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Isomorphic g-noncommuting graphs of finite groups

By MAHBOUBE NASIRI (Mashhad), AHMAD ERFANIAN (Mashhad),
MASOUMEH GANJALI (Mashhad) and ABBAS JAFARZADEH (Mashhad)

Abstract. Let G be a finite non-abelian group and g be a fixed element of G.

In 2014, TOLUE et al. introduced the g-noncommuting graph of G (denoted by I'%,) with

vertex set G and two distinct vertices z and y join by an edge if [x,y] # ¢ and g L.

In this paper, we consider an induced subgraph of I'Y, with vertex set G \ Z(G) which
is denoted by AY. We state some properties of A, and prove that two groups with
isomorphic g-noncommuting graphs have the same order.

1. Introduction

Recently, joining graph theory and group theory together form a topic which
is one of the most interest to some authors. There are many graphs associated
to groups, rings or some algebraic structures. We may refer to works on non-
commuting graphs [2], relative non-commuting graphs [16], Engel graphs [1] and
non-cyclic graphs [3]. One of the important graphs associated to a group is the
non-commuting graph. This graph, first introduced by PAUL ERDOs [12], was
denoted by ' and is a graph with G \ Z(G) as the vertex set and two distinct
vertices  and y join, whenever zy # yx. The concept of non-commuting graphs
has been generalized in some different ways. One of them is the generalized non-
commuting graph related to a subgroup H of G (see [16]) or even related to two
subgroups H and K (see [8]). Moreover, there is another generalization of non-
commuting graphs via an automorphism (see [5]). Now, we are going to consider
the new generalization of non-commuting graphs called g-noncommuting graphs,
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which is associated to a fixed element g of group G, given by TOLUE et al. in [15]
as the following.

Definition 1.1. For any non-abelian group G and fixed element g in G, the g-
noncommuting graph of G is the graph with vertex set G and two distinct vertices
x and y join by an edge if [x,y] # g and g~ 1.

There are some results on g-noncommuting graphs. For instance, some graph
theoretical invariants, planarity and regularity are stated in [15]. In this paper,
we would like to consider the induced subgraph of g-noncommuting graphs on
G\ Z(G) which is denoted by AZ,. It is obvious that if g is an identity element, then
AY, coincides with the known non-commuting graph of G. Recall that K(G) =
{[z,y] : z,y € G} is the set of commutators of G and G’ = (K(G)). KAPPE et
al. [10] concluded with a status report on what is now called the Ore Conjecture,
stating that every element in a finite non-abelian simple group is a commutator,
and so G’ = K(G) in this case. It is clear that AY, is a complete graph whenever
g & K(G), and so everything is known. Thus, we always assume that e # g €
K(Q).

In Sections 2 and 3, we investigate some graph theoretical properties of A
like clique number, regularity, planarity and connectivity.

In Section 4, we prove that for any two non-abelian finite groups G and H
such that A = A% it holds that |G| = |H| where g € G and h € H. More-
over, we state a conjecture about the above graph isomorphism, and some of our
attempts are also given at the end. Most of our notations and terminologies are
standard and can be found in [6].

2. Some properties of g-noncommuting graphs

In this section, we may investigate some graph theoretical properties of AZ,.
Let us start with mentioning some relations between the new graph AZ, and a
commuting graph.

Lemma 2.1. The commuting graph of group G is a spanning subgraph
of AYZ,.

PROOF. It is straightforward. (]

Lemma 2.2. If K(G) = {e,g} or {e,g,g7'}, then AY is equal to a com-
muting graph.
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PROOF. In the first case, if  and y are adjacent in AY,, then [z,y] # g.
Since [z,y] € K(G), [z,y] = e and x and y are adjacent in the commuting graph.
Now, suppose that K(G) = {e,g,g7 '}, then, if [,y] # g and g~!, we should
have [z, y] = e. Hence, the proof is completed. O

We know that the clique number of commuting graphs is equal to |A| —
|A N Z(G)|, where A is an abelian subgroup of maximal order of G. So, the
clique number of commuting graphs is a lower bound for the clique number of
g-noncommuting graphs, and we have the following result:

Theorem 2.3. Let G be a non-abelian group, and A be an abelian subgroup
of maximal order of G. Then w(A%L) > |A| — |AN Z(G)|.

