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Identification of parameters in systems
governed by nonlinear evolution equations

By NIKOLAOS S. PAPAGEORGIOU (Athens)

Abstract. In this paper we study the problem of parameter identification for sys-
tems governed by nonlinear evolution equations. First we establish the existence of an
optimal parameter value for two families of systems. The first family are those systems
monitored by evolutions of the subdifferential type, while the second family consists of
systems whose dynamics is described by differential variational inequalities. Then using
the framework of evolution triples, we obtain necessary conditions for optimality. An
example of a parabolic system is worked out in detail.

1. Introduction

In the analysis of models of engineering or physical systems, one of
the major tasks is to determine the unknown parameters of the model,
on the basis of the available field data. This problem is known as the
“identification problem”. In the recent years, the identification of dis-
tributed parameter systems has attracted the interest of many applied
mathematicians and substantial progress was made in various aspects of
the problem. In particular, techniques of optimal control have been used
by Lions [15], Chavent [11], Ahmed [1], [2] and Banks–Reich–Rosen
[6], [7], [8], who considered the parameter identification problem. Among
the above authors, Ahmed [1], [2] made a systematic effort to develop a
general theory of optimization and identification of linear and nonlinear
systems monitored by evolution equations in Banach spaces. In [1] Ahmed
presented the linear theory, while in his monograph [2] he also developed
the nonlinear theory and related computational schemes. On the other
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hand, in a series of interesting papers, Banks–Reich–Rosen [6], [7], [8],
developed the abstarct framework and the corresponding convergence the-
ory for the Galerkin approximations for inverse problems involving the
identification of nonlinear distributed parameter systems. Papers [6] and
[7] deal primarily with autonomous systems, while paper [8] treats the tem-
porally inhomogeneous case (nonautonomous systems), using a variational
approach similar to the one used by Barbu [9] to prove his theorem III.4.2.
In this paper, we do not limit ourselves to the Galerkin approximations
of this systems under consideration, but instead as in Ahmed [2], we deal
with general nonlinear systems involving a parameter to be identified in a
ceratin optimal way. In Ahmed [2] (chapter 4) as well as in Banks–Reich–
Rosen [6], [7], [8], the systems are defined using the “evolution triple”
formalism (see Zeidler [24]) and satisfy a strong monotonicity (coerciv-
ity) property. In our existence theory (section 3), we consider a different
class of systems that do not necessarily satisfy the coercivity property and
in which the abstract nonlinear operator may be multivalued. However,
we require that it is of subdifferential form. The parameter to be identified
appears in all the data of the problem, including the subdifferential. Using
an integral criterion for optimality, we are able to establish the existence
of an optimal parameter value. Our formulation incorporates “differential
variational inequalities”, which appear in many applications, like economic
dynamic systems (resource allocation problems; see Aubin–Cellina [4],
Chapter 5, Section 6) and in theoretical mechanics, in the study of unilat-
eral problems (see Moreau [16]). In general when we study systems with
constraints, often in describing the effect of the constraint on the dynamics
of the system, we can assume that the velocity ẋ is projected at each in-
stant on the set of allowed directions toward the constraint set at the point
x. This leads us to a “different variational inequality” (see Aubin–Cellina
[4]). This large class of nonlinear systems can not be treated using the
framework adopted by Ahmed [2]. Furthermore, our forcing term f de-
pends on the state x, while in Ahmed [2], Chapter 4, p. 96 is independent
of x and finally our cost criterion is more general since it also depends on
the “velocity” ẋ. In our hypotheses (see hypothesis H(ϕ)(2), Section 3),
we assume that the subdifferential operator as a set-valued function of
the parameter is continuous in the “resolvent topology” (see Section 2).
On the other hand, Ahmed [2], Theorem 4.2, p. 102 assumes that his
abstract single-valued operator is strongly continuous in the parameter.
Although the two continuity concepts are in general distinct, it seems to
us that our hypothesis is more appropriate, since as it was illustrated in
Attouch [3] (with examples from mechanics, optimization and optimal
control), the resolvent convergence is more natural within the context of
variational problems. Furthermore, our hypothesis is the natural extension
to the nonlinear and set-valued situation of the hypothesis used in the lin-
ear theory by Ahmed [2] (see Theorem 1.11, p. 27). So our Theorem 3.1,
can be viewed as a partial extension of Theorem 4.2, p. 102 of Ahmed
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[2]. In Section 4, we turn our attention to a different class of nonlinear
systems (this time defined using an evolution triple, nonautonomous, but
with the maximal monotone operator being single-valued). For this new
class of systems, we derive necessary conditions for optimality, without
assuming any differentiability properties on the cost criterion. Our result
(Theorem 4.1) extends Theorem 2.4, p. 54 of Ahmed [2] who considers
autonomous systems, with state independent forcing term. Finally an ex-
ample of a parabolic control system, with controls in the coefficients, is
worked out in detail. To conclude this introduction we should mention
that the works of Banks–Reich–Rosen [6], [7], [8] are more directly re-
lated to the recent continuous dependence results for evolution inclusions
obtained by the author in [20] and [21].

2. Mathematical preliminaries

Let X be a Banach space and ϕ : X → R̄ = R ∪ {+∞}. We will
say that ϕ(·) is proper, if it is not identically +∞. Assume that ϕ(·) is
proper, convex and l.s.c. In the literature, this set of functions is denoted
by Γ0(X). By dom ϕ, we will denote the effective domain of ϕ(·); i.e.
domϕ = {x ∈ X : ϕ(x) < +∞}. The subdifferential of ϕ(·) at x is the set
∂ϕ(x) = {x∗ ∈ X∗ : (x∗, y − x) ≤ ϕ(y) − ϕ(x) for all y ∈ dom ϕ} (here
(· , ·) denotes the duality brackets of the pair (X, X∗)). If ϕ(·) is Gateaux
differentiable at x, then ∂ϕ(x) = {ϕ′(x)}. Recall that ∂ϕ : D(∂ϕ) ⊆ X →
2X∗

is a maximal monotone map. We will say that ϕ(·) is of compact type,
if for every λ ∈ R, the level set {x ∈ X : ‖x‖2 + ϕ(x) ≤ λ} is relatively
compact.

