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On the Diophantine equation
(x + 1)k + (x + 2)k + · · · + (lx)k = yn

By GÖKHAN SOYDAN (Bursa)

To my wife and my daughter

Abstract. Let k, l ≥ 2 be fixed integers. In this paper, firstly, we prove that

all solutions of the equation (x + 1)k + (x + 2)k + · · · + (lx)k = yn in integers x, y, n

with x, y ≥ 1, n ≥ 2 satisfy n < C1, where C1 = C1(l, k) is an effectively computable

constant. Secondly, we prove that all solutions of this equation in integers x, y, n with

x, y ≥ 1, n ≥ 2, k 6= 3 and l ≡ 0 (mod 2) satisfy max{x, y, n} < C2, where C2 is an

effectively computable constant depending only on k and l.

1. Introduction

In 1956, J. J. Schäffer [14] considered the equation

1k + 2k + · · ·+ xk = yn. (1.1)

He proved that for fixed k ≥ 1 and n ≥ 2, (1.1) has at most finitely many solutions

in positive integers x and y, unless

(k, n) ∈ {(1, 2), (3, 2), (3, 4), (5, 2)},

where, in each case, there are infinitely many such solutions.

Mathematics Subject Classification: Primary: 11D61; Secondary: 11B68.
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370 Gökhan Soydan

Schäffer’s proof used an ineffective method due to Thue and Siegel, so his

result is also ineffective. This means that the proof does not provide any algo-

rithm to find all solutions. Applying Baker’s method, K. Győry, R. Tijdeman

and M. Voorhoeve [6] proved a more general and effective result in which the

exponent n is also unknown.

Let k ≥ 2 and r be fixed integers with k /∈ {3, 5} if r = 0, and let s be

a square-free odd integer. In [6], they proved that the equation

s(1k + 2k + · · ·+ xk) + r = yn

in positive integers x, y ≥ 2, n ≥ 2 has only finitely many solutions, and all

these can be effectively determined. Of particular importance is the special case

when s = 1 and r = 0. They also showed that for given k ≥ 2 with k /∈ {3, 5},
equation (1.1) has only finitely many solutions in integers x, y ≥ 1, n ≥ 2, and

all these can be effectively determined. The following striking result is due to

Voorhoeve, Győry and Tijdeman [17].

Let R(x) be a fixed polynomial with integer coefficients, and let k ≥ 2 be

a fixed integer such that k /∈ {3, 5}. In [17], the same authors proved that the

equation

1k + 2k + · · ·+ xk +R(x) = byn

in integers x, y ≥ 2, n ≥ 2 has only finitely many solutions, and an effective

upper bound can be given for n. Later, various generalizations and analogues of

the results of Győry, Tijdeman and Voorhoeve have been established by several

authors [1], [2], [3], [4], [5], [8], [11], [16]. For a survey of these results, we refer

to [7] and the references given there.

Here we present the result of B. Brindza [2]. For brevity, let us set Sk(x) =

1k + 2k + · · ·+ xk, A = Z[x], κ = (k + 1)
∏

(p−1)|(k+1)!

p (p prime). Let

F (y) = Qny
n + · · ·+Q1y +Q0 ∈ A[y].

Consider the equation

F (Sk(x)) = yn (1.2)

in integers x, y ≥ 2, n ≥ 2. Let Qi(x) = κiKi(x), where Ki(x) ∈ Z[x] for

i = 2, 3, . . . ,m. In [2], Brindza proved that if Qi(x) ≡ 0 (mod κi), for i =

2, 3, . . . ,m; Q1(x) ≡ ±1 (mod 4) and k /∈ {1, 2, 3, 5}, then all solutions of (1.2)

satisfy max{x, y, n} < C1, where C1 is an effectively computable constant de-

pending only on F and k.
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Recently, Cs. Rakaczki [12] gave a generalization of the results of Győry,

Tijdeman and Voorhoeve, as well as an extension of the result of Brindza to

the case when the polynomials Qi(x) are arbitrary constant polynomials.

Let F (x) be a polynomial with rational coefficients and d 6= 0 be an integer.

Suppose that F (x) is not an n-th power. In [12], Rakaczki showed that the

equation

F (Sk(x)) = dyn

has only finitely many integer solutions x, y ≥ 2, n ≥ 2, which can be effectively

determined provided that k ≥ 6.

