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The augmentation terminals of groups

By B. KIRÁLY (Eger)

1. Introduction

Let R be a commutative ring with unity, G a group and RG its group
ring and let A(RG) denote the augmentation ideal of RG, that is the kernel
of the ring homomorphism φ : RG → R which maps the group elements
to 1. It is easy to see that an R-module A(RG) is a free module with
the elements g − 1 (g ∈ G) as a basis. It is clear that A(RG) is the ideal
genereted by all elements of the form g − 1, g ∈ G.

The powers Aλ(RG) of A(RG) are defined inductively: A(RG) =
A1(RG), Aλ+1(RG) = Aλ(RG) · A(RG), if λ is not a limit ordinal, and
Aλ(RG) =

⋂
ν<λ

Aν(RG) otherwise.

It is easy to see that the right ideal Aλ(RG) is a two-sided ideal of
RG for all ordinals λ ≥ 1.

Evidently there exists a least ordinal τ = τR(G) such that Aτ (RG) =
Aτ+1(RG). In [2] τ was called the augmentation terminal (or terminal for
simple when it is obvious from the context what ring R we are working
with) of G with respect to R. We shall use this terminilogy, and also we
shall write

Aω(RG) =
∞⋂

n=1

An(RG)

for the first limit ordinal ω. If G = 〈1〉 we put τR(G) = 1.
In general, the question of the classification of groups in regarding to

values of the terminals and also of the computation of these terminals, is
far from being simple (see [2]).
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We are interested in the finitenes of the terminals of groups. The
groups with finite terminals with respect to integers are well known and
easily described (see [1], §4.3). In this case the terminals of groups are 1
or 2.

We are primarily concerned with finding all groups whose terminals
with respect to commutative rings with unity are finite and with describ-
ing the terminals of such groups. In this paper we give necessary and
sufficient conditions for groups which have finite terminals with respect
to a commutative ring with unity (Theorems 3.3 and 3.6). In Theorems
3.4 and 3.7 we give the qualitatyve characterisation of τR(G) useing the
ring-theoretical terminology.

2. Notations and some known facts

If H is a normal subgroup of G, then I(RH) (or I(H) for short when
it is obvious from the context what ring R we are working with) denotes
the ideal of RG generated by all elements of the form h − 1, (h ∈ H).
It is well known that I(RH) is the kernel of the natural epimorphism
φ : RG → RG/H induced by the group homomorphism φ of G onto G/H.
We notice that if H = G then I(RG) = A(RG).

If K denotes a class of groups (by which we understand that K com-
tains all groups of order 1 and, with each H ∈ K, all isomorphic copies of
H), we define the class RK of residually-K groups by letting G ∈ RK if
and only if : whenewer 1 6= g ∈ G, there exists a normal subgroup Hg of
the group G such that G/Hg ∈ K and g /∈ Hg

We use the following notations for standard group classes: No –
torsion-free nilpotent groups, N p – nilpotent p-groups of finite exponent,
that is, nilpotent group in which every element g satisfies the equation
gpn

= 1 for some n = n(G).
Let K be a class of groups. A group G is said to be discriminated

by K if for every finite subset g1, g2, . . . , gn of distinct elements of G ,
there exists a group H ∈ K and a homomorphism φ of G into H such that
φ(gi) 6= φ(gj) for all gi 6= gj , (1 ≤ i, j ≤ n).

Lemma 2.1. Let a class K of groups be closed under the taking of
subgroups (that is all subgroups of any member of the class K are again
in the class K) and also finite direct products and let G be a residually-K
group. Then G is discriminated by K.

The proof can be obtained easily.

It is easy to show that if G is discriminated by a class of groups K
and if x is a non-zero element of RG, then there exists a group H ∈ K and
a homomorphism φ of RG into RH such that φ(x) 6= 0.
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From this fact we have

Lemma 2.2. If G is discriminated by a class of groups K and for each
H ∈ K the equation Aω(RH) = 0 holds, then Aω(RG) = 0.

If K,L are two subgroups of G, then we shall denote by [K, L] the
subgroup generated by all commutators [g, h] = g−1h−1gh, g ∈ K, h ∈ L.