In [15], the authors gave a formula for the degree of vertices in I',. Now, we
can state it for AY, as follows. The proof is very similar to Lemma 2.2 in [15] and
we omit here.

Lemma 2.4. Let z € G\ Z(G).
(i) If g* # e, then deg(x) = |G| — |Z(G)| — €|Cq(z)| — 1, where ¢ = 1 if  is
conjugate to xg or xg~', but not to both, and € = 2 if x is conjugate to zg

and zg~!.

(ii) If g> = e and g # e, then deg(z) = |G| — |Z(G)| — |Cq(x)| — 1, whenever zg
is conjugate to x.

1

(i) If xg and xg~* are not conjugate to x, then deg(z) = |G| — |Z(G)| — 1.

Lemma 2.5. If G is a group of odd order and A}, is a regular graph, then
G is nilpotent.

PROOF. Since g € K(G), the graph in not complete, so for every x,y €
G\ Z(G) we have |Cg(z)| = |Cg(y)|. Therefore, the conjugacy classes of G have
only two sizes, and by [9, Theorem 1] G is nilpotent. O

The planarity of I'Y, has been investigated in [15]. Here we deal with the
planarity of AY, indeed, we classify all groups of which the g-noncommuting
graph is planar.

Theorem 2.6. Let G be a finite non-abelian group. Then AY, is planar if
and only if G is isomorphic to one of the following groups:
(1) S3, Ds, Qs, Do, D12, Dg x Za, Qg x Zs;
(2) <a,b:a®=b*=e,a® =a"! > 73 x Zy;
(3) <a,b:a*=b*=e,a® =a"! > 7y x ZLy;
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(4) <a,b:a®=0%=e,a® =a"3 > Zg x Zy;
(5) < a,b:a*=0b%=(ab)* = [a?,b] = e >= (Zy x L) X Zo;
(6) <a,b,c:a®?=0b>=c*=la,c]=1[bc=c¢,[a,b] =c?>=(Zy x L) x ZLs.

PROOF. If |Z(G)| > 5, then we have a clique of size 5. Thus, the planarity
of AY implies that |Z(G)| < 4. Also, if there exists an element z € G\ Z(G)
such that 2% ¢ Z(G) and 21,22 € Z(G), then there is a clique with vertices
{w, 27 221, 220,27 21}, So |Z(G)| < 2 in this case. It is clear that if the
degree of all vertices of AY, is greater than 5, then AZ, will not be planar. Thus,
there exists an element z € G\ Z(G) such that deg(z) < 5. By Lemma 2.4,
|G| — €|Cq(x)] < 6+ |Z(G)|, where € = 1 or 2. We know that deg(z) > 0,
therefore,

€
(e+ ICa(@)| < I6] = IG] - —1G] < |6] - elCa(z)| < 10.

Thus |G| < 10(e + 1), where ¢ = 1 or 2. So |G| < 30. Also, the commuting
graph is a spanning subgraph of AY,, so it is enough to investigate groups of order
less than 30 in [4, Theorem 2.2]. By using the group theory package GAP, the
degrees of vertices of the graph associated to the above groups are computed and
the proof is completed. O

3. Connectivity of g-noncommuting graphs

In this section, we focus on the connectivity of g-noncommuting graphs. Let
us start with the following lemma:

Lemma 3.1. Let g be a non-central element of G.
(i) If g* = e, then diam(A%) = 2.
(ii) If g* # e and g* # e, then diam(AY,) < 3.