Let k > 1, r, s 6= 0 be fixed integers. Then, apart from the cases when (i)

k = 3 and either r = 0 or s + 64r = 0, and (ii) k = 5 and either r = 0 or

s− 324r = 0, Rakaczki proved that the equation

s(1k + 2k + · · ·+ xk) + r = yn

in integers x > 0, y with |y| ≥ 2, and n ≥ 2 has only finitely many solutions,

which can be effectively determined.

Recently, Z. Zhang [18] studied the Diophantine equation

(x− 1)k + xk + (x+ 1)k = yn, n > 1,

and completely solved it for k = 2, 3, 4. Now, we consider a more general equation.

Let

G(x) = (x+ 1)k + (x+ 2)k + · · ·+ (lx)k.

In this paper, we are interested in the solutions of the equation

G(x) = yn (1.3)

in integers x, y ≥ 1 and n ≥ 2.

Theorem 1. Let k, l ≥ 2 be fixed integers. Then all solutions of equa-

tion (1.3) in integers x, y ≥ 1 and n ≥ 2 satisfy n < C1, where C1 is an effectively

computable constant depending only on l and k.

Theorem 2. Let k, l ≥ 2 be fixed integers such that k 6= 3. Then all solutions

of equation (1.3) in integers x, y, n with x, y ≥ 1, n ≥ 2, and l ≡ 0 (mod 2) satisfy

max{x, y, n} < C2, where C2 is an effectively computable constant depending only

on l and k.

We organize this paper as follows. In Section 2, firstly, we recall the general

results that we will need. Secondly, we give two new lemmas and prove that these

lemmas imply our theorems. In Section 3, we discuss the number of solutions in

integers x, y ≥ 1 of (1.3), where n > 1 is fixed, k ∈ {1, 3} and l ≡ 0 (mod 2), and

reformulate this case. In the last section, we give the proofs of Theorems 1 and 2.
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2. Auxiliary results

Lemma 1. (x+ 1)k + (x+ 2)k + · · ·+ (lx)k =
Bk+1(lx+ 1)−Bk+1(x+ 1)

k + 1
,

where

Bq(x) = xq − 1

2
qxq−1 +

1

6

(
q

2

)
xq−2 + · · · =

q∑
i=0

(
q

i

)
Bix

q−i

is the q-th Bernoulli polynomial with q = k + 1.

Proof. It is an application of the equality

N−1∑
n=M

nk =
1

k + 1
(Bk+1(N)−Bk+1(M)),

which is given by Rademacher in [13, pp. 3–4]. �

Now, we give an important result of Brindza which is an effective version of

LeVeque’s theorem [9]

Lemma 2 (Brindza). Let H(x) ∈ Q[x],

H(x) = a0x
N + · · ·+ aN = a0

n∏
i=1

(x− αi)ri ,

with a0 6= 0 and αi 6= αj for i 6= j. Let 0 6= b ∈ Z, 2 ≤ m ∈ Z and define

ti = m
(m,ri)

. Suppose that {t1, . . . , tn} is not a permutation of the n-tuples

(a){t, 1, . . . , 1}, t ≥ 1; (b){2, 2, 1, . . . , 1}.

Then all solutions (x, y) ∈ Z2 of the equation

H(x) = bym

satisfy max{|x|, |y|} < C, where C is an effectively computable constant depend-

ing only on H, b and m.

Proof. See B. Brindza [2]. �

Lemma 3 (Schinzel and Tijdeman). Let 0 6= b ∈ Z, and let P (x) ∈ Q[x] be

a polynomial with at least two distinct zeroes. Then the equation

P (x) = byn

in integers x, y > 1, n implies that n < C, where C = (P, b) is an effectively

computable constant.



On the Diophantine equation (x + 1)k + (x + 2)k + · · ·+ (lx)k = yn 373

Proof. See A. Schinzel and R. Tijdeman [15]. �

Lemma 4. For k ∈ Z+, let Bk(x) be the k-th Bernoulli polynomial. Then

the polynomial

G(x) =
Bk+1(lx+ 1)−Bk+1(x+ 1)

k + 1

has at least two distinct zeroes.

Proof. By Lemma 1, we have G(x) =
(
lk+1−1
k+1

)
xk+1+

(
lk−1
2

)
xk+ · · ·+cx,

where c is a rational number. Now, one can observe that the coefficient of xk is

nonzero and that x = 0 is a zero of G(x). Let us also assume that there is no

other zero of G(x). Thus we have

G(x) =

(
lk+1 − 1

k + 1

)
xk+1,

which is a contradiction. �

Lemma 5 (Voorhoeve, Győry and Tijdeman). Let q ≥ 2, R∗(x) ∈ Z[x] and

set

Q(x) = Bq(x)−Bq + qR∗(x).

