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Fitting heights of solvable groups with no nontrivial
prime power character degrees

By MARK L. LEWIS (Kent)

Abstract. We construct solvable groups where the only degree of an irreducible

character that is a prime power is 1 and that have arbitrarily large Fitting heights. We

will show that we can construct such groups that also have a Sylow tower. We also will

show that we can construct such groups using only three primes.

1. Introduction

Throughout this paper, all groups are finite, and if G is a group, then we

write Irr(G) for the irreducible characters of G, and cd(G) = {χ(1) | χ ∈ Irr(G)}
are the character degrees of G.

In the paper [1], we said that a nonabelian groupG is a composite degree group

(CDG for short) if 1 is the only prime power that lies in cd(G). Solvable groups

satisfying this condition had earlier been studied in the paper [4]. Examples

of solvable CDGs can be found in [4, Example 3.4] and in [1, Section 4]. We

mentioned in [1, Section 4] that we did not know of any examples of solvable

CDGs that had Fitting height larger than 3. We now remedy this by presenting

CDGs with arbitrarily large Fitting heights.

Theorem 1.1. Let l > 1 be an integer. Then there exists a solvable CDG G

such that the Fitting height of G is l.

We will show that the groups in Theorem 1.1 can be chosen to have a Sylow

tower. It is not difficult to see that if G is a CDG, then |G| must be divisible by at
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least three primes. We will show that there exist solvable CDGs with arbitrarily

large derived length whose orders are divisible by only three primes.

2. Modules and extra-special groups

In this section, we construct extra-special groups whose quotients are modules

for other groups.

We begin by reviewing a construction that can be found in [3] among other

places. Let k be a field, and let V be a finite dimensional vector space for k.

Write V̂ for the dual vector space for V . That is, V̂ is the set of k-linear transfor-

mations from V to k. Let {e1, . . . , en} be a basis for V , and define λi : V → k by

λi(ej) = δij where δij is the Kronecker delta and then extending linearly. It is not

difficult to see that {λ1, . . . , λn} forms a basis for V̂ . We now define the group

E(V ) as follows: let E(V ) = {(v, α, z) | v ∈ V, α ∈ V̂ , z ∈ k}, and we define

multiplication in E(V ) by

(v1, α1, z1)(v2, α2, z2) = (v1 + v2, α1 + α2, z1 + z2 + α2(v1)).

It can be checked that E(V ) is a group. One can show that {(v, 0, z) | v ∈ V, z ∈
k} and {(0, α, z) | α ∈ V̂ , z ∈ k} are normal abelian subgroups whose product

is E(V ), and whose intersection is {(0, 0, z) | z ∈ k}. Also, one can show that

the commutators [(ei, 0, 0), (0, λj , 0)] = (0, 0, λj(ei)) = (0, 0, δij). It follows that

E(V )′ = Z(E(V )) = {(0, 0, z) | z ∈ k}. In the case where k has order p for some

prime p, it now follows that E(V ) is an extra-special group of order p2n+1.

Suppose that G is a group and k is a field of prime order, and suppose that

V is a finite dimensional k[G]-module. It is not difficult to see that V̂ will also be

a k[G]-module where α · g for α ∈ V̂ and g ∈ G is defined by α · g(v · g) = α(v).

One can now see that G acts on E(V ) by (v, α, z) · g = (v · g, α · g, z). One can

observe that this action is an action by automorphisms that centralizes Z(E(V )).

Suppose that x ∈ k is a nonzero element of the field k. We define a map σx
on E(V ) by (v, α, z)σx = (xv, xα, x2z). It is not difficult to see that σx will be an

automorphism of E(V ), and that the order of σx equals the multiplicative order

of x in k. In addition, the action of 〈σx〉 on E(V )/E(V )′ is Frobenius, and if the

order of x is odd, then in fact the action of 〈σx〉 on E(V ) is Frobenius. Finally, it

is not difficult to see that σx commutes with the action of G since (xv)·g = x(v ·g)

and (xα) · g = x(α · g) for v ∈ V , α ∈ V̂ , and g ∈ G.

Thus, we have proved the following:
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Lemma 2.1. If G is a group, k is a field of prime order, and V is a fi-

nite dimensional k[G]-module, then G acts on E(V ) via automorphism such that

Z(E(V )) is centralized. Furthermore, if m divides |k| − 1, then E(V ) has an

automorphism of order m that commutes with the action of G and its action on

E(V )/E(V )′ is Frobenius, and if m is odd, this automorphism can be taken so

that its action on E(V ) is Frobenius.

Before leaving this section, we consider how the action of G on V determines

the action of G on V̂ when the action is coprime.

Lemma 2.2. Suppose that p is a prime, G is a p′-group, and k is the field

of order p. If V is a finite dimensional k[G]-module, so that CV (G) = 0, then

CV̂ (G) = 0.