A series
G = G1 ⊇ G2 ⊇ . . . ⊇ Gn ⊇ . . .

of normal subgroups of a group G is called an N−series if [Gi, Gj ] ⊆ Gi+j

for all i, j ≥ 1 and also each of the Abelian groups Gi/Gj is a direct product
of (possibly infinitely many) cyclic groups which are either infinite or of
order pk , where p is a fixed prime and k is bounded by some integer
depending only on G.

It is easy to see that the lower central series of a nilpotent p-group of
finite exponent is an N -series.

In this paper we shall use the following theorems:

Theorem 2.1 ([6] Lemma 2.21, page 27). The augmentation ideal
A(RG) is nilpotent if and only if G is a finite p-group and R has charac-
teristic pn for some prime p.

The ideal Jp(R) of a ring R is defined by

Jp(R) =
∞⋂

n=1

pnR.

Theorem 2.2 ([3], Theorem E). Let G be a group having a finite
N−series and R be a commutative ring with unity satisfying Jp(R) = 0.
Then Aω(RG) = 0.

In this paper we apply Theorem 2.2 for residually-Np groups.

Theorem 2.3. Let R be a commutative ring with unity satisfying
Jp(R) = 0. If G is a residually-Np group, then Aω(RG) = 0.

The proof of this theorem follows from Lemmas 2.1 and 2.2 and The-
orem 2.2 because the class Np is closed under the taking of subgroups and
also finite direct products.

Theorem 2.4 ([5], VI.,Theorem 2.15). If G is a residually torsion-
free nilpotent group and R is a commutative ring with unity such that its
additive group is torsion-free, then Aω(RG) = 0.

The n-th term of the lower central series of G is defined inductively:
γ1(G) = G, γ2(G) = G′ is the derived subgroup [G,G] of G, and γn(G) =
[γn−1(G), G].
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We shall also use the following well known fact:

I(γn(G)) ⊆ An(RG)

for all n ≥ 1.

3. The augmentation terminals.

3.1. Throughout this section R will denote a commutative ring with
unity of non-zero characteristic and also p will denote a prime number.

Let p be a prime and n a natural number. Then we shall denote by
Gpn

the subgroup generated by all elements of the form gpn

, g ∈ G.
The normal subgroups Gp,k is defined by

Gp,k =
∞⋂

n=1

Gpn

γk(G),

where γk(G) is the k-th term of the lower central series of G. It is clear,
that the factor-group G/Gp,k is residually-Np group for every k.

We have the following sequence

(1) G = Gp,1 ⊇ Gp,2 ⊇ . . . ⊇ Gp

of normal subgroups Gp,k of a group G, where Gp =
∞⋂

k=1

Gp,k.

Lemma 3.1. Let R be a commutative ring of characteristic ps. Then
I(Gp,k) ⊆ Ak(RG) for all k ≥ 1.

Proof. Let the element h − 1 be in I(Gp,k). It will be sufficient to
show that h−1 ∈ Ak(RG). Writing the element h as h = hpn

1 hpn

2 · · ·hpn

m yk

(hi ∈ G, yk ∈ γk(G)) and using the identity

(2) ab− 1 = (a− 1)(b− 1) + (a− 1) + (b− 1)

we have that

h− 1 = (hpn

1 hpn

2 · · ·hpn

m yk − 1)(yk − 1) + (hpn

1 hpn

2 · · ·hpn

m − 1) + (yk − 1).

Since I(γk(G)) ⊆ Ak(RG)we have yk − 1 ∈ Ak(RG). Therefore

h− 1 ≡ (hpn

1 hpn

2 · · ·hpn

m − 1) (mod Ak(RG)).
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Applying (2) repeatedly to (hpn

1 hpn

2 · · ·hpn

m −1) from the preceding expres-
sion it follows that

h− 1 ≡
m∑

i=1

(hpn

i − 1)bi ≡
m∑

i=1

pn∑

j=1

(
pn

j

)
(hi − 1)j

bi (mod Ak(RG)),

where bi ∈ RG. The elements (hi − 1)j are in Ak(RG) for all i and j ≥ k.