Then

(i) Q(x) has at least three zeros of odd multiplicity, unless q ∈ {2, 4, 6}.
(ii) for any odd prime p, at least two zeros of Q(x) have multiplicities relatively

prime to p.

Proof. See M. Voorhoeve, K. Győry and R. Tijdeman [17]. �

Lemma 6. For q ≥ 2, let Bq(x) be the q-th Bernoulli polynomial. Let

P (x) = Bq(lx+ 1)−Bq(x+ 1), (2.1)

where l is even. Then

(i) P (x) has at least three zeros of odd multiplicity unless q ∈ {2, 4}.
(ii) for any odd prime p, at least two zeros of P (x) have multiplicities relatively

prime to p.

Proof. We shall follow the proof of [17, Lemma 5]. By the Staudt–Clausen

theorem (see Rademacher [13, p. 10]), the denominators of the Bernoulli num-

bers Bi, B2k (k = 1, 2, . . . ) are even but not divisible by 4. Choose the minimal
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d ∈ N such that both the polynomials d(Bq(lx+ 1)−Bq(x+ 1)) and dBq(x) are

in Z[x]. Using the equality Bq(x+1) = Bq(x)+qxq−1 (see [13, pp. 4–5]), we have

dP (x) = d

(
q∑
i=0

(
q

i

)[
(lx+ 1)q−i − xq−i

]
Bi − qxq−1

)
. (2.2)

Hence, by the choice of d and by the Staudt–Clausen theorem, we have d
(
q
i

)
Bi ∈ Z

and
(
q
2k

)
dB2k ∈ Z for k = 1, 2, . . . , q−12 . If d is odd, then necessarily

(
q
i

)
and

(
q
2k

)
must be even for k = 1, 2, . . . , q−12 . Write q = 2µr, where µ ≥ 1 and r is odd.

Then
(
q
2µ

)
is odd, giving a contradiction unless r = 1. So

d is odd⇐⇒ q = 2µ for some µ ≥ 1.

If q 6= 2µ for any µ ≥ 1, then

d ≡ 2 (mod 4). (2.3)

We distinguish three cases.

Case 1. Suppose q = 2µ, for some µ ≥ 1, so that d is odd. We first prove (i),

so we may assume that µ ≥ 3. Considering (2.2) modulo 4, we have

dP (x) ≡ d
q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi − d

q−2
2∑
i=0

(
q

2i

)
B2ix

q−2i (mod 4). (2.4)

Firstly, let l ≡ 0 (mod 4). Then we obtain

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ d

q−2∑
i=0

(
q

i

)
Bi ≡ d

q−2
2∑
i=0

(
q

2i

)
B2i (mod 4). (2.5)

It is easy to see that
q∑
i=1

(
q
q−i
)
Bq−i = 0. Hence we get

q−2
2∑
i=1

(
q

2i

)
B2i = −B0 − qB1. (2.6)

By using (2.5) and (2.6), one gets

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ d

(q
0

)
B0 +

q−2
2∑
i=1

(
q

2i

)
B2i

 ≡ 0 (mod 4).
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Then we deduce by (2.4) the following:

dP (x) ≡ −d

q−2
2∑
i=0

(
q

2i

)
B2ix

q−2i (mod 4). (2.7)

Secondly, let l ≡ 2 (mod 4). Then we obtain

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ d

q−2∑
i=0

(
q

i

)
(2x+ 1)q−iBi (mod 4). (2.8)

Then the RHS of (2.8) becomes

d

q−2∑
i=0

(
q

i

)
(2x+ 1)q−iBi = d(B0.(2x+ 1)q + qB1.(2x+ 1)q−1

+

q−2
2∑
i=1

(
q

2i

)
(2x+ 1)q−2iB2i. (2.9)

Since 2x + 1 is odd and q = 2µ, µ ≥ 3, is even, considering (2.9) modulo 4 and

using (2.6), (2.8) becomes

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ 0 (mod 4).

So in all cases (2.4) reduces to (2.7).

