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Hilbert matrix operator on Besov spaces

By MIROLJUB JEVTIĆ (Belgrade) and BOBAN KARAPETROVIĆ (Belgrade)

Abstract. We show that if 0 < p 6∞, 1 < q 6∞, then the Besov spaces Hp,q,1
1+1/p

are not mapped by the Hilbert matrix operator H into the Bloch space B. As a corollary,

we have that the space VMOA is also not mapped by H into the Bloch space B. In [7],

it is shown that if a function f(z) =
∞∑

k=0

f̂(k)zk, holomorphic in the unit disc, belongs

to the logarithmically weighted Bergman space A2
logα , α > 2, then

∞∑
k=0

|f̂(k)|
k+1

< ∞. We

show that this implication holds only when α > 1. In [7], it is also shown that if α > 3,

then H maps A2
logα into the Bergman space A2. We improve this result by proving that

H maps A2
logα into A2 when α > 2.

1. Introduction

The Hilbert matrix is an infinite matrix H whose entries are an,k = 1
n+k+1 .

It can be viewed as an operator on spaces of holomorphic functions by its action

on their Taylor coefficients. If

f(z) =

∞∑
n=0

f̂(n)zn
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360 Miroljub Jevtić and Boban Karapetrović

is a holomorphic function in the unit disc D = {z ∈ C : |z| < 1}, then we define

a transformation H by

Hf(z) =

∞∑
n=0

∞∑
k=0

f̂(k)

n+ k + 1
zn.

Let H(D) be the algebra of holomorphic functions in D. For 0 < p 6 ∞,

Hardy space Hp is the space of all holomorphic functions f ∈ H(D) for which

||f ||Hp = ||f ||p = sup
06r<1

Mp(r, f) <∞,

where

Mp(r, f) =

(
1

2π

∫ 2π

0

∣∣f(reit)
∣∣p dt) 1

p

, 0 < p <∞;

M∞(r, f) = sup
06t<2π

∣∣f(reit)
∣∣ .

The subspace of H∞ consisting of the functions which are also continuous

on D, equipped with the same supremum norm, is called the disc algebra. We de-

note it by A.

Recall that the space BMOA consists of the functions f ∈ H1 whose bound-

ary values f(eit) are of bounded mean oscillation on T = ∂D, that is,

sup
I

1

|I|

∫
I

∣∣f(eit)− fI
∣∣ dt <∞,

where supremum is taken over all intervals I ⊂ T and

fI =
1

|I|

∫
I

f(eit)dt.

If

lim
|I|→0

1

|I|

∫
I

∣∣f(eit)− fI
∣∣ dt = 0,

then we say that f ∈ VMOA. Here, as usual, |I| is arc length measure of the

interval I ⊂ T.

A function f ∈ H(D) is said to belong to the mixed norm space Hp,q,α,

0 < p, q 6∞, 0 < α <∞, if

||f ||Hp,q,α = ||f ||p,q,α =

(∫ 1

0

Mq
p (r, f)(1− r)qα−1dr

) 1
q

<∞, 0 < q <∞,

||f ||Hp,∞,α = ||f ||p,∞,α = sup
06r<1

(1− r)αMp(r, f) <∞.
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The Lebesgue measure on D will be denoted by A, and will be normalized so

as to have A(D) = 1, that is,

dA(z) =
1

π
dxdy =

1

π
rdrdt, z = x+ iy = reit.

The Bergman space A2 is the space of holomorphic functions in L2(D, dA),

that is,

A2 =

{
f ∈ H(D) : ‖f‖2A2 =

∫
D
|f(z)|2dA(z) <∞

}
.

For t ∈ R we write Dt for the sequence {(n+ 1)t}, for all n > 0. If λ =

{λn}∞n=0 is a sequence and X is a sequence space (by identifying the holomorphic

function f(z) =
∞∑
n=0

f̂(n)zn with the sequence {f̂(n)}∞n=0 we may consider the

spaces of holomorphic functions as sequence spaces), we write

λX = {{λnxn} : {xn} ∈ X}.