If n ≥ s + k, then ps divides
(

pn

j

)
for j = 1, 2, . . . , k − 1. Therefore

(3) h− 1 ≡
m∑

i=1

(hpn

i − 1)bi ≡ ps
m∑

i=1

k−1∑

j=1

dj(hi − 1)j
bi ≡

≡ psFk(h) (mod Ak(RG)),

where Fk(h) =
m∑

i=1

k−1∑
j=1

dj(hi − 1)j
bi and psdj =

(
pn

j

)
. Since ps is zero in

R we have that h − 1 ∈ Ak(RG) which implies the inclusion I(Gp,k) ⊆
Ak(RG)) and completes the proof of the lemma.

Lemma 3.2. Let R be a commutative ring of characteristic ps. Then

Aω(RG) = I(Gp).

Proof. From Lemma 3.1 the inclusion I(Gp) ⊆ Aω(RG) follows. We
can readily verify that G/Gp is residually-Np group and so

Aω(RG/Gp) = 0,

by Theorem 2.3. Hence we have the inclusion Aω(RG) ⊆ I(Gp) which
completes the proof of the lemma.

If G is a finite p-group and R a commutative ring of characteris-
tic ps, then the ideal A(RG) is nilpotent (see Theorem 2.1). Denote
by τ◦(A(RG)) the nilpotency index of A(RG) i.e. the natural number
k = τ◦(A(RG)) for which Ak−1(RG) 6= Ak(RG) = 0. If G = 〈1〉 we put
τ◦(A(RG)) = 1

Let τp(G) denote the smallest natural number k (if it exists) such that
Gp,k−1 6= Gp,k = . . . = Gp.

Theorem 3.1. Let R be a commutative ring of characteristic ps. Then
the augmentation terminal of G with respect to R is finite if and only if
G/Gp is a finite p-group.

Proof. By Lemma 3.2, τR(G) = 1 if and only if G = Gp.
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Now we suppose that τR(G) = k > 1. Then

. . . ⊃ Ak−1(RG) ⊃ Ak(RG) = Ak+1(RG) = . . . = Aω(RG)

and hence

. . . ⊇ Ak−1(RG/Gp,i) ⊇ Ak(RG/Gp,i) =

= Ak+1(RG/Gp,i) = . . . = Aω(RG/Gp,i),

that is τR(G/Gp,i) is finite and not greater than τR(G) for all i > 1. It is
very easy to see that G/Gp,i are residually-Np groups and consequently,
by Theorem 2.3, Aω(RG/Gp,i) = 0 for all i > 1. Because τR(G/Gp,i) ≤ k,

(4) Ak(RG/Gp,i) = 0

for every i. So from the isomorphism

Ak(RG/Gp,i) ∼= (Ak(RG) + I(Gp,i))/I(Gp,i)

the inclusion Ak(RG) ⊆ I(Gp,i) follows for all i > 1. If i = k then from
Lemma 3.1 it follows that Ak(RG) = I(Gp,k). Hence I(Gp,k) ⊆ I(Gp,i)
and, therefore,Gp,k ⊆ Gp.i for all i > 1. This implies that

. . . ⊇ Gp,k = Gp,k+1 = . . . = Gp

and from (4) we have that Ak(RG/Gp) = 0. So, by Theorem 2.1, G/Gp is
a finite p-group.

Conversely, let G/Gp be a finite p-group. Then, by Theorem 2.1,
Ak(RG/Gp) = 0 for the nilpotency index τ◦(A(RG/Gp)) = k. It follows
that Ak(RG) ⊆ I(Gp). Hence, by Lemma 3.2, we obtain that Ak(RG) ⊆
Aω(RG). The inverse inclusion, of course, is trivial. Therefore Ak(RG) =
Aω(RG). Consequently

Ak(RG) = Ak+1(RG) = . . .

which was to be proved.

Theorem 3.2. Let R be a commutative ring of characteristic ps and
let the augmentation terminal of G with respect to R be finite. Then

τR(G) = τ◦(A(RG/Gp)) ≥ τp(G).

Proof. Let τR(G) = k. It is obvious that τR(G/Gp) is finite and also
the inequality τR(G) ≥ τR(G/Gp) holds. By Theorem 3.1 G/Gp is finite
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p-group. Keeping in mind the previovs inequalities, by Theorem 2.1, we
have that

Ak(RG/Gp) = 0.

