x1) =
1

2

∫ π

0

sin(s)

m sin(s/m)
ds ≤ 1

2

∫ π

0

sin(s)

6 sin(s/6)
ds =

14

15
. (2.7)

Combining (2.5), (2.6) and (2.7) gives

Cn(x) ≤ 27

15
.

This completes the proof of Lemma 6. �

3. Proofs of theorems

Proof of Theorem 1. Let An(x) be the sum in (1.7). Since

An(x+ π) = An(x) and An(π/2− x) = An(π/2 + x),

it suffices to prove (1.7) for x ∈ [0, π/2]. We have

A1(x) = sin2(x), A2(x) +
1

8
=

1

8

(
4 cos2(x)− 3

)2
, A3(x) = A2(x) +

1

3
sin2(3x).

It follows that (1.7) holds for n = 1, 2, 3. Let n ≥ 4. Applying

sin2(y) =
1

2
− 1

2
cos(2y) (3.1)

gives

−2An(x) = Gn +Hn(2x),

where

Gn =

n∑
k=1

(−1)k

k
and Hn(x) =

n∑
k=1

(−1)k−1
cos(kx)

k
.

We set x = (π − z)/2. Then, 0 ≤ z ≤ π. Using

Gn ≤ G4 = − 7

12

and (1.4) yields

−2An(x) ≤ − 7

12
+Hn(2x) = − 7

12
−

n∑
k=1

cos(kz)

k
≤ − 7

12
+

5

6
=

1

4
.

This leads to (1.7). Moreover, since A2(π/6) = −1/8, we conclude that −1/8 is

the best possible constant lower bound. �
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Proof of Theorem 2. As in Section 1, we denote the sum in (1.8) by

Dn(λ, µ;x). Then,

Dn(λ, µ;x) = −µGn + (λ− µ)An(x).

We obtain

D1(λ, µ;x) = µ+ (λ− µ) sin2(x) ≥ µ ≥ 5µ− λ
8

.

Let n ≥ 2. We apply (1.7) and

1

2
= −G2 ≤ −Gn.

Thus,

Dn(λ, µ;x) ≥ 1

2
µ− 1

8
(λ− µ) =

5µ− λ
8

= D2(λ, µ;π/6).

This completes the proof of Theorem 2. �

Proof of Theorem 3. Let c ∈ [1/5, 1]. Applying Theorem 2, we obtain

Dn(1, c;x) ≥ 5c− 1

8
≥ 0.

This settles (1.9). We assume that (1.9) is valid for all n and x. Then,

D2(1, c;π/6) =
5

8

(
c− 1

5

)
≥ 0.

Thus, c ≥ 1/5. We have

Dn(1, c;π/2) =
1 + c

2

n∑
k=1

(−1)k−1

k
+

1− c
2

n∑
k=1

1

k
≥ 0.

If c > 1, then

lim
n→∞

Dn(1, c;π/2) = −∞.

A contradiction. Hence, c ≤ 1. �

Proof of Theorem 4. Let Sn(x) be the sine sum in (1.10). Since

Sn(x+ π) = Sn(x) and Sn(π/2− x) = Sn(π/2 + x),

it remains to prove (1.10) for x ∈ [0, π/2]. Using (3.1), we obtain the representa-

tion

Sn(x) =
1

2
Cn(y) with y = 2x ∈ [0, π].
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Thus, we have to show that

−0.276.... =
2

3
(1−

√
2) ≤ Cn(y) ≤ 2. (3.2)

Applying Lemma 6 and

C2N (y) ≤ C2N+1(y) (N ≥ 0)

reveals that the right-hand side of (3.2) is valid for all n ≥ 1.

We find that

C1(y) = 1− cos(y) ≥ 0 >
2

3
(1−

√
2)

and

C2(y) =
2

3
(1−

√
2) +

1

3

(√
2 + cos(y)

)(√
2− 2 cos(y))2 ≥ 2

3
(1−

√
2
)
.

Let n ≥ 3. Applying Lemmas 5, 2, 4 and 1 leads to

−Cn(y) ≤ −Cn(π/2− x1) = Fm(x1)− Fm(π/2) < Fm(x1)− Fm(x2) < 0.263.

Hence,

Cn(y) ≥ −0.263 >
2

3
(1−

√
2).

This completes the proof of the left-hand side of (3.2). Since

S1(π/2) = 1 and S2(π/8) =
1−
√

2

3
,

we conclude that the bounds given in (1.10) are sharp. �

Proof of Theorem 5. Let Rn(λ, µ;x) denote the sum given in (1.11).

Then we have

Rn(λ, µ;x) = (λ− µ)Sn(x) + µ

n∑
k=1

(−1)k−1

2k − 1
.

Applying (1.10) and

2

3
≤

n∑
k=1

(−1)k−1

2k − 1
≤ 1

leads to

R2(λ, µ;π/8) =
(1 +

√
2)µ+ (1−

√
2)λ

3
=

1−
√

2

3
(λ− µ) +

2

3
µ ≤ Rn(λ, µ;x)

≤ (λ− µ) + µ = λ = R1(λ, µ;π/2).

This settles (1.11) and reveals that the given bounds are the best possible. �
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