Note that
(
q
2i

)
is divisible by 8 unless 2i is divisible by 2µ−2. We have

therefore for some odd d′, writing t = 1
4q,

dP (x) ≡ d′x4t + 2x3t + dx2t + 2xt (mod 4). (2.10)

Write dP (x) = R2(x)S(x), where R(x), S(x) ∈ Z[x] and S contains each factor

of odd multiplicity of P in Z[x] exactly once. Assume that degS(x) ≤ 2. Since

R2(x)S(x) ≡ x4t + x2t ≡ x2t(x2t + 1) (mod 2),

R2(x) must be divisible by x2t−2 (mod 2). So

R(x) = xt−1R1(x) + 2R2(x), R2(x) = x2t−2R2
1(x) + 4R3(x),
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for certain R1, R2, R3 ∈ Z[x]. If q > 8, then t > 2, so the last identity is

incompatible with (2.10) because of the term 2xt. Hence degS(x) ≥ 3, which

proves (i). If q = 8, then by (2.7)

dP (x) ≡ 3x8 + 2x6 + x4 + 2x2 (mod 4).

From here, we follow the proof in the corrigendum paper [17]. This fact can also

be reduced from (2.7). So, the proof of (i) is completed where q = 2µ, µ ≥ 3.

To prove (ii), let p be an odd prime and write P (x) = (R(x))pS(x), where

R,S ∈ Z[x] and all the roots of multiplicity divisibly by p are incorporated in

(R(x))p. We have, writing δ = 1
2q, by (2.10)

dP (x) ≡ (R(x))pS(x) ≡ xδ(xδ + 1) ≡ xδ(x+ 1)δ (mod 2).

Since δ is prime to p, S has at least two different zeros, proving (ii) in Case 1.

Case 2. Suppose q is even and q 6= 2µ for any µ. Then d ≡ 2 (mod 4), and

hence considering (2.2) in modulo 2, we get

dP (x) ≡ d
q∑
i=0

(
q

i

)
(1− xq−i)Bi (mod 2).

Since Bid
(
q
i

)
≡
(
q
i

)
(mod 2) for i = 1, 2, 3, . . . , q, we have

dP (x) ≡

q−2
2∑

k=1

(
q

2k

)
x2k =

q−1∑
t=1

(
q

t

)
xt ≡ (x+ 1)q − xq − 1 (mod 2).

Write q = 2µr, where r > 1 is odd. Then

dP (x) ≡ (x+ 1)q − xq − 1 ≡ ((x+ 1)r − xr − 1)2
µ

(mod 2).

Since r > 1 is odd, (x+ 1)r − xr − 1 has x and x+ 1 as simple factors (mod 2).

Thus

dP (x) ≡ x2
µ

(x+ 1)2
µ

K(x) (mod 2),

where K(x) is neither divisible by x nor by (x+ 1) (mod 2). As in the preceding

case, P (x) must have two roots of multiplicity prime to p. This proves part (ii)

of the lemma.

In order to prove part (i), first we consider the case q = 6. In this case,

dP (x) ≡ (2l6 + 2)x6 + (2l5 + 2)x5 + (l4 + 3)x4 + (3l2 + 1)x2 (mod 4).
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Since l is even, we can write

dP (x) ≡ 2x6 + 2x5 + 3x4 + x2 (mod 4).

So, P (x) has at least three simple roots. To prove our claim, suppose dP can be

written as

dP (x) ≡ S(x)R2(x) (mod 4), (2.11)

with degS ≤ 2.

If degS = 0, then clearly S is an odd constant, so R2(x) ≡ x4 +x2 (mod 2).

Hence R(x) ≡ x2 + x (mod 2) and R2(x) ≡ x4 + 2x3 + x2 (mod 4), which is

a contradiction. If degS = 1, then either S(x) ≡ x or S(x) ≡ x + 1 (mod 2).

In both cases, the quotient of P and S cannot be written as a square (mod 2).

If degS = 2, then either S(x) ≡ x2 or S(x) ≡ x2 + x or S(x) ≡ x2 + 1 (mod 2),

since x2 + x + 1 does not divide P (mod 2). In the first case, R(x) ≡ x + 1

(mod 2), hence R2(x) ≡ x2 + 2x + 1 (mod 4), which is a contradiction. In the

second case, the quotient of P and S is not even a square (mod 2). In the third

case, R(x) ≡ x (mod 2), hence R2(x) ≡ x2 (mod 4), which is a contradiction.

We conclude that dP cannot be written in form (2.11) with degS < 3, proving

our claim.