Consequently, τ◦(A(RG/Gp)) ≤ τR(G).
Now we show that τ◦(A(RG/Gp)) = τR(G). If this equation is not

true we can choose a non-negative integer i < k such that Ai(RG/Gp) = 0.
Hence we have that Ai(RG) ⊆ I(Gp). Then by Lemma 3.2, I(Gp) =
Aω(RG). Therefore Ai(RG) ⊆ Aω(RG) and Ai(RG) = Ai+1(RG) which
contradicts to the equation τR(G) = k. Consequently,

τR(G) = τ◦(A(RG/Gp)).

From τR(G) = k it follows that Ak(RG) = Aω(RG) and, by Lemmas 3.1
and 3.2, I(Gp,k) ⊆ Ak(RG) = Aω(RG) = I(Gp). Then Gp,k ⊆ Gp and by
(1) we obtain that Gp,k = Gp, that is τp(G) ≤ τR(G). This completes the
proof of the theorem.

Let Π(n) denote the set of prime divisors of a natural number n.

Theorem 3.3. Let R be a commutative ring of non-zero characteristic
n. Then the augmentation terminal of G with respect to R is finite if and
only if G/Gp is finite p-group for all p ∈ Π(n).

Proof. Let n = pm1
1 pm2

2 · · · pmt
t be the prime power decomposition

of the natural number n. We shall write Rpi = R/niR for ni = pmi
i , where

pi ∈ Π(n) = {p1, p2, . . . , pt} .
Let τR(G) be finite. It follows that τRpi

(G) is also finite and

(5) τR(G) ≥ τRpi
(G)

for all pi ∈ Π(n). Then, by Threorem 3.1, G/Gpi a finite pi-group for all
pi ∈ Π(n).

We notice that from (5) the inequality

(6) τR(G) ≥ max
pi∈Π(n)

{
τRpi

(G)
}

follows.
Conversely. Let G/Gpi be finite pi-group for all pi ∈ Π(n). Then by

Theorem 3.1, the augmentation terminal τRpi
(G) is finite for all pi ∈ Π(n).

Let
k = max

pi∈Π(n)

{
τRpi

(G)
}

.

Then

(7) . . . ⊇ Ak−1(RpiG) ⊇ Ak(RpiG) = Ak+1(RpiG) = . . . = Aω(RpiG)
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for all pi ∈ Π(n). From the isomorphism

Ak(Rpi
G) ∼= (Ak(RG) + niR ·RG)/niR ·RG

and from (7) it follows that for every pi ∈ Π(n), an arbitrary element x of
Ak(RG) can be written as

(8) x = xi + niai,

where xi ∈ Ak+1(RG), ai ∈ RG and i = 1, 2, . . . , t.
If ni = n/ni, then ni is non-zero and nini = 0 in R. Then nix = nixi

for all i = 1, 2, . . . , t and from (8) we have that
(

t∑

i=1

ni

)
x =

t∑

i=1

nixi.

It is easy to see that ni and ni are coprimes and also nj divides ni for all

i 6= j. Therefore the numbers
t∑

i=1

ni and n are coprimes. Hence
t∑

i=1

ni is

invertible in R, because the characteristic of R equals to n. Then from the
previous equation we obtain that

x = α

t∑

i=1

nixi,

where α
∑t

i=1 ni = 1, α ∈ R∗ and R∗ the unit group of R. Therefore
x ∈ Ak+1(RG) and hence we conclude that Ak(RG) ⊆ Ak+1(RG). The
inverse inclusion is trivial. Consequently, Ak(RG) = Ak+1(RG) and

(9) τR(G) ≤ max
pi∈Π(n)

{
τRpi

(G)
}
,

that is the augmentation terminal τR(G) of G in regarding to R is finite
which was to be proved.

Theorem 3.4. Let R be a commutative ring of non-zero characteristic
n and let the augmentation terminal of G with respect to R be finite. Then

τR(G) = max
pi∈Π(n)

{
τRpi

(G)
}

= max
pi∈Π(n)

{τ◦(A(Rpi
G/Gpi

))} ≥
≥ max

pi∈Π(n)
{τpi(G)} .