For example, {an} ∈ D1l1 if and only if
∞∑
n=0

|an|
n+1 < ∞. The space DtHp,q,α, for

t 6= 0, will also be denoted by Hp,q,α
−t .

Among the spaces Hp,q,α
s , 0 < s < ∞, the spaces Hp,q,1

1+s are of independent

interest, and are known as Besov spaces for 0 < q < ∞, and as Lipschitz spaces

when q =∞.

We note that in [8] the spaces of functions f ∈ H(D) such that Dnf ∈
Hp,q,n−α (equivalently, f (n) ∈ Hp,q,n−α) for some (any) nonnegative integer n

such that n − α > 0, and where α ∈ R, are called Besov spaces and they are

denoted by Bp,qα . Comparing with the notations given above, Bp,qα = Hp,q,−α for

α < 0, and Bp,qα = Hp,q,1
1+α for α > 0.

The spaces Hp,p,1
1+1/p, 1 < p < ∞, can be described as spaces of functions

f ∈ H(D) such that ∫ 1

0

Mp
p (r, f ′)(1− r)p−2dr <∞,

or, equivalently, ∫
D
|f ′(z)|p(1− |z|2)p−2dA(z) <∞.

Obviously, H∞,∞,11 = B∞,∞0 is the Bloch space B.
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2. Hilbert matrix operator on V MOA

Hilbert matrix operator is not bounded on H∞, but it maps H∞ into B
(more precisely, into BMOA). On the other hand, H does not map BMOA

into B. We improve this. We show that the Besov space Hp,q,1
1+1/p, that is a

subspace of BMOA, except for p =∞, 2 < q 6∞, is not mapped into the Bloch

space B by the Hilbert matrix operator H if 1 < q 6∞. As a corollary, we have

that the space VMOA is also not mapped by H into the Bloch space B.

The following well-known duality result will be needed (see [2]).

Theorem 2.1. If g ∈ B, then

ϕg(f) = lim
r→1

∞∑
n=0

f̂(n)ĝ(n)rn, f ∈ H1,1,1
1 ,

defines a bounded linear functional on H1,1,1
1 such that ||ϕg|| 6 C||D1g||∞,∞,1.

Conversely, if ϕ ∈
(
H1,1,1

1

)′
, then there exists a unique g ∈ B such that

ϕ(f) = ϕg(f) = lim
r→1

∞∑
n=0

f̂(n)ĝ(n)rn,

for all f ∈ H1,1,1
1 and ||D1g||∞,∞,1 6 C||ϕ||.

Now we are ready to state our first result.

Theorem 2.2.

(a) If 0 < q 6 1, then H maps Hp,q,1
1+1/p, 0 < p 6∞, into BMOA.

(b) If 1 < q 6∞, then H does not map Hp,q,1
1+1/p, 0 < p 6∞, into B.

Proof. (a) In [3], the following formula for H acting on Hp, 1 6 p, was

noticed:

Hf = P+(MbCf),

where Cf(eit) = f(e−it), Mbu = bu, u ∈ L∞(T), b(eit) = ie−it(π− t), 0 6 t 6 2π,

and P+ is Szegő projection given by

P+u(z) =
1

2π

∫ 2π

0

u(eit)

1− ze−it
dt.

Since the space BMOA is the Szegő projection of L∞(T), we have that the

Hilbert matrix operator H acts as a bounded operator from H∞ into BMOA

(see also Theorem 1.2 in [7]).
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If 0 < q 6 1, then Hp,q,1
1+1/p ⊆ H∞,1,11 . Now we prove that H∞,1,11 ⊆ A. Let

f ∈ H∞,1,11 . Then we have

f(z) =

∫ 1

0

D1f(ρz)dρ.