Let {An, A}n≥1 ⊆ 2X{∅}. Denote by s- the strong topology on X
and by w- the weak topology. We define:

s-limAn = {x ∈ X : x = s-limxn, xn ∈ An, n ≥ 1} =

= {x ∈ X : lim d(x,An) = 0}

and w-limAn = {x ∈ X : x = w-limxnk
, xnk

∈ Ank
,

n1 < n2 < · · · < nk < . . . }.
It is clear from the above definitions that we always have s-limAn ⊆

w-limAn. If s-limAn = w-limAn = A, then we say that the An’s converge
to A in the Kuratowski–Mosco sense, denoted by An

K−M−−−−→ A (see Mosco
[17]). If dim X < ∞, then the weak and strong topologies on X coincide
and so we recover the well-known Kuratowski mode of set convergence.

Let H be a Hilbert space. From a fundamental result of Minty, we
know that an operator A : H → 2H is maximal monotone if and only if
for some λ > 0, R(I + λA) = H. Then for every λ > 0, Jλ = (I + λA)−1 :
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R(I + λA) = H → H is called the “resolvent of A”. The resolvent map
is nonexpansive and Jλx

s−→ x as λ → 0+, for each x ∈ D(A) = {y ∈
X : A(y) 6= ∅}. Let M denote the set of all maximal monotone operators
in H. The “topology of R-convergence” on M, is the weakest topology
that makes continuous the maps Ĵλ,x : M→ H for every λ > 0 and every
x ∈ H, where Ĵλ,x(A) = (I +λA)−1x. By MR (or MR(H)) we will denote
the set M equipped with the topology of R-convergence. If H is separable,
then MR is a Polish space (i.e. a separable, metrizable, complete space).
Furthermore, we known that An

MR−−→ A if and only if GrAn
K−M−−−−→ GrA,

where GrAn = {(x, y) ∈ H × H : y ∈ Anx} similarly for (GrA). For
further details, we refer to Attouch [3].

Now let T = [0, r], let H be a separable Hilbert space and X a sub-
space of H, carrying the structure of a separable, reflexive Banach space,
which embeds continuously and densely into H. Identifying H with its
dual (pivot space), we have X → H → X∗, with all embeddings being
continuous and dense. Such a triple of spaces (X, H,X∗) is known in
the literature as “evolution triple”. To have a concrete example in mind,
let Z be a bounded domain in RN and let X = Wm,p

0 (Z), H = L2(Z),
X∗ = W−m,q(Z), where m ∈ N, 2 ≤ p < ∞, 1

p + 1
q = 1. From the Sobolev

embedding theorem, we know that (X, H,X∗) is an evolution triple and
in addition all embeddings are compact. By ‖ · ‖ (resp. | · |, ‖ · ‖∗), we
will denote the norm of X (resp. of H, X∗). Also by 〈· , ·〉 we will denote
the duality brackets for the pair (X,X∗) and by (· , ·) the inner product
of H. The two are compatible in the sense that 〈· , ·〉 |X×H= (· , ·). Let
W (T ) = {x ∈ L2(X) : ẋ ∈ L2(X∗)}. The derivative in this definition is un-
derstood in the sense of vector-valued distributions. This space equipped
with the norm ‖x‖W (T ) = [‖x‖2L2(X) + ‖ẋ‖2L2(X∗)]1/2 becomes a Banach
space, which is separable, reflexive, being a closed subspace of the sepa-
rable and reflexive Banach space L2(X)× L2(X∗). We know (see Zeidler
[24], Proposition 23.23, p. 422), that W (T ) embeds in C(T, H) continu-
ously. So every element in W (T ) has a unique representative in C(T, H).
Also by virtue of Theorem 2.2, p. 19 of Barbu [9], every x ∈ W (T ) can
be identified with an X∗-valued absolutely continuous function on T and
ẋ can be regarded as the strong (ordinary) derivative of x : T → X∗.
If X → H compactly, then W (T ) → L2(H) compactly (see Zeidler [24],
p. 450) and in addition X is a Hilbert space too, then W (T ) → C(T,H)
compactly (see Nagy [18]).
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3. Existence theorems

Let T = [0, r], H a separable Hilbert space (the state space) and G a
compact metric space (the parameter space). The system under consider-
ation is governed by the following evolution equation of the subdifferential
type, parametrized by the elements of G:

(∗)1
−ẋ(t) ∈ ∂ϕ(x(t), p) + f(t, x(t), p) a.e.

x(0) = x0(p).

Our goal is, using the trajectories of (∗)1, to minimize the following
integral functional:

(P1) J(p) =

r∫

0

L(t, x(p)(t), ẋ(p)(t), p)dt → inf
p∈G

= m1.

To this end we will need the following hypotheses on the data of our
problem:

H(ϕ) : ϕ : H ×G → R̄ = R ∪ {+∞} is a function s.t.

(1) for every p ∈ G, ϕ(· , p) ∈ Γ0(H) and is of compact type
uniformly in p ∈ G (i.e. for every λ ∈ R, Kλ =

⋃
p∈G

{x ∈ H :

‖x‖2 + ϕ(x, p) ≤ λ} is relatively compact in H),
(2) if pn → p in G, then ∂ϕ(· , pn) → ∂ϕ(· , p) in MR(H),
(3) sup

p∈G
ϕ(x0(p), p) < ∞.

H(f) : f : T ×H ×G → H is a map s.t.

(1) t → f(t, x, p) is measurable,
(2) ‖f(t, x, p)− f(t, x′, p)‖ ≤ k(t)‖x− x′‖ a.e. for all p ∈ G and

with k(·) ∈ L1
+,

(3) p → f(t, x, p) is continuous,
(4) ‖f(t, x, p)‖ ≤ a(t, p) + b(t, p)‖x‖ a.e. with a(· , p), b(· , p) ∈

L2
+, and sup

p∈G
‖a(· , p)‖2, ‖b(· , p)‖2 < ∞.

H0 : x0(·) is continuous from G into dom ϕ(· , p) ⊆ H and for every p ∈ G,

x0(p) ∈ ⋂
p′∈G

dom ∂ϕ(· , p′).
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Note that under the above hypotheses, given a parameter p ∈ G, we
know that (∗)1 admits a unique strong x(p)(·) ∈ C(T, H) (see Kravvaritis–
Papageorgiou [14]).

We will also need the following hypothesis on the cost integrand

H(L) : L : T ×H ×H ×G → R̄ = R ∪ {+∞} is an integrand s.t.