PROOF. (i) Suppose that z # g is a vertex of AZ,. It is clear that [z, g] # g.
If g% = e, then [z,g] # g~'. Consequently, = is adjacent to g, or shortly, z ~ g,
and so diam(AY,) < 2. Since g = [x1, 2] for some z1,29 € G\ Z(G), we have
d(z1,x2) > 2. Therefore, diam(AY) = 2.

(ii) Assume that g? # e and ¢® # e. If [x,9] # g7}, then 2 ~ g, and if
[z,9] = g~ !, then we have

[z,9%] = [z, gllx, 9" =g (g7 ) =g 2
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L it follows that & ~ g2. Thus, every vertex x must join g or

Since [2,9°] # 9,9~
g*. Now, for any two arbitrary vertices x and y, we can easily see that d(z,y) < 2
when z and y join g or g2. If z ~ gand y ~ g?> or y ~ g and = ~ g2, then

d(z,y) < 3. Hence diam(A¥,) < 3. O

Theorem 3.2. Let |Z(G)| =1, e # g € G and |Ci(g)| # 3. Then A}, is
connected.

PROOF. If g3 # e, then the result holds by Lemma 3.1. If g3 = e, then
we can consider g2 # e. Since |Cg(g)| # 3, it follows that |Cg(g)| > 3. Thus,
there is an element a € C(g) such that a # e, g and g=!. Now, we can assume
that zg € G\ Z(G) such that [zg,¢%] = g and [z9,9] = g~!. It is easy to see
that [z, ga] = [z0,a](g71)® and [zg,g%a] = [v0,alg™[r0,9]* = [x0,alg™2. If
[0,a] # g,¢g7 !, then a is adjacent to zg and g, and the graph is connected. In
the case that [zg,a] = g, it holds [zg, ga] = e. Now, if ga € Z(G), then a = g1,
a contradiction. Thus ga € G\ Z(G), and so ga is adjacent to xg and g. Hence
the graph is connected. If [zg,a] = g~!, then [zg,9%a] = e. In the case that
g%a € Z(Q), it holds a = g=% = g, a contradiction. Thus g%a is adjacent to zg

and g. So the graph is connected and the proof is completed. ([

As a consequence of the above corollary, we can state that if |Cq(g)| # 3,
then AY, has no isolated vertex. First, we recall the following theorem from [13],
which will be used in Proposition 3.4. We omit the proof.

Theorem 3.3. Let G be a finite simple group, and x € G be an involution.
Then Cg(x) # G, and if |Cg(x)| = m, then |G| < (m(m +1)/2)!.

Proposition 3.4. Let G be a non-abelian simple group. Then A}, has no
isolated vertices.

PROOF. Let x € G\ Z(G). If 22 # e, then z and 27! are adjacent. If z is an
involution and |Cg(x)| = m, then by Theorem 3.3, we must have m > 3. Thus,
there is an element ¢t € C(z) such that ¢ # e, z, and so t is adjacent to z. Hence,
the proof is completed. O

4. Isomorphism between g-noncommuting graphs

~

It is clear that if two groups G and H are isomorphic, then, obviously, AY, =
A, but the converse is not true and it is interesting to find some conditions for the
groups G and H to have G & H or even |G| = |H|. This section involves the above
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isomorphism between g-noncommuting graphs. First, let us state the following
important lemma which plays an important role in the proof of Theorem 4.2.