Secondly, as q = 2 and 4 are the exceptional cases, q = 6 case is just treated

above. Finally, the case q = 8 was treated in Case 1, and we may assume that

q ≥ 10. Considering (2.2) modulo 4, where d ≡ 2 (mod 4), we have

dP (x) ≡ d
q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi − dqB1x

q−1

− d

q−2
2∑
i=0

(
q

2i

)
B2ix

q−2i (mod 4). (2.12)

Firstly, let l ≡ 0 (mod 4). Then we obtain

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ dqB1 + d

q−2
2∑
i=0

(
q

2i

)
B2i (mod 4). (2.13)

We know that
q∑
i=1

(
q
q−i
)
Bq−i = 0. By (2.6) and (2.13), one gets

d

q−2∑
i=0

(
q

i

)
(lx+ 1)q−iBi ≡ d

qB1 +

q−2
2∑
i=0

(
q

2i

)
B2i

 ≡ 0 (mod 4).
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Then we deduce by (2.12) the following:

dP (x) ≡ −dqB1x
q−1 − d

q−2
2∑
i=0

(
q

2i

)
B2ix

q−2i (mod 4). (2.14)

Secondly, let l ≡ 2 (mod 4). Then we have (2.8), and as above, the RHS of (2.8)

becomes (2.9).

Since 2x + 1 is odd and q 6= 2µ is even (q ≥ 10) and dq ≡ 0 (mod 4),

considering (2.9) modulo 4 and using (2.6), (2.9) becomes

d

q−2∑
i=0

(
q

i

)
(2x+ 1)q−iBi ≡ 0 (mod 4).

So, in all cases, (2.12) reduces to (2.14). Then by (2.14) we have

dP (x) ≡ 2xq − qxq−1 +
1

6
d

(
q

2

)
xq−2 + · · ·+ dBq−2

(
q

2

)
x2 (mod 4). (2.15)

Write dP (x) ≡ R2(x)S(x), where R,S ∈ Z[x] and S(x) only contains each factor

of odd multiplicity of P once. Then degS(x) ≥ 3. The assertion easily follows

by repeating the corresponding part of the proof of Lemma 5. Thus, the proof is

completed for Case 2.

Case 3. Let q ≥ 3 be odd. Then d ≡ 2 (mod 4) and for i = 1, 2, 4, . . . , q− 1,

d

(
q

i

)
Bi ≡

(
q

i

)
(mod 2).

Now considering (2.2) modulo 2, we have

dP (x) ≡ d
q∑
i=0

(
q

i

)
(1− xq−i)Bi (mod 2).

Since

q−2
2∑

λ=1

(
q
2λ

)
= 2q−1 − 1 ≡ 1 (mod 2), we have

dP (x) ≡ xq−1 +

q−1
2∑

λ=1

(
q

2λ

)
xq−2λ (mod 2). (2.16)
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From (2.2), we get

dP ′(x) = d

(
q∑
i=0

(
q

i

)
[(lx+ 1)q−i − xq−i]Bi

)′
− dq(q − 1)xq−2, (2.17)

and then

xdP ′(x) ≡

q−1
2∑

λ=1

(
q

2λ

)
(q − 2λ)xq−2λ (mod 2). (2.18)

Hence, by using (2.16) and (2.18),

d(P (x) + xP ′(x)) ≡ xq−1 (mod 2).

Any common factor of dP (x) and dP ′(x) must therefore be congruent to

a power of x (mod 2). Considering (2.17) modulo 2, dP ′(x) ≡
(
q
q−1
)

= q ≡ 1

(mod 2). Since dP ′(0) ≡ 1 (mod 2), we find that dP (x) and dP ′(x) are relatively

prime (mod 2). So any common divisor of dP (x) and dP ′(x) in Z[x] is of the

shape 2R(x) + 1. Write dP (x) = Q(x)S(x), where Q(x) =
∏
i

Qi(x)ki ∈ Z[x]

contains the multiple factors of dP , and S ∈ Z[x] contains its simple factors,

where ki denotes the multiplicity of the polynomial factor Qi(x). Then Q(x) is of

the shape 2R(x) + 1 with R ∈ Z[x], so

S(x) ≡ dP (x) ≡ xq−1 + · · · (mod 2).

Thus the degree of S(x) is at least q − 1, proving Case 3 whence q > 3.

If q = 3, then

dP (x) = (l − 1)x(2(l2 + l + 1)x2 + 3(l + 1)x+ 1). (2.19)

Considering (2.19), where l ≡ 2 (mod 4), it follows that

dP (x) ≡ x(2x+ 1)(3x+ 1) (mod 4).