(1) (t, x, y, p) → L(t, x, y, p) is measurable,
(2) (x, y, p) → L(t, x, y, p) is l.s.c.,
(3) y → L(t, x, y, p) is convex,
(4) ϕ(t) − M(‖x‖ + ‖y‖) ≤ L(t, x, y, p) a.e. for all p ∈ G and

with ϕ(·) ∈ L1, M > 0.

Theorem 3.1. If hypotheses H(ϕ), H(f), H0 and H(L) hold, then
there exists p ∈ G s.t. J(p) = m1.

Proof. Let {pn}n≥1 ⊆ G be a minimizing sequence; i.e. J(pn) ↓ m1.
By passing to a subsequence if necessary, we may assume that pn → p
in G. Let xn = x(pn) ∈ C(T,H) be the unique trajectory corresponding
to the parameter n ≥ 1. From Benilan’s inequality (see for example Brezis
[10], Lemma 3.1, p. 64), we have

‖xn(t)− S(t, pn)x0(pn)‖ ≤
t∫

0

‖f(s, xn(s), pn)‖ds, t ∈ T,

where {S(t, pn)}t∈T is the semigroup of nonlinear contractions generated
by the maximal monotone operator ∂ϕ(· , pn). So we get

‖xn(t)‖ ≤ ‖S(t, pn)x0(pn)‖+

t∫

0

‖f(s, xn(s), pn)‖ds

≤ ‖S(t, pn)x0(pn)‖+

t∫

0

[a(s, pn) + b(s, pn)‖xn(s)‖]ds.

Note that ‖S(t, pn)x0(pn)− S(t, p)x0(p)‖ ≤ ‖S(t, pn)x0(pn)−
S(t, pn)x0(p)‖+ ‖S(t, pn)x0(p)− S(t, p)x0(p)‖ ≤ ‖x0(pn)− x0(p)‖+
‖S(t, pn)x0(p) − S(t, p)x0(p)‖ → 0 as n → ∞ uniformly in t ∈ T (see
hypothesis H0 and Theorem 4.2, p. 120 of Brezis [10]). Thus we can find
M1 > 0 s.t. for all t ∈ T and all n ≥ 1, we have ‖S(t, pn)x0(pn)‖ ≤ M1.
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Hence we get

‖xn(t)‖ ≤ M1 +
√

r sup
n≥1

‖a(· , pn)‖2 +

r∫

0

b(s, pn)‖xn(s)‖ds.

Invoking Gronwall’s inequality, we get

‖xn(t)‖ ≤ (M1 +
√

r sup
n≥1

‖a(· , pn)‖2) exp
(√

r sup
n≥1

‖b(· , pn‖2
)

= M2 < ∞,

for all t ∈ T and all n ≥ 1 (see hypothesis H(f)(4)).
Also from Theorem 3.6, p. 72 of Brezis [10], we get

r∫

0

‖ẋn(t)‖2dt ≤



r∫

0

‖f(t, xn(t), pn)‖2dt




1/2

+
√

ϕ(x0(pn), pn)

≤ ‖a(· , pn) + b(· , pn)M2‖2 +
√

ϕ(x0(pn), pn)

≤ ‖a(· , pn)‖2 + M2‖b(· , pn)‖2 +
√

ϕ(x0(pn), pn)

=⇒ ‖ẋn‖L2(H) ≤ M3 < ∞
for some M3 > 0 and for all n ≥ 1 (see hypotheses H(ϕ)(3) and H(f)(4 ).
Since xn(·) is a strong solution, by Lebesgue’s differentiation theorem, we
have

xn(t′)− xn(t) =

t′∫

t

ẋn(s)ds

=⇒ ‖xn(t′)− xn(t)‖ ≤
t′∫

t

‖ẋn(s)‖ds≤
r∫

0

χ[t,t′](s)‖ẋn(s)‖ds≤(
√

t′ − t)M3

=⇒ {xn(·)}n≥1 ⊆ C(T, H) is equicontinuous.

Furthermore invoking once again Theorem 3.6, p. 72 of Brezis [10],
we have

‖ẋn(t)‖2 +
d

dt
ϕ(xn(t), pn) = (f(t, xn(t), pn), ẋn(t)) a.e.
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=⇒ ϕ(xn(t), pn) ≤
t∫

0

‖f(s, xn(s), pn)‖ · ‖ẋn(s)‖ds + ϕ(x0(pn), pn)

≤ (‖a(· , pn)‖2 + M2‖b(· , pn)‖2)M3 + ϕ(x0(pn), pn).

So from hypotheses H(ϕ)(3) and H(f)(4), we get that there exists
M4 > 0 s.t.

ϕ(xn(t), pn) ≤ M4

for all t ∈ T and all n ≥ 1. Therefore we have:

{xn(t)}n≥1 ⊆
⋃

n≥1

{y ∈ H : ‖y‖2 + ϕ(y, pn) ≤ M2
2 + M4 = M5}

=⇒ {xn(t)}n≥1 is compact (see hypothesis H(ϕ)(1)).

Thus applying the Arzela-Ascoli theorem, we deduce that {xn(·)}n≥1

is relatively compact in C(T,H). So by passing to a subsequence if neces-
sary, we get that xn

s−→ x in C(T, H). Then because of hypothesis H(f),
we have

r∫

0

‖f(t, xn(t), pn)− f(t, x(t), p)‖dt → 0 as n →∞.

So from Theorem 3.16, p. 102 of Brezis [10], we get that

−ẋ(t) ∈ ∂ϕ(x(t), p) + f(t, x(t), p) a.e.

x(0) = x0(p).

Also since ‖ẋn‖L2(H) ≤ M3, we may assume that ẋn
w−→ y in L2(H).

Clearly y = ẋ. Then because of hypothesis H(L), we can apply Theo-
rem 2.1 of Balder [5] and get that

r∫

0

L(t, x(t), ẋ(t), p)dt ≤ lim

r∫

0

L(t, xn(t), ẋn(t), pn)dt = limJ(pn) = m1.

But we already know that x(·) = x(p)(·) ∈ C(T, H) solves (∗)1 for the
parameter value p ∈ G. So J(p) = m1. ¤

Remark. A similar problem was considered by Ahmed [2] (see The-
orem 4.8) for systems driven by m-accretive operators with f = 0 and L
independent of the derivative ẋ.