Proof. We begin by noting that G acts coprimely on V , so we can apply

Fitting’s theorem to see that V = CV (G) ⊕ [V,G] where [V,G] = {v − vg | v ∈
V, g ∈ G}. The assumption that CV (G) = 0 implies that V = [V,G]. Suppose

that ϕ ∈ CV̂ (G). We then have ϕ(v) = ϕg(vg) = ϕ(vg) for all v ∈ V and

g ∈ G. This implies that ϕ(v − vg) = ϕ(v)− ϕ(vg) = 0 for all v ∈ V and g ∈ G.

Since V = [V,G], this implies that ϕ(V ) = 0, and so, ϕ = 0. We conclude that

CV̂ (G) = 0. �

3. Construction

In this section, we present our construction. We begin with a simple lemma

suggested by the referee.

Lemma 3.1. Let G = EH, where E is normal in G and CH(E) = 1. Assume

that E is a p-group for some prime p and that Op(H) = 1. Then CG(E) ≤ E.

Proof. Let C = CG(E), and let M = H ∩ EC. Since CH(E) = 1, we

see that M ∩ C = 1. Because E is normal in G, we see that C and hence EC

are normal in G. This implies that M is normal in H and applying Dedekind’s

lemma, we obtain EC = EM .

Now, C ≤MC ≤ EC, so MC = C(MC∩E), and thus |MC : C| = |MC∩E :

MC ∩ E ∩ C|. Since MC ∩ E ≤ E and E is a p-group, it follows that |MC : C|
is a power of p. Also, |MC : C| = |M : M ∩ C| = |M |, so M is a p-group. Now,

M ≤ Op(H) = 1, so M = 1. Then EC = EM = E, and we conclude that C ≤ E,

as desired. �

The following theorem encodes our key construction.
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Theorem 3.2. Let H be a CDG with a unique minimal normal subgroup N ,

and assume that N is a q-group for some prime q. Let p be a prime different from q

so that p − 1 is divisible by an odd prime r that is different from q. Then there

exists an extra-special p-group E so that if G = E o (H ×Zr), then G is a CDG,

F (G) = E, and Z(E) is the unique minimal normal subgroup of G. In particular,

if H is solvable, then the Fitting height of G is one more than the Fitting height

of H.

Proof. Let V be an H-module of characteristic p such that CV (N) = 0.

Note that |V | and |N | are coprime. Let E = E(V ). As we saw in the previous

section, E is an extra-special p-group, and we define the action of H on E as in

that section. Since r divides p − 1, we see that k contains an element x whose

multiplicative order is r. Thus, 〈σx〉 ∼= Zr where σx is defined as in the previous

section, and using that section we can define an action of Zr on E. Since r is

odd, we see that the action of Zr on E is Frobenius. We also saw that the action

of H and σx on E commute; so in fact, we have an action of H × Zr on E, and

we take G = E o (H × Zr) under this action.

We first prove that G is a CDG. Since H is a CDG, it follows that G/E ∼=
H × Zr is a CDG. Thus, it suffices to show that the characters in Irr(G) that

do not have E in their kernel do not have prime power degree. Since EZr is a

Frobenius group, it follows that r divides the degree of every irreducible character

of EZr whose kernel does not contain E, and this implies that r divides the degree

of every irreducible character of G whose kernel does not contain E. Since E is an

extra-special p-group, p will divide the degree of every irreducible character of G

whose kernel does not contain E′. Thus, we need only consider those irreducible

characters of G whose kernels do not contain E but do contain E′. Let χ be such

a character of G, and let λ be an irreducible constituent of χE , and since E′ is

contained in the kernel of χ, we conclude that λ is linear.

Since CV (N) = 0, we may use Lemma 2.2 to see that CV̂ (N) = 0. Now,

E/E′ is the direct sum of two N -modules whose centralizers of N are trivial, so

CE/E′(N) = 1. It follows that Nλ < N , and applying Clifford’s theorem, we

have that |N : Nλ| divides the degree of every irreducible constituent of λN , and

hence, q divides χ(1). This proves that G is a CDG.

Observe that H × Zr acts faithfully on E since otherwise the kernel of the

action would contain N , and this leads to a contradiction since CV (N) = 0. Also,

Op(H × Zr) = 1, so it follows by Lemma 3.1 that E contains CG(E). From this,

we see that F (G) is a p-group, and thus F (G) = E since Op(H × Z) = 1. Also,

since E contains CG(E), it is clear that E contains all minimal normal subgroups

of G. �
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In Theorem 3.2, the hypothesis that H has a unique minimal normal sub-

group is stronger than we really need. One could weaken this hypothesis to require

that F (H) be a q-group. In the proof, we then choose V to be a module for H

with the property that no irreducible F (H)-submodule of V is centralized by

F (H).

We also note in the proof of Theorem 3.1 that if V is chosen to be an irre-

ducible, faithful module for H, then necessarily we have CV (N) = 0 since CV (N)

will be a proper H-submodule of V .