Lemma 4.1. Let x be a non-isolated vertex in A, such that deg(z) #
|G|—|Z(G)|—1, where g is an arbitrary fixed element in K (G). If H is a group such
that AL, = Al for some h € K(H), then |Z(H)| divides (|G| — |Z(G)|,|Ca(z)|)
or (|G| = |2(G)], 2|Ca()])-

PROOF. Assume that ¢ is an isomorphism between graphs AZ, and A and
¢(x) = y. Then by Lemma 2.4, deg(x) = |G| — |Z(G)| — €|Cq(x)| — 1, where
€ =1 or 2. Also, we have

Gl — 1Z(G)| = |H| - | Z(H)| = | Z(H)| (lz(fﬁ,)l - 1) |

Since deg(z) = deg(y), if deg(z) = |G| — |Z(G)| — |Ca(z)| — 1, we have

H C
2()| (it — ' — 1) o

|G = 12(G)] = |Ca(2)| =

H  _ 9lCu@| _
20| (i — 2 1)
Thus, |Z(H)| divides (|G|—|Z(GQ)|,|Cq(z)|). Similarly, if deg(z) = |G|—|Z(G)|—
2|Cq(z)| — 1, then |Z(H)| will divide (|G| — |Z(G)],2|Cs(x)|), and the proof is
completed. 0

Now, we are in a position to prove the main theorem.

Theorem 4.2. Let G and H be two non-abelian finite groups such that
A%, = A for some non-identity element h € H. Then |G| = |H|.

PROOF. Assume that ¢ is an isomorphism between graphs A, and Al
Since A%, = A4 we have |G| — |Z(G)| = |H| — |Z(H)|, and it is enough
to prove |Z(G)| = |Z(H)|. Since e # ¢g € K(G), there are vertices x,y €
G\ Z(G) such that [z,y] = g. So z cannot be adjacent to y, and deg(z) #
|G| — |Z(G)| — 1. First, suppose that |Z(G)| # 1, then AY, has no isolated ver-
tex because every non-central element of G, like ¢, is adjacent to ¢tz for some
2 € Z(G). Thus |Z(H)| divides |Z(@|((GI/I1Z(G)) — 1,ICa(@)|/|Z(G)]) or
IZ(G((1GI/1Z(G)]) — 1,2|Cq(x)|/|Z(G)|), by Lemma 4.1. In the first case,
we may put d = (|G|/|Z(G)|—1, |Ca(x)|/|Z(G)]), and so d divides |Cq(x)|/|Z(G)|
and |G|/|Z(G)| — 1. Hence, d | (|G|/|Z(G)| — 1,|G|/|Z(G)|) = 1 and we should
have d = 1. Therefore, |Z(H)| | |Z(G)|. In the second case, we may consider
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d = (|G|/|Z(G)| — 1,2|Cq(2)|/|Z(G)]), and by a similar argument, d | 2, which
implies that |Z(H)| | 2|Z(G)|.
If ¢(x) = 2/, then deg(z) = deg(z’), and we have

Gl = 12(@)] = e|Cq ()| = 1 = |H| = |Z(H)| = € |Cu(a’)| = 1, €€ =1or2

Thus, if € = 1, then |Cg(z)| = |Cu ()| or 2|Cy(2’)|, and if € = 2, then |Cg(x)| =
|Cr(2")| or § |Cr(z')|. Now, we consider the following cases:

Case 1. ¢ = 1.

If |Ca(x)| = |Cu(2')| and |Z(G)| # |Z(H)|, then |Z(H)| < 3 |Z(G)|. Hence

|Cu(2")] = |Ca(x)| divides |H| = |G| — |Z(G)| + |Z(H)|,

and |Z(G)| < |Cq(2)], so |Ca(@)[ | [2(G)| = |Z(H)|. Thus 0 < |Z(G)[ = |Z(H)| <
|Z(G)|, which is a contradiction. Hence, |Z(G)|=|Z(H)| in this case. If |Ce(z)|=
2|Cg(2')], then

%ICG(»@)I = |Cr(2")| divides |H| = |G| = |Z(G)| + |Z(H)|.

Since |Z(G)| | |Ca(x)] and Z(G) S Ca(x), it follows that |Z(G)| < § |Ca(x)].
Consequently, 3 |Cc:(z)| | |G| implies that & |Cq(2)| | |Z(G)| — |Z(H)|, which is
impossible. Hence |Z(G)| = |Z(H)|.