Another closely related family of problems that can be treated by sim-
ilar methods are the so-called “differential variational inequalities”, that
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we encounter in mathematical economics and mechanics. Recall that if
K ⊆ RN is nonempty and closed, and x ∈ K, then the tangent cone to
K at x denoted by NK(x) is defined by NK(x) = ∂δK(x), where δK(·)
is the convex function δK(z) = 0 if z ∈ K and +∞ otherwise (indicator
function), and ∂δK(·) is its subdifferential in the sense of convex analysis.

The system under consideration has state space RN and is monitored
by the following “differential variational inequality”

(∗)2
−ẋ(t) ∈ NK(t,p)(x(t)) + f(t, x(t), p) a.e.

x(0) = x0(0).

Denote by Pkc(RN ) the space of all nonempty, compact and convex
subsets of RN . Equipped with the Hausdorff metric
h(A,B) = max[sup

a∈A
d(a,B) sup

b∈B
d(b, A)], Pkc(RN ) becomes a Polish space

(i.e. is separable and complete).
We will need the following hypotheses on the data of (∗)2.

H(K): K : T×G → Pkc(RN ) is a multifunction s.t. K(t, ·) is h-continuous
and for all (t, s) ∈ T × T , t ≥ s and all p ∈ G, h(K(t, p),

K(s, p)) ≤
t∫
s

η(τ)dτ , with η(·) ∈ L2
+.

H(f)1: f : T × RN ×G → RN is a function s.t.

(1) t → f(t, x, p) is measurable,
(2) ‖f(t, x′, p)− f(t, x, p)‖ ≤ k(t)‖x′ − x‖ a.e. for all p ∈ G and

with k(·) ∈ L1
+,

(3) p → f(t, x, p) is continuous,
(4) ‖f(t, x, p)‖ ≤ a(t, p) + b(t, p)‖x‖ a.e. for all p ∈ G, with

a(· , p), b(· , p) ∈ L2
+ and s.t. sup

p∈G
‖a(· , p)‖2, ‖b(· , p)‖2 < ∞.

H1
0 : x0 : G → RN is continuous and for all p ∈ G, x0(p) ∈ K(p).

Again our goal is to minimize the integral cost functional J1(p) =∫ r

0
L(t, x(p)(t), ẋ(p)(t), p)dt, using the trajectories of system (∗)2. The

hypothesis on the integrand L : T × RN × RN × G → R̄ is the same as
before, namely:

H(L)1 : L : T × RN × RN ×G → R̄ = R ∪ {+∞} is an integrand s.t.

(1) (t, x, y, p) → L(t, x, y, p) is measurable,
(2) (x, y, p) → L(t, x, y, p) is l.s.c.,
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(3) y → L(t, x, y, p) is convex,
(4) ϕ(t) −M(‖x‖ + ‖y‖) ≤ L(t, x, y, p) a.e. for all p ∈ G, with

ϕ(·) ∈ L1 and M > 0.

Theorem 3.2. If hypotheses H(K), H(f)1, H1
0 and H(L)1 hold, then

there exists p ∈ G s.t. J1(p) = m1.

Proof. Again let {pn}n≥1 be a minimizing sequence; i.e. J(pn) ↓ m1.
As before let xn(·) = x(pn)(·) ∈ C(T,RN ). From Moreau [14], we know
that

‖ẋn(t)‖ ≤ η(t) + 2‖f(t, xn(t), pn)‖ a.e.

=⇒ ‖ẋn(t)‖ ≤ η(t) + 2a(t, pn) + b(t, pn)‖xn(t)‖ a.e.

But note that xn(t) ∈ K(T, G) =
⋃

(t,p)∈T×G

K(t, p) ∈ Pk(RN ) (see

hypothesis H(K) and Theorem 7.4.2, p. 90 of Klein-Thompson [11]). So
we can find M1 > 0 s.t. for all t ∈ T and all n ≥ 1, we have, ‖xn(t)‖ ≤ M1.
Then

‖ẋn(t)‖ ≤ η(t) + 2a(t, pn) + 2b(t, pn)M1 a.e.

So using hypothesis H(f)1(4), we can find M2 > 0 s.t. for all n ≥ 1

‖ẋn‖L2(T,RN ) ≤ M2.

Using this, we get that for all t, t′ ∈ T and all n ≥ 1, we have

‖xn(t′)− xn(t)‖ ≤
t′∫

t

‖ẋn(s)‖ds ≤ (
√

t′ − t)M2

=⇒ {xn(·)}n≥1 ⊆ C(T,RN ) is equicontinuous and bounded.

Invoking the Arzela–Ascoli theorem, we deduce that {xn(·)}n≥1 is rel-
atively compact in C(T,RN ). So by passing to subsequence if necessary,

we may assume that xn
s−→ x in C(T,RN ) and ẋn

w−→ ẋ in L2(T,RN ).

Then
b∫
0

‖f(t, xn(t), pn) − f(t, x(t), p)‖dt → 0 as n → ∞. Also note that

because of hypothesis H(K), K(t, pn) K−→ K(t, p) where K−→ denotes the

Kuratowski mode of set convergence) ⇒ δK(t,pn)
r−→ δK(t,p) (where r−→ de-

notes the epigraphical convergence, i.e. epi δK(t,pn)
K−→ epi δK(t,p), with
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epi δK(t,pn) = {(x, λ) ∈ RN × R : δK(t,pn)(x) ≤ λ} and similarly for

epi δK(t,p)) ⇒ ∂δK(t,pn) = NK(t,pn) → ∂δK(t,p) = NK(t,p) in MR(RN )

(see Theorems 3.62 and 3.66 of Attouch [3]). ⇒ GrNK(t,pn)
K−→ GrNK(t,p).

Thus using Theorem 3.1 of [19], we get that x(·) = x(p)(·) ∈ C(T,RN ); i.e.
−ẋ(t) ∈ NK(t,p)(x(t)) + f(t, x(t), p) a.e. x(0) = x0(p). Then via Balder’s
lower semicontinuity theorem, we get J(p) = m1 ⇒ p is the desired optimal
parameter value. ¤

4. Necessary conditions

In this section we derive necessary conditions for parameter optimality
for a somewhat different class of systems. The maximal monotone operator
is no longer multivalued, but we allow it to be time dependent. We work
within the framework of evolution triples.