To show that f ∈ A, it is enough to show that the integral on the right hand side

converges uniformly with respect to z ∈ D. But this follows from the estimate∣∣∣∣∫ 1

r

D1f(ρz)dρ

∣∣∣∣ 6 ∫ 1

r

M∞(ρ,D1f)dρ, 0 < r < 1, z ∈ D,

and the fact that
∫ 1

0
M∞(ρ,D1f)dρ < ∞, see [5, Theorem 4, p. 754]. Thus

Hp,q,1
1+1/p ⊆ A, for 0 < q 6 1. Therefore, if 0 < q 6 1, then H : Hp,q,1

1+1/p → BMOA.

(b) It is known that if 0 < p1 < p2 6 ∞, then Hp1,q,1
1+1/p1

⊆ Hp2,q,1
1+1/p2

. We use

this fact below.

Case 1. q =∞. In [7], it is proved that if f ∈ B, then

|(Hf)′(z)| (1− |z|) = O

(
log

2

1− |z|

)
, z ∈ D.

This estimate cannot be improved as the function g(z) = log 2
1−z shows. Let us

prove that g ∈ Hp,∞,1
1+1/p. Since∣∣∣g(n)(z)∣∣∣ 6 C

|1− z|n
, n > 1,

we deduce for 1
n < p 6 1

n−1 , n > 2,

||g(n)||p,∞,n−1/p 6 sup
06r<1

(1− r)n−1/p
(∫ 2π

0

Cdt

|1− reit|np

)1/p

6 C.

Since Hp,∞,1
1+1/p ⊆ H∞,∞,11 = B, we see that H does not map Hp,∞,1

1+1/p into B, and

that the estimate

|(Hf)′(z)| (1− |z|) = O

(
log

2

1− |z|

)
, z ∈ D, f ∈ Hp,∞,1

1+1/p,

cannot be improved.

Case 2. 1 < q < ∞. We may assume that 1
n < p 6 1

n−1 , where n > 2 is a

positive integer. Let h(z) =
(

log 2
1−z

)γ−1
, where 1 < γ < 2 and q(2−γ) > 1. We
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show that h ∈ Hp,q,1
1+1/p and Hh /∈ B. First, if f ∈ H(D), then ||D1+1/pf ||p,q,1 <∞

if and only if ||f (n)||p,q,n−1/p <∞. So it suffices to show that ||h(n)||p,q,n−1/p <∞.

It is easy to see that∣∣∣h(n)(z)∣∣∣ 6 C

|1− z|n
(

log 2
1−|z|

)2−γ , z ∈ D.

Therefore,

||h(n)||qp,q,n−1/p 6 C
∫ 1

0

∫ 2π

0

dt

|1− reit|np
(

log 2
1−r

)(2−γ)p
q/p(1− r)q(n−1/p)−1dr

6 C
∫ 1

0

dr

(1− r)
(

log 2
1−r

)(2−γ)q <∞.
Here and above, we used the estimate∫ 2π

0

dt

|1− reit|α
= O

(
1

(1− r)α−1

)
, α > 1.

Let f(z) = 1

(1−z)(log 2
1−z )

γ . An argument similar to that given above shows

that f ∈ H1,1,1
1 (see also [8] and [9]). On the other hand,

lim
r→1−

∞∑
n=0

f̂(n)Ĥh(n)rn = lim
r→1−

∫ 1

0

f(rt)h(t)dt

= lim
r→1−

∫ 1

0

1

(1− rt)
(

log 2
1−rt

)γ (log
2

1− t

)γ−1
dt =∞.

Hence, Hh /∈ B by Theorem 2.1. �

Corollary 2.3. H does not map VMOA into B.

Proof. By [8, Theorem 6.8, p. 186], we find that H∞,2,11 ⊆ VMOA. On the

other hand, Hp,q,1
1+1/p ⊆ H∞,2,11 , for 0 < q 6 2. By applying Theorem 2.2, we

conclude that H does not map VMOA into B. �

Remark 2.4. In [7], it is proved that if f ∈ Hp,p,1
1+1/p, 1 < p <∞, then

|(Hf)′(z)| (1− |z|) = O

((
log

2

1− |z|

) 1
p′
)
, z ∈ D, p+ p′ = pp′.
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We do not know whether this estimate is optimal. We note that it follows from

Theorem 2.2 that it cannot be replaced with

|(Hf)′(z)| (1− |z|) = O(1), z ∈ D,

for every f ∈ Hp,p,1
1+1/p, where 1 < p <∞.