Proof. By Theorem 3.2 we have that max
pi∈Π(n)

{
τRpi

(G)
}

=

= max
pi∈Π(n)

{τ◦(A(RpiG/Gpi))} ≥ max
pi∈Π(n)

{τpi(G)}. From (6) and (9) we

conclude that τR(G) = max
pi∈Π(n)

{
τRpi

(G)
}

which was to be proved.
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3.2. In this section R will denote a commutative ring with unity of
characteristic zero.

An element g of an Abelian group G is called an element of infinite
p-height (in G), if the equation xpn

= g has a solution in G for every
natural number n.

Lemma 3.3. Let g1, g2 ∈ G and suppose that at least one of the
following statements
1) gi ∈ G′ or giG

′ is a p-element of G/G′ and also p is invertible in
R (i = 1 or 2)

2) giG
′ is an element of infinite p-height in G/G′ and gjG

′ is a p-element
of G/G′, i 6= j

3) giG
′ is a p-element and gjG

′ is a q-element of G/G′ for p 6= q
4) giG

′ is a p-element of G/G′ and G = Gp

hold. Then (g1 − 1)(g2 − 1) ∈ A3(RG).

Proof. Let gG′ be a p-element of G/G′ . Then gpn ∈ G′ for some
n. Clearly, gpn − 1 ∈ A2(RG) and from the identity

gpn − 1 = pn(g − 1) +
(

pn

2

)
(g − 1)2 + · · ·+ (g − 1)pn

it follows that

(10) pn(g − 1) ∈ A2(RG).

1) It is clear, that if gi ∈ G′ (i = 1 or 2), then gi − 1 ∈ A2(RG) and
consequently, (g1 − 1)(g2 − 1) ∈ A3(RG).

Let giG
′ be a p-element of G/G′ and let p be invertible in R. So from

(9) we have that (gi− 1) ∈ A2(RG). Therefore (g1− 1)(g2− 1) ∈ A3(RG).

2.) Let giG
′ be an element of infinite p-height in G/G′ and pn the

order of the element gjG
′(i 6= j). Then for gi we can write gi = xpn

c for
some x ∈ G and a suitable c ∈ G′. Applying the identity (2) to gi − 1
we have that (gi − 1) ≡ (xpn − 1) ≡ pn(x − 1) (mod A2(RG)) because
c− 1 ∈ A2(RG). By (10) pn(gj − 1) ∈ A2(RG) and the statement follows.

3.) The proof of this statement follows from the fact that a q-element
of G is an element of infinite p-height in G for every prime p 6= q.

4.) Let G = Gp and let pn be the order of the element giG
′. The

elements g1, g2 are in Gp and hence, as in Lemma 3.1 we obtain gj − 1 ≡
pnF (gj) (mod A2(RG)), where F (gj) ∈ A(RG). Then by (10) pn(gi−1) ∈
A2(RG) and consequently (g1 − 1)(g2 − 1) ∈ A3(RG).
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We shall use the following notation: P denotes the set of primes and
R∗ denotes the unit group of R, that is, an element a ∈ R belongs to R∗
if and only if there exists b ∈ R such that ab = 1.

There are four subsets of primes which are important for us:
E(R) =

{
p ∈ P | piR = pi+1R for some integer i ≥ 0

}
, E1(R) = E(R) ∩

R∗, E2(R) = E(R) \ E1(R) and E3(R) = P \ E(R).
It is easy to see that Ei(R) ∩ Ej(R) = ∅ for i 6= j(i, j = 1, 2, 3) and

also E(R) = E1(R) ∪ E2(R), P = E(R) ∪ E3(R) for every commutative
ring R with unity.

For every p of E(R) let us denote by e = e(p) the smallest non-negative
integer satisfying the equation peR = pe+1R.

Let M = {p1, p2, . . . , pn} be a nonempty finite subset of E(R) and
kM = pe1

1 pe2
2 · · · pen

n , where ei = e(pi) for pi ∈ M .
The next two lemmas are modifications of Lemmas 1.2 and 1.3 from

[6] (page 65).