So let T = [0, r] and let (X,H, X∗) be an evolution triple, with all
embeddings being compact. Also G (the parameter set), is a nonempty,
bounded, closed and convex set in a Banach space Y . The problem under
consideration is the following:

(∗)3
J(x, p) = `(x(b)) +

r∫

0

L(t, x(t), p)dt → inf = m2

s.t. ẋ(t) + A(t, p)x(t) = f(t, x(t), p) a.e.

x(0) = x0.

We will need the following hypotheses on the data:

H(A) : A : T ×G → L(X,X∗) is a map s.t.

(1) t → A(t, p)x is measurable,
(2) p → A(t, p)x is continuous,
(3) ‖A(t, p)x‖∗ ≤ c‖x‖ for all (t, p) ∈ T ×G, with c > 0,
(4) 〈A(t, p)x, x) ≥ c1‖x‖2 for all (t, p) ∈ T ×G, with c1 > 0,
(5) p → A(t, p)x is weakly Gateaux differentiable and

‖A(t, p′)−A(t, p)‖∗ ≤ k1(t)‖p′ − p‖Y a.e. with k1(·) ∈ L2
+.

H(f)1 : f : T ×H × Y → H is a map s.t.

(1) t → f(t, x, p) is measurable,
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(2) |f(t, x′, p′)− f(t, x, p)| ≤ k2(t)[ |x′−x|+ ‖p′− p‖Y ] a.e. with
k2(·) ∈ L2

+,
(3) f(t, · , ·) is continuously Frechet differentiable, for every h∈H

(f ′x(t, x, p)h, h) ≤ 0 a.e.

and |f ′x(t, x, p)‖L(H)′‖f ′p(t, x, p)‖L(Y,H) ≤ a1(t) + b1(|x| +

‖p‖Y ) a.e. with a1(·) ∈ L2
+, b1 > 0,

(4) |f(t, x, p)| ≤ a2(t) + b2(|x| + ‖p‖Y ) a.e. with a2(·) ∈ L2
+,

b2 > 0.

H(L)1 : L : T ×H × Y → R is a function s.t.

(1) t → L(t, x, p) is measurable,
(2) (x, p) → L(t, x, p) is continuous, convex,
(3) sup[L(t, x, p) : |x| ≤ n, ‖p‖Y ≤ n]≤ϕn(t) a.e. with ϕn(·) ∈

L1
+.

H(`) : ` : H → R is continuously, Frechet differentiable.

Suppose p̂ ∈ G is the optimal parameter for (∗)3 and x̂(·) = x̂(p)(·) ∈
W (T ) → C(T,H) the corresponding optimal state. By ∂xJ(x̂, p̂) (resp.
∂pJ(x̂, p̂)) we denote the subdifferential of J(·, p̂) at x̂ (resp. of J(x̂, ·)
at p̂).

Theorem 4.1. If hypotheses H(A),H(f)2,H(L)1 and H(`) hold, then
there exist ψ(·) ∈ W (T ), x∗ ∈ ∂xJ(x̂, p̂) ⊆ L2(H) and p∗ ∈ ∂pJ(x̂, p̂) ⊆ Y ∗
s.t.

(1) ˙̂x(t) + A(t, p)x̂(t) = f(t, x̂(t), p̂) a.e. x̂(0) = x0

(2) −ψ̇(t) + A(t, p̂)∗ψ(t)− f ′x(t, x̂(t), p̂)ψ(t) = x∗(t) a.e.

ψ(b) = `x(x̂(b)) “adjoint equation”

(3) 0 ≤
b∫
0

〈ψ(t), (f ′p(t, x̂(t), p̂) − A′p(t, x̂(t), p̂))(p′ − p̂) > dt +

(p∗, p′ − p̂)Y ∗,Y for all p′ ∈ G “maximum principle”.

Proof. Consider the map p → x(p) from G into W (T ), which to
every parameter value p ∈ G assigns the corresponding unique trajectory
x(p)(·) ∈ W (T ) of system (∗)3. We claim that this map is weakly Gateaux
differentiable from above (i.e. as λ → 0+) at the point p̂ ∈ G.
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To this end, let pλ = p̂ + λ(p′ − p̂) ∈ G for p′ ∈ G, λ ∈ [0, 1] and let
xλ(·) = x(pλ)(·) ∈ W (T ). We have:

ẋλ(t) + A(t, pλ)xλ(t) = f(t, xλ(t), pλ) a.e., xλ(0) = x0

and ˙̂x(t) + A(t, p̂)x̂(t) = f(t, x̂(t), p̂) a.e., x̂(0) = x0.

Subtract the second equation from the first and then act on the re-
sulting equation with xλ(t) − x(t). We get, using the monotonicity of
A(t, pλ)(·):

〈ẋλ − ˙̂x(t), xλ(t)− x̂(t)〉+ 〈A(t, pλ)xλ(t)−A(t, p̂)x̂(t), xλ(t)− x̂(t)〉(1)

= (f(t, xλ(t), pλ)− f(t, x̂(t), p̂), xλ(t)− x̂(t)) a.e.

=⇒ 1
2

d

dt
|xλ(t)− x̂(t)|2 + c‖xλ(t)− x̂(t)‖2

≤ 〈A(t, p̂)x̂(t)−A(t, pλ)x̂(t), xλ(t)− (̂t)〉+
+(f(t, xλ(t), pλ)− f(t, x̂(t), p̂), xλ(t)− x̂(t)) a.e.

=⇒ |xλ(t)− x̂(t)|2 + 2c

t∫

0

‖xλ(s)− x̂(s)‖2ds

≤ 2

t∫

0

〈A(s, p̂)x̂(s)−A(s, pλ)x̂(s), xλ(s)− x̂(s)〉ds

+2

t∫

0

(f(s, xλ(s), pλ)− f(s, x̂(s), p̂), xλ(s)− x̂(s))ds

≤ 2

t∫

0

‖A(s, p̂)x̂(s)−A(s, pλ)x̂(s)‖∗‖xλ(s)− x̂(s)‖ds

+2

t∫

0

|f(s, xλ(s)pλ)− f(s, x̂(s), p̂)| · |xλ(s)− x̂(s)|ds

≤ 2

t∫

0

k1(s)λ‖p′ − p̂‖Y ‖xλ(s)− x̂(s)‖ds

2

t∫

0

k2(s)|xλ(s)− x̂(s)|2ds + 2

t∫

0

k2(s)‖p′ − p‖Y |xλ(s)− x̂(s)|ds.
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Applying Cauchy’s inequality with ε > 0 on the right hand side of the
above inequality, we get