We now find CDGs with arbitrarily large Fitting heights by inductively ap-

plying Theorem 3.2. In particular, we are ready to prove Theorem 1.1. This next

result includes Theorem 1.1.

Theorem 3.3. There exists an infinite family of solvable CDGs G1, G2, . . .

so that Gi has Fitting height i + 1 and has a unique minimal normal subgroup.

Furthermore, there exists an infinite family of solvable CDGs G1, G2, . . . so that

each Gi satisfies the above conclusions and has a Sylow tower.

Proof. We prove the first conclusion by working via induction on i. We start

by finding a solvable CDG with Fitting height 2. We could choose one of the ex-

amples in [1, Section 4], however, we can find an easy example. Let E be an

extra-special group of order 73 and exponent 7. It is not difficult to see that

E has an automorphism α of order 2 that inverts all the elements of E/Z(E)

and centralizes Z(E). Using Lemma 2.1, we see that E has an automorphism β

of order 3 whose action on E is Frobenius. Also, it is easy to see that α and β

commute. We take G1 = E o 〈αβ〉. It is easy to see that cd(G1) = {1, 6, 21},
so G1 is a CDG, and Z(E) is the unique minimal normal subgroup of G1. Notice

that G1 has Fitting height 2 and Z(E) is a 7-group. Also, G1 will have a Sylow

tower. This proves the base case. We now prove the inductive step. At the i-th

step, we have the solvable CDG Gi which has Fitting height i + 1 and a unique

minimal normal subgroup. Since Gi is solvable, we know that this minimal nor-

mal subgroup will be a qi-subgroup for some prime qi. We can then find primes

pi and ri that are different from qi so that ri is odd and ri divides pi − 1. We

apply Theorem 3.2 using Gi, pi, qi, and ri to obtain the CDG Gi+1 with Fitting

height i+ 2 and having a unique minimal normal subgroup. This proves the first

conclusion.

To prove the second conclusion, we assume at each step that we choose the

primes pi and ri so that they do not divide |Gi|. Now, Gi+1 will have a normal

Sylow pi-subgroup Pi. Also, we see that Gi+1/Pi ∼= Gi × Zri . In addition, Zri



316 Mark L. Lewis

will be the normal Sylow ri-subgroup of Gi × Zri and Gi × Zri/Zri ∼= Gi which

inductively has a Sylow tower. Therefore, Gi+1 has a Sylow tower. �

Next, we give an easy proof that every CDG has order divisible by three

distinct primes.

Lemma 3.4. If G is a CDG, then |G| is divisible by at least three distinct

primes.

Proof. If G is not solvable, then this is immediate by Burnside’s paqb-

theorem. Thus, we may assume G is solvable, and we let M be maximal so that

G/M is nonabelian. We know by [2, Lemma 12.3] that either G/M is a p-group

for some prime p or G/M is a Frobenius group. However, if G/M were a p-group,

then it would have a prime power character degree other than 1. Thus, G/M

is a Frobenius group with Frobenius complement N/M . We know that |G : N |
and |N : M | are relatively prime and |G : N | is a character degree, so |G : N |
is divisible by at least two distinct primes, and so, |G : M | is divisible by three

distinct primes. �

We now show that we can find a CDG whose order is divisible by only three

distinct primes and has arbitrarily large Fitting height.

Theorem 3.5. There exist three distinct primes p1, p2, and r, and an infinite

family of solvable CDG’s G1, G2, . . . , so that Gi has Fitting height i+ 1 and is a

{p1, p2, r}-group.

Proof. Let r be an odd prime, let p1 and p2 be distinct primes so that

r divides both p1 − 1 and p2 − 1. Many such triples of primes exist. One pos-

sibility is (p1, p2, r) = (7, 13, 3). Let k be the field of order p2, and let V be an

irreducible k[Zp1 ] module. By Lemma 2.1, we know that Zp1 × Zr acts via au-

tomorphisms on E(V ) so that Zp1 centralizes Z(E(V )), and the action of Zr on

E(V ) is Frobenius. Take G1 = E(V ) o (Zp1 × Zr). It is not difficult to see that

cd(G1) = {1, rp1, r(p2)n} where n is the dimension of V , G1 is a {p1, p2, r}-group,

and G1 has a unique minimal normal subgroup that happens to be a p2-group.

This is the base case for induction. Continuing inductively, we will have Gi is

a {p1, p2, r}-group with Fitting height i + 1, and with a unique minimal normal

subgroup that will be a p1-group when i is even, and a p2-group when i is odd.

We will apply Theorem 3.2 with p = p2 and q = p1 when i is even, and p = p1
and q = p2 when i is odd, and r = r for all i to obtain Gi+1. We see that Gi+1 is

also a {p1, p2, r}-group, it has Fitting height i+ 2 and a unique minimal normal

subgroup that will be a p1-subgroup when i + 1 is even (i.e, i is odd), and a

p2-subgroup when i+ 1 is odd (i.e., i is even). This yields the desired result. �
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