3. Hilbert matrix operator on H1 (resp. H1,1,1
1 )

Hilbert matrix operator H is not bounded on H1. We show that operator H

maps continuously H1 into the space Hp,∞,1/p′ , 1 < p < ∞, p + p′ = pp′, but

not into Hp,q,1/p′ , for any 0 < q < ∞ (note that H1 ⊂ Hp,q,1/p′ ⊂ Hp,∞,1/p′ ,

1 < p, q <∞). In fact, a little more is true.

Theorem 3.1. Let 1 < p <∞ and 1
p + 1

p′ = 1. Then

(a) H : H1 → Hp,∞,1/p′ ;

(b) H does not map H1,1,1
1 into Hp,q,1/p′ , for any q ∈ (0,∞).

In the proof we will use Theorem 2.1, Theorem 2.2 and the following duality

result ([8]).

Theorem 3.2. Let 1 < p, q <∞ and α ∈ R. Then the dual of space Bp,qα is

isomorphic to the space Bp
′,q′

−α , p+ p′ = pp′, q + q′ = qq′, under the pairing

< f, g >=

∞∑
n=0

f̂(n)ĝ(n), f ∈ Bp,qα , g ∈ Bp
′,q′

−α ,

where the series converges in the ordinary sense.

Proof of Theorem 3.1. (a) Let f ∈ H1. Then Hf(z) =
∫ 1

0
f(r)
1−rzdr,

z ∈ D. By using Minkowski’s inequality in the continuous form and Fejér–Riesz

inequality, we find that

Mp(ρ,Hf) 6
∫ 1

0

|f(r)|dr
(

1

2π

∫ 2π

0

dt

|1− rρeit|p

)1/p

6 ||f ||1
C

(1− ρ)1/p′
.

(b) Since Hp,q1,1/p
′ ⊆ Hp,q2,1/p

′
, if 0 < q1 < q2 < ∞, we may assume

that 1 < q < ∞. As usual, q + q′ = qq′. Let f ∈ Hp′,q′,1
1+1/p′ and assume that

Hg ∈ Hp,q,1/p′ , for any g ∈ H1,1,1
1 . Then, for any g ∈ H1,1,1

1 the series

∞∑
k=0

Ĥg(k)f̂(k)
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converges by Theorem 3.2, and therefore

∞∑
k=0

Ĥg(k)f̂(k) = lim
r→1−

∞∑
k=0

Ĥg(k)f̂(k)rk = lim
r→1−

∞∑
k=0

∞∑
n=0

ĝ(n)

k + n+ 1
f̂(k)rk.

Since
∞∑
n=0

|ĝ(n)|
n+k+1 6

∞∑
n=0

|ĝ(n)|
n+1 <∞ and

∞∑
k=0

|f̂(k)|rk <∞, we find that

∞∑
k=0

∞∑
n=0

ĝ(n)

k + n+ 1
f̂(k)rk =

∞∑
n=0

∞∑
k=0

f̂(k)rk

n+ k + 1
ĝ(n),

for any r ∈ (0, 1). Thus

∞∑
k=0

Ĥg(k)f̂(k) = lim
r→1−

∞∑
n=0

∞∑
k=0

f̂(k)rk

n+ k + 1
ĝ(n)

=

∞∑
n=0

∞∑
k=0

f̂(k)

n+ k + 1
ĝ(n) =

∞∑
n=0

Ĥf(n)ĝ(n).

Hence, by Theorem 2.1, Hf ∈ B. This contradicts to Theorem 2.2 (b). �

Remark 3.3. (1) It follows from [7, Corollary 2.2] that

H : H1 → Hp,q,1/p′+ε,

where 1 < p, q < ∞ and ε > 0. Since Hp,q,1/p′+ε ⊇ Hp,q,1/p′ , Theorem 3.1 (b)

shows that conclusion

H : H1 → Hp,q,1/p′+ε

does not hold for ε = 0.