(2)

2

t∫

0

k1(s)λ‖p′ − p̂‖Y ‖xλ(s)− x̂(s)‖ds

≤ 2|G|ε
t∫

0

k1(s)2ds +
1
ε

t∫

0

‖xλ(s)− x̂(s)‖2ds

where |G| = sup{‖p‖Y : p ∈ G}. Let ε = 1
2c in (2). We get:

2

t∫

0

k1(s)λ‖p′ − p̂‖Y ‖xλ(s)− x̂(s)‖ds

≤ |G|
c
‖k1‖22 + 2c

t∫

0

‖xλ(s)− x̂(s)‖2ds

=⇒ |xλ(t)− x(t)|2 ≤ |G|
c
‖k1‖22 + 2

t∫

0

k2(s)|xλ(s)− x̂(s)|2ds

+4|G|
t∫

0

k2(s)2ds + 4|G|
t∫

0

|xλ(s)− x̂(s)|2ds

=⇒ |xλ(t)− x(t)|2

≤ |G|
c
‖k1‖22 + 4|G| ‖k2‖22 +

t∫

0

(2k2(s) + 4|G|)|xλ(s)− x̂(s)|2ds

= M1 +

t∫

0

k3(s)|xλ(s)− x̂(s)|2ds

where M1 = |G|
c ‖k1‖22 + 4|G| ‖k2‖22 > 0 and k3(·) = 2k2(·) + 4|G| ∈ L2. So

we have:

|xλ(t)− x̂(t)|2
λ2

≤ M1 +

t∫

0

k3(s)
|xλ(s)− x̂(s)|2

λ2
ds.



Parameter identification 229

Invoking Gronwall’s inequality, we deduce that there exists M2>0 s.t.
for all λ ∈ (0, 1) we have

(3)
|xλ(t)− x̂(t)|2

λ2
≤ M2 for all t ∈ T.

Next on inequality (2) above, let ε = 1
c . We get

2

t∫

0

k1(s)λ‖p′−p‖Y ‖xλ(s)− x̂(s)‖ds ≤ 2|G|
c
‖k1‖22 + c

t∫

0

‖xλ(s)− x̂(s)‖2ds.

Use this inequality in (1) to get

c

t∫

0

‖xλ(s)− x̂(s)‖2ds

≤ 2|G|
c
‖k1‖22 + 4|G| ‖k2‖22 +

t∫

0

k3(s)‖xλ(s)− x̂(s)‖2ds

=⇒
b∫

0

‖xλ(t)− x̂(t)‖2
λ2

dt ≤ M3 +

b∫

0

k3(s)
|xλ(s)− x̂(s)|2

λ2
ds

≤ M3 +

b∫

0

k3(s)M2ds (see (3) above),

where M3 = 2|G|
c ‖k1‖22 + 4|G| ‖k2‖22 and k3(·) ∈ L2

+ as above. Thus we
deduce that there exists M4 > 0 s.t. for all λ ∈ (0, 1) we have

(4)
∥∥∥∥

xλ − x̂

λ

∥∥∥∥
L2(X)

≤ M4.

Finally let h ∈ L2(X). We have

〈ẋλ(t)− ˙̂x(t), h(t)〉+ 〈A(t, pλ)xλ(t)−A(t, p̂)x̂(t), h(t)〉
= (f(t, xλ(t), pλ)− f(t, x̂(t), p̂), h(t)) a.e.

=⇒ 〈ẋλ(t)− ˙̂x(t), h(t)〉 ≤ [c‖xλ(t)− x̂(t)‖+ k1(t)‖pλ − p̂‖Y +

+βk2(t)|xλ(t)− x̂(t)|] · ‖h(t)‖ a.e.
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where β > 0 is such that | · | ≤ β‖ · ‖. Such a β > 0 exists since by
hypothesis X embeds into H continuously. Then we get

〈
ẋλ(t)− ˙̂x(t)

λ
, h(t)

〉

≤
[
c
‖xλ(t)− x̂(t)‖

λ
+ k1(t)‖p′ − p̂‖Y + βk2(t)

|xλ(t)− x̂(t)|
λ

]
· ‖h(t)‖ a.e.

Denote by ((· , ·))0 the duality brackets for the pair (L2(X), L2(X∗)).
We have after integration and by applying on the right hand side Hölder’s
inequality:

((
ẋλ − ˙̂x

λ
, h

))

0

≤
[
cM4 + 2

√
r|G| ‖k1‖2 + βM

1
2
2 ‖k2‖2

]
· ‖h‖L2(X).

Since h ∈ L2(X) was arbitrary, we deduce that there exists M5 > 0
s.t. for all λ ∈ (0, 1)

(5)

∥∥∥∥∥
ẋλ − ˙̂x

λ

∥∥∥∥∥
L2(X∗)

≤ M5.

From (4) and (5) above, we deduce that
{

xλ−x̂
λ

}
λ∈(0,1)

⊆ W (T ) is
bounded hence relatively weakly compact. So if λn → 0+, by passing to a
subsequence if necessary, we may assume that yn = xn−x̂

λn

w−→ v in W (T ).
Thus for every h ∈ L2(X), we have

((ẏn, h))0 +

((
Â(pn)xn − Â(p̂)x̂

λn
, h

))

0

+

((
f̂(xn, pn)− f̂(x̂, p̂)

λn
, h

))

0

where Â(p′)y(t) = A(t, p′)y(t) and f̂(y, p′)(t) = f(t, y(t), p′) (i.e. Â and
f̂ are the Nemitsky (superposition) operators, corresponding to the maps
A(t, x) and f(t, x, p) respectively). We have:

((ẏn, y))0 → ((v̇, h))0 as n →∞.

Also

((
Â(pn)xn − Â(p̂)x̂

λn
h

))

0
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=

((
Â(pn)xn − Â(pn)x̂

λn
, h

))

0

+

((
Â(pn)x̂− Â(p̂)x̂

λn
, h

))

0

= ((Â(pn)yn, h))0 =

((
Â(pn)x̂− Â(p)x̂

λn
, h

))

0

→ ((Â(p)v, h))0 + ((A′p(x̂, p̂)(p′ − p̂), h))0 as n →∞

where Â′p(x̂, p̂)(p′ − p̂)(t) = A(t, x̂(t), p̂)(p′ − p̂).