Lemma 3.4.. Let R be a commutative ring with unity and M a
nonempty finite subset of E2(R). If C = {c ∈ R | kMc = 0}, then C is
an ideal of R, furthermore E(R) = E(R/C),M ⊆ E1(R/C) and E3(R) =
E3(R/C).

Proof. It is evident that C is an ideal of R and also that the inclusion
E(R) ⊆ E(R/C) holds. We show that this is a proper inclusion. Really,
if E(R) 6= E(R/C), then E(R/C) \E(R) 6= ∅ and there exists an element
p ∈ E(R/C)\E(R) such that pi(R/C) = pi+1(R/C) for some non-negative
integer i. From this equation we have that pi = pi+1a + c for some a ∈ R
and a suitable c ∈ C. Because M ⊆ E2(R) ⊆ E(R) and p /∈ E(R) we have
that p and kM are coprimes. Let us choose integers t and m such that
pt + mkM = 1. Therefore pimkM = pi+1amkM , because ckM = 0. Then

pi(1− pt) = pi+1amkM

and so pi ∈ pi+1R, i.e. p ∈ E(R) which is a contradiction. Consequently,
E(R) = E(R/C).

Let p be an arbitrary element of M . Then pe = pe+1a (e = e(p)) for
a suitable a ∈ R and hence pe(1 − pa) = 0. Since pe divides kM we have
kM(1− pa) = 0. Therefore 1− pa ∈ C and for this reason p + C is an unit
of R/C. Consequently, M ⊆ E1(R/C).

Clearly, the sets E(R) ∩ E3(R) and E(R/C) ∩ E3(R/C) are empty.
Then from the equations P = E(R)∪E3(R) = E(R/C)∪E3(R/C) which
hold for every commutative ring with unity, and from the equality E(R) =
E(R/C) which we have proved above, we obtain that E3(R) = E3(R/C).
So the proof is complete.
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Lemma 3.5. Let R be a commutative ring with unity,
C = {c ∈ R | kMc = 0}, and let M be a nonempty finite subset of E2(R).
Then

R ∼= R/kMR⊕R/C.

Proof. First we show that R ∼= kMR⊕C. Let x ∈ R. Since kMR =
k2

MR then we have the equality kMx = k2
My for a suitable y ∈ R. Then

kM(x − kMy) = 0 and so (x − kMy) ∈ C which follows directly from the
definition of C. From the decomposition of x, as x = kMy + (x − kMy),
we have the inclusion R ⊆ kMR + C. The inverse inclusion is evident.
Therefore

R = kMR + C.

Let a ∈ kMR ∩ C. Then a = kMz (z ∈ R) and kMa = 0 because a ∈ C.
Since kM = k2

Mv, a = kMz = k2
Mvz = 0 for a suitable v ∈ R. This means

that kMR ∩ C = 0 and therefore

R ∼= kMR⊕ C

Let us define the homomorphism

φ : R → R/kMR⊕R/C

by letting φ(a) = (a+kMR, a+C) for a ∈ R. From the above isomorphism
it follows that φ is a homomorphism of R onto R/kMR ⊕ R/C with zero
kernel. So φ is an isomorphism which proves the lemma.

Let O(G, p) be the set of those primes for which G 6= Gp .

An Abelian group G is called a p-divisible if all elements of G are
elements of infinite p-height in G, that is G = Gp .

Theorem 3.5. Let R be a commutative ring with unity of character-
istic zero. Let G/G′ be a torsion group and E2(R)∩O(G, p) = ∅. If G/G′

is p-divisible for every p ∈ E3(R), then A2(RG) = A3(RG).

Proof. For an Abelian torsion group G/G′ we can write

(11) G/G′ = P1 ⊗ P2 ⊗ · · · ,

where Pi are the pi-components of G/G′ for i = 1, 2, . . . .
Let g1 and g2 be arbitrary elements of G. It will be sufficient to

show that (g1 − 1)(g2 − 1) ∈ A3(RG). From (11) it follows that these
elements can be written as g1 = xi1xi2 · · ·xinc1 and g2 = yj1yj2 · · · yjmc2

where xik
G′, yik

G′ ∈ Pik
and c1, c2 are suitable elements of G′. Let us

use the identity (2) repeatedly to g1 − 1 and g2 − 1. Then we have that
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(g1 − 1)(g2 − 1) ≡ ∑
i,j

(xi − 1)(yj − 1) (mod A3(RG)) because c1−1, c2−1

are in A2(RG). Hence by case 3 of Lemma 3.3 we obtain that

(g1 − 1)(g2 − 1) ≡
∑

i

(xi − 1)(yi − 1) (mod A3(RG)).

