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Separation with symmetric bilinear forms and
symmetric selections of set-valued functions

By ZSOLT PÁLES (Debrecen)

Abstract. The main result of this paper offers necessary and sufficient conditions
for the separability of two given functions by symmetric bilinear forms. As a conse-
quence of this result, we are able to characterize those functions that are pointwise
suprema of symmetric bilinear functions and also those set-valued functions that are
generated by symmetric linear operators.

The results obtained are in a strong relationship with those obtained for nonsym-
metric bilinear forms in a previous paper of the author.

1. Introduction

The subject of this paper is to study the separability of two given
functions by symmetric bilinear forms. The methods used and results
obtained are parallel to those found in [3] concerning the separability with
bilinear functions.

Let X be a locally convex Hausdorff topological vector space over the
field of reals throughout this paper and denote by X∗ its dual space. Let
R, P : X × X → R be given functions with R ≤ P on X × X. The
separability of P and R by a symmetric bilinear form means that there
exists a symmetric bilinear function Q satisfying R ≤ Q ≤ P on X ×X.
A similar problem with nonsymmetric bilinear forms has been considered
in [3]. The answer to the symmetric problem is analogous and contained
in Corollary 1 below.
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Another problem, closely related, comes from the theory of second-
order differentiation: Given a function P : X × X → R we look for the
existence of a family Q of symmetric bilinear functions such that

P (x, y) = sup{Q(x, y) : Q ∈ Q} for all x, y ∈ X.

Replacing the word “bilinear” by “linear”, we can see that P can be rep-
resented in this form with the help of a family Q of additive functions if
and only if P is subadditive and positively homogeneous. Analogously, we
could think that exactly the symmetric bisublinear functions admit the
above representation in terms of symmetric bilinear functions. In Corol-
lary 2 below we give necessary and sufficient conditions for P to admit
such a representation. This condition shows that the function P must
satisfy a number of conditional inequalities; the bisublinearity of P turns
out to be necessary but it is not sufficient. This result is also the key to
prove that the second-order directional derivative of a differentiable func-
tion with Lipschitz derivative is the maximum of symmetric bilinear forms.
In the last section we state the result that has been obtained recently in a
joint work with V. Zeidan.

The third section deals with set-valued functions F : X → 2X∗
whose

values are nonempty weak-∗ compact sets in X∗. We investigate the ex-
istence of symmetric linear selections A : X → X∗ of F . The symmetry
of A means that 〈A(x), y〉 = 〈A(y), x〉 for all x, y ∈ X. Similar questions
were considered and sufficient conditions were obtained for the existence of
nonsymmetric linear selections in [6], [7]. The necessary and sufficient con-
dition for the nonsymmetric case has been obtained in [3] by the author.
The main result of Section 3 offers a complete answer for this question.
This section also deals with the representability of F in the form

F (x) = {A(x) : A ∈ A},
where A is a family of continuous symmetric linear operators.

2. Separation with symmetric bilinear forms

The statement of the following Lemma is similar to that of [3].

Lemma 1. Let X be a locally convex linear space and Q : X×X → R
be a symmetric bilinear form. Then

(1) Q(x1, y1) + · · ·+ Q(xk, yk) = 0

holds true whenever x1, . . . , xk, y1, . . . , yk ∈ X and

(2) 〈x∗, x1〉 〈x∗, y1〉+ · · ·+ 〈x∗, xk〉 〈x∗, yk〉 = 0 for all x∗ ∈ X∗.
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Proof. Let x1, . . . , xk, y1, . . . , yk ∈ X be fixed such that (2) is sat-
isfied. These vectors span a finite dimensional subspace X ⊂ X. Let
e1, . . . , en be basis for X. Then, as a consequence of the Hahn-Banach
theorem, we can find a dual system e∗1, . . . , e

∗
n ∈ X∗ such that

〈e∗i , ej〉 = δi,j ,

where δ is the Kronecker function. Now we obtain that

Q(x, y) =
n∑

i=1

n∑

j=1

Q(ei, ej) 〈e∗i , x〉
〈
e∗j , y

〉
for x, y ∈ X,

since this equation is trivially satisfied for x, y ∈ {e1, . . . , en}. Interchang-
ing x and y, and using the symmetry of Q, we get

Q(x, y) =
1
2

n∑

i=1

n∑

j=1

Q(ei, ej)[〈e∗i , x〉
〈
e∗j , y

〉
+ 〈e∗i , y〉

〈
e∗j , x

〉
]

=
1
4

n∑

i=1

n∑

j=1

Q(ei, ej)[
〈
e∗i + e∗j , x

〉 〈
e∗i + e∗j , y

〉

− 〈
e∗i − e∗j , x

〉 〈
e∗i − e∗j , y

〉
]

for x, y ∈ X. Applying this formula for x = x` and y = y`, adding up
the equations obtained for ` = 1, . . . , k and using (2) for x∗ = e∗i + e∗j ,
x∗ = e∗i − e∗j (i, j = 1, . . . , n), we get (1). ¤

Having proved the above Lemma, we can formulate the main result
of the paper.