(2) Since H1,1,1
1 ⊂ H1 ⊂ H1,2,1

1 ⊂ Hp,2,1/p′ , where 1 < p <∞, as a corollary

of Theorem 3.1 we have that H does not map H1,1,1
1 into H1,2,1

1 . The same

conclusion could also be derived by using the fact that the dual of H1,2,1
1 is

isomorphic to H∞,2,11 , see [1] and Theorem 2.2.

4. Hilbert matrix operator on logarithmically weighted

Bergman spaces

It follows from Theorem 3.1 that H does not map H1, a subspace of D1l1 by

Hardy’s inequality, into H2,2,1/2 = A2. In this section, we provide some subspaces
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of D1l1, the so-called logarithmically weighted Bergman spaces, that are mapped

into A2 by H. We improve the results given in [7, Section 4].

For α > 0, we define the logarithmically weighted Bergman space A2
logα ⊂ A2

as follows:

A2
logα =

{
f ∈ H(D) : ||f ||2A2

logα
=

∫
D
|f(z)|2

(
log

2

1− |z|2

)α
dA(z) <∞

}
.

The norm ||f ||A2
logα

may be expressed in a different way, as the following

lemma shows.

Lemma 4.1. Let α > 0 and f(z) =
∞∑
n=0

f̂(n)zn be a holomorphic function

in D. Then f ∈ A2
logα if and only if

∞∑
n=0

|f̂(n)|2
n+1 logα(n+ 1) <∞.

Proof. By using Parseval’s formula, we find that

‖f‖2A2
logα

=

∞∑
n=0

|f̂(n)|2
∫ 1

0

rn logα
2

1− r
dr.

Now the lemma follows from the estimate∫ 1

0

rn logα
2

1− r
dr � logα(n+ 1)

n+ 1
, (4.1)

that we prove below.

A function φ(t) = t logα 2
t , 0 < t < 1, is normal. An argument used in the

proof of [8, Theorem 5.19, p. 163], shows that∫ 1

0

rn
φ(1− r)

1− r
dr � φ

(
1

n+ 1

)
.

Thus
∫ 1

0
rn logα 2

1−rdr �
logα(n+1)

n+1 . �

Remark 4.2. We are grateful to the referee who pointed out to us that a

similar argument based on the paper [10] leads to the same conclusion.

Remark 4.3. To keep the paper as self-contained as possible, we give a direct

proof of (4.1). First, we find that

∫ 1

0

rn logα
2

1− r
dr >

∫ 1

1− 1
n+1

rn logα
1

1− r
dr > logα(n+ 1)

∫ 1

1− 1
n+1

rndr =
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=
logα(n+1)

n+1

(
1−
(

1− 1

n+ 1

)n+1
)
>

(
1− 1

e

)
logα(n+1)

n+1
.

On the other hand, ∫ 1

0

rn logα
2

1− r
dr = S1 + S2, (4.2)

where

S1 =

∫ 1− 1
n+1

0

rn logα
2

1− r
dr

and

S2 =

∫ 1

1− 1
n+1

rn logα
2

1− r
dr.

If 0 6 r 6 1− 1
n+1 , then 1

1−r 6 n+1, and therefore logα 2
1−r 6 2α logα(n+1)

for n > 1. Hence,

S1 =

∫ 1− 1
n+1

0

rn logα
2

1− r
dr 6 2α logα(n+ 1)

∫ 1− 1
n+1

0

rndr

= 2α
logα(n+ 1)

n+ 1

(
1− 1

n+ 1

)n+1

6
2α

e

logα(n+ 1)

n+ 1
. (4.3)

It is easy to see that

S2 6
∫ 1

1− 1
n+1

logα
2

1− r
dr = 2

∫ ∞
log 2(n+1)

tαe−tdt.