Finally note that xn
w−→ x̂ in W (T ) and since W (T ) → L2(H) com-

pactly, we have that xn
s−→ x̂ in L2(H). So from hypothesis H(f) and the

total differential rule, we have that
((

f̂(xn, pn)− f̂(x̂, p̂)
λn

, h

))

0

→ ((f̂ ′x(x̂, p̂)v + f̂ ′p(x̂, p̂)(p′ − p̂), h))0

where f̂ ′x(x̂, p̂)v(t) = f ′x(t, x̂(t), p̂)v(t) and f̂ ′p(x̂, p̂)(p′ − p̂)(t) =
= f ′p(t, x̂(t), p̂)(p′ − p̂). Since h ∈ L2(X) was arbitrary, we get

v̇(t) + A(t, p̂)v(t) + A′p(t), x̂(t), p̂)(p′ − p̂)

= f ′x(t, x̂(t), p̂)v(t) + f ′p(t, x̂(t), p̂)(p′ − p̂) a.e. v(0) = 0.

Because of hypothesis H(f) and Theorem 30.A, p. 771 of Zeidler [24],
we know that the above evolution equation has a unique solution v(·) ∈
W (T ). This then establishes the uniqueness of the weak limit as λ → 0+

of xλ−x̂
λ , and so we have proved the weak differentiability from above of

p → x(p).
Since by hypothesis (x̂, p̂) ∈ W (T )×G is optimal and since yn(t) s−→

v(t) a.e. (this being a consequence of the compact embedding of W (T ) in
L2(H)), we get

0 ≤
b∫

0

L′(t, x̂(t), p̂)(v(t), p′ − p̂)dt + `x(x̂(b))(v(b))

for all p′ ∈ G, where L′ denotes the directional derivative of the convex
function L(t, · , ·) (see Clarke [12] and recall that a continuous convex
function is locally Lipschitz).
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But from Rockafellar [23], we know that

J ′(x̂, p̂)(v, p′ − p̂) =

b∫

0

L′(t, x̂(t), p̂)(v(t), p′ − p̂)dt

= σ([v, p′ − p̂], ∂J(x̂, p̂))

where ∂J(x̂, p̂) is the convex subdifferential of the convex functional J(· , ·)
at (x̂, p̂) and σ(· , ∂J(x̂, p̂)) its support function (i.e. σ([v, p′−p̂], ∂J(x̂, p̂)) =
sup[(y∗, v)L2(H) + (g∗, p′ − p̂)Y ∗,Y : [y∗, g∗] ∈ ∂J(x̂, p̂) ⊆ L2(H) × Y ∗]).
Note that since J(·, ·) is continuous and convex, ∂J(x̂, p̂) is w∗-compact in
L2(H) × Y ∗ and so the supremum above is attained. Furthermore from
Proposition 2.3.15, p. 48 of Clarke [12], we have ∂J(x̂, p̂) ⊆ ∂xJ(x̂, p̂)×
∂pJ(x̂, p̂) (here ∂xJ(x̂, p̂) and ∂pJ(x̂, p̂) are the subdifferentials in the sense
of convex analysis of J(·, p̂) and J(x̂, ·) respectively). Thus we can find
x∗ ∈ ∂xJ(x̂, p̂) ⊆ L2(H) and p∗ ∈ ∂Jp(x̂, p̂) ⊆ Y ∗ s.t.

0 ≤
b∫

0

(x∗(t), v(t))dt + (p∗, p′ − p̂)Y ∗,Y + `′x(x̂(b))v(b).

Introduce the adjoint equation

−ϕ̇(t) + A(t, p̂)∗ψ(t)− f ′x(t, x̂(t), p̂)∗ψ(t) = x∗(t) a.e.

ψ(b) = `′x(x̂(b)).

Because of hypotheses H(A), H(f) and Theorem 30.A, p. 771 of Zei-
dler [24], this evolution equation has a unique solution ψ(·) ∈ W (T ).
Then we have

0 ≤
b∫

0

〈−ψ̇(t) + A(t, p̂)∗ψ(t)− f ′x(t, x̂(t), p̂)∗ψ(t), v(t)〉dt

+ (p∗, p′ − p̂)Y ∗,Y + `′x(x̂(b))v(b).

Using the integration by parts formula for functions in W (T ) (see
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Zeidler [24], Proposition 23.23, p. 422–423), we get

0 ≤
b∫

0

〈ψ(t), v̇(t)〉dt− `′x(x̂(b))v(b) +

b∫

0

〈ψ(t), A(t, p̂)v(t)〉dt

−
b∫

0

(ψ(t), f ′x(t, x̂(t), p̂)v(t))dt + (p∗, p′ − p̂) + `′x(x̂(b))v(b)

=⇒ 0 ≤
b∫

0

〈ψ(t), f ′p(t, x̂(t), p̂)(p′ − p̂)−A′p(t, x̂(t), p̂)(p′ − p̂)〉dt

+(p∗, p′ − p̂) for all p′ ∈ G

which completes the proof of the theorem. ¤

5. An example

In this section, we work in detail an example of parameter identifica-
tion in parabolic distributed parameter system.

So let T = [0, r] and Z a bounded domain in RN with smooth bound-
ary ∂Z = Γ. Also let G be a compact metric space (the parameter space).

The problem under consideration is the following:

(∗)4

J(p) =

r∫

0

∫

Z

L(t, z, x(t, z), p)dz dt → inf = m3

s.t.
∂x

∂t
−

N∑

i,j=1

∂

∂zj

(
u(z1, p)

∂x(t, z)
∂zi

)
+ f(t, z, x(t, z), p) = 0

a.e. on T × Z x|T×Γ = 0, x(0, z, p) = x0(z, p).

We will need the following hypotheses on the data of (∗)4.

H(u) : For every (z, p) ∈ RN ×G, m0|z|2 ≤
N∑

i,j=1

u(z1, p)zizj ≤ M0|z|2

0 < m0 < M0, |u(z, p)| ≤ k, z1 ∈ Z1 = proj1 Z and if pn → p in

G, then 1
u(·,pn)

w−→ 1
u(·,p) in L2(Z1).

H(f)2 : f : T × Z × R×G → R is a function s.t.

