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Functional equations in the spectral
theory of random fields III.

By K. LAJKÓ (Debrecen)

1. Introduction

Let X(t) denote a wide-sense homogeneous random field on the n-
dimensional Euclidean space Rn. This means that M |X(t)|2 < +∞ and
MX(t)X(s) depends only on the difference t− s.

Let SO(n) denote the group of rotations of Rn around the origin. A
homogeneous random field X(t) is called isotropic if

MX(t)X(s) = MX(gt)X(gs),
for every g ∈ SO(n).

Let M denote a set of sufficiently smooth Jordan surfaces. Each such
surface ∂D divides Rn into two parts: D−-the interior of ∂D (“past”) and
D+- the exterior of ∂D (“future”).

The random field X(t) is of Markov type relative M if for arbitrary
∂D from M and for arbitrary t1 ∈ D−, t2 ∈ D+ the random variables
X(t1), X(t2) are conditionally independent given {X(t), t ∈ ∂D}.

Consider the case n = 1. The Markov random field discussed above
represents an analog of a real Gaussian stationary process X(t) with the
following property: for any interval (a, b) and any t1 ∈ (a, b), t2 /∈ (a, b)
the random variables X(t1) and X(t2) are conditionally independent given
X(a) and X(b).

The correlation function of such process satisfies the functional equa-
tion
(1) B(t)[1 + B(2a)] = B(a)[B(t + a) + B(t− a)] (t ≥ a, t, a ∈ R),
(see [2]).
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This paper presents the general continuous solution of functional equa-
tion (1).

2. Continuous solutions of (1)

Lemma 1. If the continuous function B : R → R satisfies the func-
tional equation (1) then B(t) = 0 (t ∈ R) or there exists a positive real
number r, such that the functions Be and Bo defined by

(2) Be(t) =
B(t) + B(−t)

2
, Bo(t) =

B(t)−B(−t)
2

(t ∈ [−2r, 2r]),

satisfy the functional equations

(3) Be(t + a) + Be(t− a) = 2Be(t)Be(a), (t, a) ∈ T,

and

(4) Bo(t + a) + Bo(t− a) = 2Bo(t)Be(a), (t, a) ∈ T,

where T = {(t, a)|t| ≤ |a| ≤ r}.
Proof. a) If B(0) 6= 1, then, by substitution t = a, it follows from

(1) the equation

B(a)[1 + B(2a)] = B(a)[B(2a) + B(0)] (a ∈ R),

or
B(a)(1−B(0)) = 0 (a ∈ R),

which implies

(5) B(a) = 0 (a ∈ R)

b) If B(0) = 1, then, first by t = 0 in (1), we get

(6) 1 + B(2a) = B(a)[B(a) + B(−a)] (a ≤ 0).

Combining (6) with (1), we get the functional equation

(7) B(a)[B(t+a)+B(t−a)−B(t)(B(a)+B(−a))] = 0 (t ≥ a, a ≤ 0).

Let us write here −a for a, then we see that B satisfies the functional
equation

(8) B(−a)[B(t+a)+B(t−a)−B(t)(B(a)+B(−a))]=0 (t ≥ −a, a ≥ 0).
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B(0) = 1 and the continuity of B gives that there exists an r > 0, such
that B(a) > 0 if a ∈ [−r, r] and thus it follows from (7) and (8) that

(9)
B(t + a) + B(t− a) = B(t)[B(a) + B(−a)],

(t, a) ∈ T1 ={(t, a) | t ≥ a if − r ≤ a≤0 or t ≥ −a if 0 ≤ a≤r}.
Putting t → −t, a → −a in (9), we get

(10)
B(−(t + a)) + B(−(t− a)) = B(−t)[B(a) + B(−a)],

(t, a)∈T2 ={(t, a) | t ≤ −a if − r ≤ a≤0 or t ≤ a if 0 ≤ a≤r}.
Adding and subtracting equations (9) and (10), we find equations (3) and
(4), respectively for functios Be and Bo defined by (2), where T = T1∩T2.

Lemma 2. If the continuous function Be, defined by (2), satifies the
functional equation (3), then in case Be(0) = 1

Be(t) = cos bt, t ∈ [−2r, 2r],(11)

Be(t) = ch bt, t ∈ [−2r, 2r],(12)

Be(t) = 1, t ∈ [−2r, 2r],(13)

where b ∈ R0 = R\{0} is an arbitrary constant.

Proof. (2) shows that Be is even and Be(t) > 0 if t ∈ [−r, r].
Following the arguments of [1] in Chapter 8 for D’Alembert’s func-

tional equation, we distinguish two cases

Be(r) ≤ 1, or Be(r) > 1.

If 0 < Be(r) ≤ 1, then there exists an angle 0 ≤ α < π
2 , for which

(14) Be(r) = cos α.

With t = a = x
2 and taking Be(0) = 1 into consideration, from (3) we

obtain

(15) Be(x) + 1 = 2B2
e

(x

2

)
(x ∈ [−2r, 2r])

Putting x = r here, we get with (14)

(16) Be

(r

2

)
=

√
1 + Be(r)

2
=

√
1 + cos α

2
= cos

α

2
.

Then, by induction on n we obtain, that

(17) Be

( r

2n

)
= cos

α

2n
for all n = 0, 1, 2, . . . .
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Now substitute

t =
r

2n
, a = m

r

2n
(m = 1, 2, . . . , m ≤ 2n)

into (3), then (using that Be is even)

(18) Be

(
m + 1

2n
r

)
+ Be

(
m− 1

2n
r

)
= 2Be

(
1
2n

r

)
B

( m

2n
r
)

.