For n > 2, partial integration gives∫ ∞
log(n+1)

tαe−tdt =
logα(n+ 1)

n+ 1
+α

logα−1(n+ 1)

n+ 1
+α(α− 1)

∫ ∞
log(n+1)

tα−2e−tdt.

Continuing on this way, we find that∫ ∞
log(n+1)

tαe−tdt 6 Cα
logα(n+ 1)

n+ 1
.

Hence,

S2 6 Cα
logα(n+ 1)

n+ 1
. (4.4)

From (4.2), (4.3) and (4.4), we find that
∫ 1

0
rn logα 2

1−rdr 6 Cα
logα(n+1)

n+1 . �
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In [7], it is shown that A2
logα ⊆ D1l1 for α > 2. Now we improve this.

Proposition 4.4. If α > 1, then A2
logα ⊆ D1l1. For α = 1, A2

log1 is not a

subset of D1l1.

Proof. Let f∈A2
logα , where α>1. By Lemma 4.1,

∞∑
n=0

|f̂(n)|2
n+1 logα(n+1)<∞.

Thus, by using Cauchy–Schwarz inequality, we find that

∞∑
n=0

|f̂(n)|
n+ 1

= |f̂(0)|+
∞∑
n=1

|f̂(n)|
n+ 1

6 |f̂(0)|+

( ∞∑
n=1

|f̂(n)|2

n+1
logα(n+1)

)1/2( ∞∑
n=1

1

(n+1) logα(n+1)

)1/2

<∞.

Now, let f(z) =
∞∑
n=1

zn

log(n+1) log(log(n+1)) . Then

||f ||2A2
log1
6 C

∞∑
n=1

|f̂(n)|2

n+ 1
log(n+ 1)

= C

∞∑
n=1

1

(n+ 1) log(n+ 1) log2(log(n+ 1))
<∞.

On the other hand,

∞∑
n=1

|f̂(n)|
n+ 1

=

∞∑
n=1

1

(n+ 1) log(n+ 1) log(log(n+ 1))
=∞. �

In [7], it is shown that if f ∈ A2
logα , where α > 3, then Hf ∈ A2. We also

improve this result.

Theorem 4.5. If f ∈ A2
logα , where α > 2, then Hf ∈ A2.

Proof. Since

Hf(z) = f̂(0)
1

z
log

1

1− z
+

∞∑
n=0

∞∑
k=1

f̂(k)

n+ k + 1
zn,

and 1
z log 1

1−z ∈ A
2, it suffices to show that

H1f(z) :=

∞∑
n=0

∞∑
k=1

f̂(k)

n+ k + 1
zn ∈ A2.
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By using Proposition 4.4 and Lemma 4.1, we find that

||H1f ||2A2 =

∞∑
n=0

1

n+ 1

∣∣∣∣∣
∞∑
k=1

f̂(k)

n+ k + 1

∣∣∣∣∣
2

6
∞∑
n=0

1

n+ 1

∞∑
k=1

|f̂(k)|2

n+ k + 1
logα(k + 1)

∞∑
k=1

1

(n+ k + 1) logα(k + 1)

6 C||f ||2A2
logα

∞∑
n=0

1

n+ 1

∞∑
k=1

1

(n+ k + 1) logα(k + 1)

= C||f ||2A2
logα

∞∑
k=1

1

k logα(k + 1)

∞∑
n=0

(
1

n+ 1
− 1

n+ k + 1

)

= C||f ||2A2
logα

∞∑
k=1

1

k logα(k + 1)

(
1 +

1

2
+ ...+

1

k

)

6 C||f ||2A2
logα

∞∑
k=1

1

k logα−1(k + 1)
<∞,

because α− 1 > 1, or equivalently α > 2. �

Remark 4.6. We do not know whether there exists α ∈ (1, 2] such that

H maps continuously A2
logα into A2.
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[10] J. A. Peláez and J. Rättyä, Weighted Bergman Spaces Induced by Rapidly Increasing
Weights, Mem. Amer. Math. Soc. 227 (2014).

MIROLJUB JEVTIĆ
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