From Lemma 3.3 (cases 1 and 4) it follows that (g1− 1)(g2− 1) ∈ A3(RG)
because E2(R)∩O(G, p) = ∅ that is for every p ∈ E2(R) we have G = Gp.
Therefore A2(RG) ⊇ A3(RG). The inverse inclusion A2(RG) ⊆ A3(RG)
is trivial. Consequently A2(RG) = A3(RG).

We note that Jp(R) =
∞⋂

n=1

pnR and T (R+) is the additive group of the
ring R.

Theorem 3.6. Let R be a commutative ring with unity of character-
istic zero. Then the augmentation terminal of G with respect to R is finite
if and only if either G = G′ or G/G′ is a torsion group and
1) G/G′ p-divisible for every p ∈ E3(R)
2) E2(R) ∩O(G, p) is a finite set and G/Gp is a finite p-group for every

p ∈ E2(R) ∩O(G, p).

Proof. It is known that A(RG) = A2(RG) if G = G′ and we may
assume that G 6= G′ and

. . . ⊃ Ak−1(RG) ⊃ Ak(RG) = Ak+1(RG) = . . . = Aω(RG).

If R = R/T (R+) then from the above expression it follows that

. . . ⊇ Ak−1(RG) ⊇ Ak(RG) = Ak+1(RG) = . . . = Aω(RG)

and therefore τR(G) is finite and not greater than τR(G).
Let H/G′ denote the torsion subgroup of G/G′ . Then G/H is a

torsion-free Abelian group and by Theorem 2.4 Aω(RG/H) = 0, because
R

+
is torsion-free. The inequality τR(G) ≤ k implies that τR(G/H) ≤ k

and therefore the ideal A(RG/H) is nilpotent. Because the characteristic
of R is zero, by Theorem 2.1, we have that G/H = 〈1〉 Consequently,
G = H and G/G′ is a torsion group.

1) Let p be an arbitrary element of E3(R). Then piR 6= pi+1R for all
i ≥ 0 and therefore Jp(R) 6= R.

Let Rp = R/Jp(R) and let H/G′ be the set of those elements of G/G′

which have infinite p-height in G/G′ . Then G/H is an Abelian group
with no elements of infinite p-height, that is G/H is residually by the class
of Abelian p-groups of finite exponent. It is evident that Jp(Rp) = 0 and
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hence, by Theorem 2.3, Aω(RpG/H) = 0. From the equation τR(G) = k
it follows that τRp

(G) ≤ τR(G) = k and so Ak(RpG/H) = 0. By Theorem
2.1,the last equation holds only if H = G because the characteristic of R
is zero. Consequently, G/G′ is p-divisible for all p ∈ E3(R) and the proof
of statement 1) is complete.

2) Now we suppose that p ∈ E2(R) ∩ O(G, p). Then e = e(p) > 0
and peR 6= R, which follows directly from the definition on the set E2(R).
If Rp = R/peR, then from the equalition τR(G) = k it follows that the
augmentation terminal of G with respect to Rp is finite and not greater
than k, i.e.

(12) τRp(G) ≤ τR(G) = k.

The characteristic of the ring Rp = R/peR is pe and so, by Theorem 3.1
G/Gp is a finite p-group.

Now we show that E2(R) ∩ O(G, p) is a finite set. Let p ∈ E2(R) ∩
O(G, p). By Theorem 3.2 τRp(G) = τ◦Rp

(A(RpG/Gp)). It is clear that
p ≤ τ◦Rp

(A(RpG/Gp)). Keeping in mind (12) we obtain

p ≤ τRp(G) ≤ τR(G) = k

which hold for all p ∈ E2(R) ∩ O(G, p). It is obvious that this implies
the finitenes of the set E2(R) ∩O(G, p) and the proof of the “if” part our
theorem is complete.