So, P (x) has three simple roots if l ≡ 2 (mod 4). Now, we consider the case l ≡ 0

(mod 4) in (2.18). Then we have

2P (x) ≡ 2x3 + x2 + 3x (mod 4).

P (x) has also three simple roots if l ≡ 0 (mod 4). To prove this, suppose

2P (x) ≡ Q(x)T 2(x) (mod 4), (2.20)

with degQ ≤ 2.
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If degQ = 0, then Q is an odd constant. So the quotient of 2P and Q

cannot be written as a square (mod 2). If degQ = 1, then either Q(x) ≡ x or

Q(x) ≡ x+ 1 (mod 2). In both case, the quotient of 2P and Q cannot be written

as a square (mod 2). If degQ = 2, then either Q(x) ≡ x2 or Q(x) ≡ x2 + x or

Q(x) ≡ x2 + 1 or Q(x) ≡ x2 + x+ 1. None of the Q(x)’s does divide P (mod 2).

We conclude that 2P cannot be written in the form (2.20) with degQ < 3, proving

our claim. So, the proof of the lemma is completed. �

3. Exceptional values for k

Consider equation (1.3) for fixed k ∈ {1, 3} and fixed n = m > 1. Then

equation (1.3) is equivalent to the equation

(k + 1)ym = P (x), (3.1)

where P (x) = Bq(lx+ 1)−Bq(x+ 1), q ∈ {2, 4}, q = k + 1.

If q = 2, then equation (3.1) becomes

2ym = (l − 1)x((l + 1)x+ 1). (3.2)

By using Lemma 2, we have r1 = r2 = 1, and so t1 = t2 = 1. From here, we get

m = 2. In the case m = 2, equation (3.2) becomes

u2 − 2(l − 1)v2 = 1, (3.3)

where u = 2x(l + 1) + 1, v = 2(l + 1)y, l ≡ 0 (mod 2). By the theory of Pell’s

equation (see, e.g., [10, Ch. 8]), for infinitely many choices of l, (3.3) has infinitely

many solutions.

If q = 4, then equation (3.1) becomes

4ym = x2(l − 1)((l2 + 1)x+ l + 1)((l + 1)x+ 1). (3.4)

Similarly to the former case, by Lemma 2 we get m = 2. In this case, equa-

tion (3.4) becomes

u2 − (l4 − 1)v2 = −l2(l + 1)(l2 + 1)(l − 1)3, (3.5)

where u = (l4 − 1)t (t ∈ Z), v = (l4 − 1)x+ (l3 − 1), l ≡ 0 (mod 2). So, (3.5) has

infinitely many solutions.

Remark 1. Even if l is odd, equations (3.3) and (3.5) are Pell’s equation.

In this work, however, we consider the title equation, where l is even.
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4. Proofs of the theorems

Proof of Theorem 1. Let x, y ≥ 1 and n ≥ 2 be an arbitrary solution of

(1.3) in integers. We know from Lemma 4 that G(x) has at least two distinct

zeroes. Hence, by applying Lemma 3, it follows from equation (1.3) that we get

an effective bound for n. �

Proof of Theorem 2. We know from Theorem 1 that n is bounded, i.e.

n < C1 with an effectively computable C1. So we may assume that n is fixed.

Then we get the following equation in integers x, y ≥ 1

P (x) = yn,

where P is given by (2.1) with q = k + 1. Write

P (x) = a0

n∏
i=1

(x− xi)ri ,

where a0 6= 0, xi 6= xj if i 6= j and, for a fixed n, let ti = n
(n,ri)

. If n is even, then

by Lemma 6 at least three zeroes have odd multiplicity, say r1, r2, r3. Hence t1, t2
and t3 are even. Consequently, the exceptional cases in Lemma 2 cannot occur.

If n is odd and p|n for an odd prime p, then by Lemma 6 at least two zeroes

of P (x) have multiplicities prime to p. We may assume that (r1, p) = (r2, p) = 1,

so p|t1 and p|t2. Using Lemma 2, we have max{x, y} < C2(n) with an effectively

computable C2(n). Finally, n < C1 implies the required assertion. This proves

the theorem. �
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[11] Á. Pintér, A note on the equation 1k + 2k + · · ·+ (x− 1)k = ym, Indag. Math. (N.S.) 8

(1997), 119–123.

[12] Cs. Rakaczki, On some generalizations of the Diophantine equation

s(1k + 2k + · · ·+ xk) + r = dyn, Acta Arith. 151 (2012), 201–216.

[13] H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag, New York – Hei-
delberg, 1973.
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