We prove by induction on k, that

(19) Be

(
k

2n
r

)
= cos

(
k

2n
α

)
for all k = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

Indeed, (19) is true for k = 0 and for k = 1 by Be(0) = 1 = cos 0 and (17).
Suppose that it holds for k = m− 1 and k = m. Then by (18)

Be

(
m + 1

2n
r

)
= 2Be

(
1
2n

r

)
Be

( m

2n
r
)
−Be

(
m− 1

2n
r

)

= 2 cos
1
2n

α cos
m

2n
α− cos

(
m− 1

2n
α

)
= cos

(
m + 1

2n
α

)
.

and (19) is proved.
For all nonnegative dyadic fractions δ, with δ ≤ 2 (i.e., δ = m

2n , where
m and n are nonnegative integers)

(20) Be(δr) = cos δα.

Since both Be and cos are continuous on [0, 2r], by putting into (20) a
sequence {δm} of dyadic fractions tending to the arbitrary positive number
x ∈ [0, 2], we get Be(rx) = cos αx, or with α

r = b, rx = t Be(t) = cos bt
for all t ∈ [0, 2r]. Finally, Be(−t) = Be(t) gives that

Be(t) = cos bt, t ∈ [−2r, 2r],

i.e., Be is of the form (11).
In case Be(r) > 1 we get similarly, that

Be(t) = ch bt, t ∈ [−2r, 2r].

If b = 0 in (11) or (12), then we obtain

Be(t) = 1, t ∈ [−2r, 2r],

and the proof is complete.
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Lemma 3. If the odd and continuous function Bo, defined by (2),
satisfies the functional equation (4), where Be is one of the forms (11),
(12), (13), then

Bo(t) = C sin bt, t ∈ [−2r, 2r],(21)

Bo(t) = C sh bt, t ∈ [−2r, 2r],(22)

Bo(t) = Ct, t ∈ [−2r, 2r],(23)

respectively, where C, b ∈ R are arbitrary constants.

Proof. Since Be(t) > 0 if t ∈ [−r, r] and Be is continuous thus∫ r

0
Be(a)da = c 6= 0.

Integrate (4) from 0 to r with respect to a to obtain
∫ r

0

Bo(t + a)da +
∫ r

0

Bo(t− a)da = 2cBo(t), t ∈ [−r, r],

or ∫ t+r

t

Bo(x)dx−
∫ t−r

t

Bo(x)dx = 2cBo(t), t ∈ [−r, r].

Thus

(24) Bo(t) =
1
2c

[∫ t+r

t

Bo(x)dx−
∫ t−r

t

Bo(x)dx

]
, t ∈ [−r, r].

Since Bo is continuous, the right hand side of (24) is differentiable on
[−r, r] and so Bo is differentiable on [−r, r] too.

But with t = a = x
2 and taking Bo(0) = 0 in consideration, we obtain

from (4)

(25) Bo(x) = 2Bo

(x

2

)
Be

(x

2

)
, x ∈ [−2r, 2r],

which implies that Bo is differentiable on [−2r, 2r].
By differentiating (24), we obtain

(26) B′
o(t) =

1
2c

[B(t + r)−B(t− r)], t ∈ [−r, r].

The right hand side of (26) is differentiable on [−r, r] and so Bo is twice
differentiable on [−r, r]. Finally, (25) gives the differentiability of Bo on
the interval [−2r, 2r].

We differentiate (4) twice with respect to a and substitute a = 0, then
we get:

a) in case (11),

B′′
o + b2Bo(t) = 0, t ∈ [−2r, 2r].



200 K. Lajkó

Then Bo(t) = C sin bt + C ′ cos bt with some constants C, C ′ ∈ R. Finally,
because of Bo is an odd function, we get (21) for Bo.

b) in case (12),

B′′
o (t)− b2Bo(t) = 0, t ∈ [−2r, 2r],

which implies that

Bo(t) = C1e
bt + C2e

−bt, t ∈ [−2r, 2r],

where C1, C2 ∈ R are arbitrary constants. But Bo is odd, therefore we get
that C2 = −C1 and so

Bo(t) = C1(ebt − e−bt), t ∈ [−2r, 2r],

i.e., (22) holds with C = C1
2 .

c) in case (13),

B′′
o (t) = 0, t ∈ [−2r, 2r],

which implies (23) for Bo.

Theorem. The general continuous solution B : R → R of functional
equation (1) is given by

B(t) ≡ 0 (t ∈ R)(27)

B(t) = cos bt + C sin bt (t ∈ R)(28)

B(t) = ch bt + C sh bt (t ∈ R)(29)

B(t) = 1 + Ct (t ∈ R)(30)

where b, C ∈ R are arbitrary constants.

Proof. Lemma 1 shows that B(t) ≡ 0, if B(0) 6= 1. If B(0) = 1,
then we obtain again from Lemma 1 that there exists an r > 0, such that
functions Be and Bo, defined by (2), satisfy the functional equations (3)
and (4) and because of (2)

(31) B(t) = Be(t) + Bo(t) t ∈ [−2r, 2r].

Using (11), (12), (13), (21), (22), (23), we have (28), (29), (30) for B,
if t ∈ [−2r, 2r]. From equation (1), using some well known identities for
trigonometric and hyperbolic functions, we get the following equalities:

(cos bt + C sin bt)[1 + B(2a)] = (cos bt + C sin bt)(1 + cos b2a + C sin b2a),

(ch bt + C sh bt)[1 + B(2a)] = (ch bt + C sh bt)(1 ch b2a + C sh b2a),

(1 + ct)[1 + B(2a)] = (1 + ct)(1 + 1 + c2a)
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which imply that B has the forms (28), (29), (30) for all t ∈ [−4r, 4r],
respectively and than by induction on n, we get these forms for all t ∈
[−2nr, 2nr] (n ∈ N) and finally for all t ∈ R.
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