Conversely, let G/G′ be a torsion group and suppose that 1) and 2)
hold. If the set E2(R)∩O(G, p) is empty, then by Theorem 3.5 A2(RG) =
A3(RG) and in this case the proof is complete.

Now suppose that M = E2(R)∩O(G, p) = {p1, p2, . . . , pn} is a finite
nonempty set and let kM = pe1

1 pe2
2 · · · pen

n , where ei = e(pi), pi ∈ M . By
Lemma 3.5

R ∼= R/kMR⊕R/C,

where C = {c ∈ R | kMc = 0}.
Let us define the homomorphism

Θ : RG → KG⊕ SG

by letting

Θ

(∑

i

(αi, βi)gi

)
=

(∑

i

αigi,
∑

i

βigi

)

for ai ∈ K,βi ∈ S, gi ∈ G, where K = R/kMR, S = R/C. It is easy to
check that Θ is an isomorphism, i.e.

RG ∼= KG⊕ SG.
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Clearly
Ai(RG) = Ai(KG)⊕Ai(SG)

for all i. Therefore it is enough to show that for some n the following
equations

An(KG) = An+1(KG) and An(SG) = An+1(SG)

hold. The characteristic of the ring K is kM > 0, so from statement 2)
of our theorem and from Theorem 3.3 we have that the augmentation
terminal τK(G) of G with respect to K is finite, that is

(13) An(KG) = An+1(KG).

Theorem 3.4 gives the following correlations
(14)
n = τK(G) = max

p∈M

{
τKp(G)

}
= max

p∈M
{τ◦(A(KpG/Gp))} ≥ max

p∈M
{τp(G)},

where Kp = K/peK. Since p ∈ M ⊆ O(G, p),we have G 6= Gp. Therefore

n = τK(G) ≥ τp(G) ≥ 2

for all p ∈ M .
It remains to show that An(KG) = An+1(SG). At first we prove that

the set E2(S) ∩ O(G, p) is empty. If this is not true then there exists an
element p of the set E2(S) ∩ O(G, p). Because the set E1(S) ∩ E2(S) is
empty, p /∈ E1(S). It is obvious that E1(R) ⊆ E1(S) = E1(R/C) and, by
Lemma 3.4, E(R) = E(R/C). Then

E2(R) ⊇ E2(R/C) and p ∈ E2(R) ∩O(G, p) = M.

By Lemma 3.4, M ⊆ E1(R/C) and so p ∈ E1(R/C) = E1(S) which is
impossible. Therefore E2(R/C) ∩ O(G, p) = ∅. By Lemma 3.4, E3(R) =
E3(R/C) and by statement 1) of our theorem G/G′ is p-divisible for all p ∈
E3(R/C) = E3(S). Therefore the group ring SG satisfies the conditions
of Theorem 3.5 and consequently,

A2(SG) = A3(SG).

In (13) n ≥ 2 and consequently from the above equation it follows that

(15) An(RG) = An+1(RG).

This completes the proof of the theorem.
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Theorem 3.7. Let R be a commutative ring with unity of character-
istic zero,E2(R) ∩O(G, p) = M and let the augmentation terminal τR(G)
of G with respect to R be finite. Then M is a finite set, and τR(G) ≤ 2 if
M is empty, and

τR(G) = max
p∈M

{
τKp

(G)
}

= max
p∈M

{τ◦(A(KpG/Gp))} ≥ 2

otherwise.

Proof. By Theorem 3.6, M is a finite set. If M = ∅, then by Theo-
rem 3.5, τR(G) ≤ 2.

Suppose that M 6= ∅. From Theorem 3.4 it follows that

τK(G) = max
p∈M

{
τKp(G)

}
= max

p∈M
{τ◦(A(KpG/Gp))} ≥ max

p∈M
{τp(G)}.

From (14) and (15) we have that τR(G) ≤ τK(G). It is easy to se that
τR(G) ≥ τK(G). Consequently τR(G) = τK(G) which proves the theorem.

Remark. Theorems 3.3, 3.4, and 3.6 were announced in [4].
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