(1) (t, z) → f(t, z, x, p) is measurable,
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(2) |f(t, z, x′, p)− f(t, z, x, p)| ≤ k(t, z)|x′ − x| a.e. for all p ∈ G

and with k(·, ·) ∈ L1(T × Z),
(3) p → f(t, z, p) is continuous,
(4) |f(t, z, x, p)| ≤ a(t, z, p) + b(t, z, p)|x| a.e with a(·, ·, p),

b(·, ·, p) ∈ L2(T × Z) s.t. sup
p∈G

‖a(·, ·, p)‖2‖b(·, ·, p)‖2 < ∞.

H(L)2 : L : T × Z × R×G → R̄ = R ∪ {+∞} is an integrand s.t.

(1) (t, z, x, p) → L(t, z, x, p) is measurable,
(2) (x, p) → L(t, z, x, p) is l.s.c,
(3) x → L(t, z, x, p) is convex,
(4) ϕ(t, z) − M(z)|x| ≤ L(t, z, x, p) a.e. for all p ∈ G and with

ϕ ∈ L1(T × Z), M ∈ L∞+ (Z).

H1
0 : x0(·, p) ∈ H1

0 (Z) and sup
p∈G

‖x0(·, p)‖H1
0 (Z) < ∞.

Let H = L2(Z) and define ϕ : L2(H)×G → R by

ϕ(x, p) =
∫

Z

N∑

i,j=1

u(z1, p)
∂x

∂zi

∂x

∂zj
dz, if x ∈ H1

0 (Z)

= +∞ if x ∈ L2(Z)H1
0 (Z).

Also let a(p) : H1
0 (Z)×H1

0 (Z) → R be the Dirichlet form defined by

a(p)(x, y) =
∫

Z

N∑

i,j=1

u(z1, p)DixDjy dz

where Di = ∂
∂zi

, Dj = ∂
∂zj

. Then this bilinear form a(p) (·, ·) is clearly
continuous (i.e. |a(p)(x, y)| ≤ c‖x‖H1

0 (Z) ‖y‖H1
0 (Z), c > 0), and so there

exists A(p) ∈ L(H1
0 (Z), H−1)) s.t. a(p)(x, y) = 〈A(p)x, y〉, with 〈·, ·〉

denoting the duality brackets of the pair (H1
0 (Z),H−1(Z)). The op-

erator is the energetic extension of ∂ϕ(·, p) and ∂ϕ(x, p) = A(p)x for
x ∈ dom ∂ϕ(·, p) = {x ∈ H1

0 (Z) : ∂ϕ(x, p) = ∇ϕ(x, p) ∈ L2(Z) = H},
which is dense in H.

From Theorem 29 of Zhikov–Kozlov–Oleinik [21], we know that if
pn→p in G ⇒ A(pn) G−→ A(p) ⇒ ∂ϕ(·, pn)→∂ϕ(·, p) in MR(H) (see At-
touch [3], Proposition 3.69, p. 379).

Observe that for every x ∈ H1
0 (Z), we have

ϕ(x, p) ≥ m0‖∇x‖22
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for all p ∈ G. So if λ > 0, the set

Hλ(p) = {x ∈ L2(Z) : ‖x‖22 + ϕ(x, p) ≤ λ}

is bounded in H1
0 (Z), uniformly in p ∈ G ⇒ ⋃

p∈G

Hλ(p) is bounded in

H1
0 (Z). But by the Sobolev embedding theorem H1

0 (Z) → L2(Z) = H

compactly. So
⋃

p∈G

Hλ(p) is compact in L2(Z). Furthermore because of

hypothesis H1
0 , we have sup

p∈G
ϕ(x0(p), p) < ∞. So we have satisfied hy-

potheses H(ϕ) and H0 of Section 3.

Next let f̂ : T ×H ×G → H be defined by

f̂(t, x, p)(z) = f(t, z, x(z), p),

i.e. f̂(t, x, p) is the Nemitsky operator corresponding to f(t, z, x, p). Then
using hypothesis H(f)2 and Krasnosel’skii’s theorem, we conclude that
f̂(t, x, p) satisfies hypothesis H(f).

Finally let L̂ : T × L2(Z)×G → R̄ be defined by

L̂(t, x, p) =
∫

Z

L(t, z, x(z), p)dz.

From Theorem 1 of Pappas [18], we know that we can find Lk :
T×Z×R×G → R Caratheodory integrands (i.e., L(· , ·, x, p) is measurable,
L(t, z, ·, ·) is continuous), ϕ(t, z)−V (z)|x| ≤ Lk(t, z, x, p) ≤ k for all p ∈ G
and Lk ↑ L as k →∞. Set

L̂k(t, x, p) =
∫

Z

Lk(t, z, x(z), p)dz.

It is clear that L̂k(t, x, p) is measurable in t, continuous in (x, p),
thus jointly measurable. Furthermore from the monotone convergence
theorem, we have L̂k ↑ L̂ ⇒ L̂ is jointly measurable. Also from The-
orem 2.1 of Balder [5], we get that L̂(t, ·, ·) is l.s.c., while L̂(t, ·, p) is
convex. Finally, ϕ̂(t) − M̂‖x‖L2(Z) ≤ L̂(t, x, p) a.e. with ϕ̂(t) = ‖ϕ(t, ·)‖1
and M̂ = ‖M(·)‖∞. So we have satisfied hypothesis H(L).
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New rewrite (∗)4 in the following equivalent abstract form:

(∗)′4

Ĵ(x, u) =

r∫

0

L̂(t, x(t), p)dt → inf = m3

s.t. − ẋ(t) ∈ ∂ϕ(x(t), p) + f̂(t, x, (t), p)

x(0) = x0(p).

We have checked that this system satisfies all hypotheses of Theo-
rem 3.1. So invoking that theorem, we get:

Theorem 5.1. If hypotheses H(u), H(f)2, H(L)2 and H1
0 hold, then

problem (∗)4 admits a solution.

Remark. The hypothesis H(u) is of course satisfied if u(z, pn) →
u(z, p) a.e. However more generally, our hypothesis allows oscillatory
behavior in the coefficients. Such problems arise often in applications.
We particularly mention the problem of homogenization (i.e., the prob-
lem of finding the physical properties of a homogeneous material whose
overall response is close to that of the periodic material, when the size ε
of the periodicity cell goes to zero; (see Attouch [3])) and the problem
of shape optimization and sensitivity analysis of unilateral problems (see
Sokolowski–Zolezio [26]).
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