Case 2. € = 2.
We have |Z(H)| | 2|1Z(G)|. If |Ca(z)| = |Cu(a’)| or 2|Cq(z)| = |Cu(z')],
then
|Ca(@)] | 1G] = 1Z(G)| + |Z(H))].

Thus |Ca (@) | |Z(G)~|Z(H)|. T |Z(H)| = 2Z(G)], then |Ca(x)] divides | Z(G)],
a contradiction. Therefore, |Z(H)| < |Z(G)|, and so |Cq(z)| | |Z(G)| — |Z(H)].
Thus again we should have |Z(G)| = |Z(H)| in this case.

Now, assume that |Z(G)| = 1, then there exists a non-central element ¢ in
G such that ¢ # 1. Thus ¢ and t~! are adjacent. If 2 or y are not isolated
vertices, then, by a similar proof as above, we again have |Z(G)| = |Z(H)|.
If z and y are isolated, then ¢ and z are not adjacent. Therefore, deg(t) =
|G| = |Z(GQ)| — |Ca(t)] — 1 or |G| — |Z(G)| — 2|Cq(t)| — 1, and we can replace the
vertex x by t. Thus the proof is completed. (Il

Corollary 4.3. Let AL = A" with the same condition as in Theorem 4.2.
If |G| is odd and z is a vertex in A}, with deg(z) # |G| — |Z(G)| — 1, then
|Ca(z)| = |Cr(é(x))|, where ¢ is an isomorphism between the above two graphs.
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PROOF. Since |G| is odd, it holds deg(z) # 0. We have deg(xz) = |G| —
|Z(G)| —€|Ca(x)|—1 and deg(y) = |H|—|Z(H)|—€|Cr(y)| — 1, where € and ¢’ =
lor2 and y = ¢(z). If € = €, then we have nothing to prove. Otherwise,
|G| = |H| is an even number, which is a contradiction. O

In the next theorem, we will state some conditions under which the isomor-
phism between two graphs A%, and A% deduces that if G is nilpotent, then H is
nilpotent as well. We remind that N(G) stands for the set {n € N| G has a
conjugacy class of size n}, and a group G is called an extra-special p-group if G
is a p-group and |G'| = |Z(G)| = p.

Theorem 4.4. Let G be a finite non-abelian group of odd order, and assume
that AY, has no vertex adjacent to all other vertices. If AL, = A" then N(G) =
N(H), and if G is nilpotent, then H is nilpotent.

ProOOF. Clearly, N(G) = N(H), by Corollary 4.3. By the main result of [7],
we know that if the number of conjugacy classes of size i for the nilpotent group G
is equal to the number of conjugacy classes of size ¢ of H for each ¢, then H is
nilpotent. Theorem 4.2 implies that |Z(G)| = |Z(H)|. Now, if z € G\ Z(G),
then by Corollary 4.3, we have |Cg(x)| = |Cr(é(z))|, where ¢ is the isomorphism
between two graphs. Hence the proof is completed. O

Lemma 4.5. Let G be an extra-special p-group and A%, = A’ﬁ. If H is
a nilpotent group of class 2, then H is also an extra-special p-group and N(G) =
N(H).

PrOOF. By Theorem 4.2, |Z(G)| = |Z(H)| = p. Since the nilpotency class
of H is 2, it follows that H/Z(H) is an abelian group, and therefore, H' < Z(H).
So |H'| = |Z(H)| = p. Hence H is an extra-special p-group. Now, by [11,
Theorem 3], the conjugacy classes of G and H have orders 1 or p. Thus the proof
is completed. (I

Finally, it can be easily seen that if G is a p-group of order p" with |Z(G)| =
p"~2 and AY = A% then N(G) = N(H). Furthermore, if G is a non-abelian
simple group satisfying the Thompson’s conjecture, A% = A% and N(G) =
N(H), then G = H.
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