Theorem 1. Let P : X × Y → R be a positively bihomogeneous
function. Then there exists a continuous symmetric bilinear function Q :
X ×X → R such that Q ≤ P if and only if

(3) 0 ≤ P (x1, y1) + · · ·+ P (xk, yk)

holds whenever x1, . . . , xk, y1, . . . , yk ∈ X and (2) holds true. If, in ad-
dition, P is upper semicontinuous at the origin, and Q exists, then the
continuity of Q can also be stated.

Proof. If Q exists, then applying Lemma 1, equation (3) follows
directly. To prove the sufficiency of the condition, assume that (3) holds
on the domain indicated. Let Z be the set of functions z : X∗ → R that
have the representation

(4) z(x∗) =
k∑

i=1

〈x∗, xi〉 〈x∗, yi〉 for x∗ ∈ X∗
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with some elements x1, . . . , xk, y1, . . . , yk ∈ X. Clearly, Z is a linear space.
Define Φ : Z → [−∞,∞[ by

Φ(z) := inf{P (x1, y1) + · · ·+ P (xk, yk) :

for x1, . . . , xk, y1, . . . , yk satisfying (4)}.
A direct computation shows that Φ is a sublinear function. By (3), we have
Φ(0) = 0, therefore Φ must be real valued. Applying the Hahn-Banach
theorem, we can find a linear function ϕ : Z → R such that ϕ ≤ Φ holds
on Z. Define the required function Q : X ×X → R by

Q(x, y) = ϕ(z) if z(x∗) = 〈x∗, x〉 〈x∗, y〉 for x∗ ∈ X∗.

Then the symmetry of Q is obvious. Since ϕ is linear, hence the bilinearity
of Q also follows easily.

If a bilinear Q exists, then the inequality Q ≤ P yields

−P (−x, y) ≤ Q(x, y) ≤ P (x, y) for x, y ∈ X.

Thus the usc property of P implies that Q is bounded in a neighborhood
of the origin. Therefore it must be continuous as well. ¤

Remark. The statement of Theorem 1 is analogous to that of Corol-
lary 1 in [3], which states that a bilinear function Q : X × X → R with
Q ≤ P exists if and only if the inequality (3) holds whenever

(5) 〈x∗, x1〉 〈y∗, y1〉+ · · ·+ 〈x∗, xk〉 〈y∗, yk〉 = 0 for all x∗, y∗ ∈ X∗.

Clearly, the domain of (3) in Theorem 1 is larger set than the set of xi’s
and yi’s described by (5). However, if the function P is symmetric, then
the inequality (3) is equivalent on both domains. To prove this, one has
to show that if (3) holds on the domain indicated in (5), then (3) also
holds on the set described by (2). Let x1, . . . , xk, y1, . . . , yk ∈ X satisfy
(2). Putting x∗ := x∗ + y∗ and x∗ := x∗ − y∗ into (2) and subtracting the
equations so obtained, we get

〈x∗, x1〉 〈y∗, y1〉+ 〈x∗, y1〉 〈y∗, x1〉+ · · ·
+ 〈x∗, xk〉 〈y∗, yk〉+ 〈x∗, yk〉 〈y∗, xk〉 = 0

for all x∗, y∗ ∈ X∗. Hence, this relation implies

0 ≤ P (x1, y1) + P (y1, x1) + · · ·+ P (xk, yk) + P (yk, xk).

By the symmetry of P , this equation is equivalent to (3), what was to be
proved.

Now we list the most important corollaries of Theorem 1. The first
result is about the symmetric bilinear separability of two given functions.
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Corollary 1. Let P : X × X → R and R : X × X → [−∞,∞[ be
two positively bihomogeneous functions with R ≤ P on X ×X. Then in
order that there exist a symmetric bilinear function Q : X ×X → R with
R ≤ Q ≤ P , it is necessary and sufficient that

R(u1, v1) + · · ·+ R(un, vn) ≤ P (x1, y1) + · · ·+ P (xk, yk)

be valid whenever u1, . . . , un, v1, . . . , vn, x1, . . . , xk, y1, . . . , yk ∈ X and

〈x∗, u1〉 〈x∗, v1〉+ · · ·+ 〈x∗, un〉 〈x∗, vn〉
= 〈x∗, x1〉 〈x∗, y1〉+ · · ·+ 〈x∗, xk〉 〈x∗, yk〉

holds for all x∗ ∈ X∗.

Proof. A bilinear functional Q separates R and P if and only if

Q(x, y) ≤ min{P (x, y),−R(−x, y)} =: P (x, y) for x, y ∈ X.

Thus a separating Q exists if and only if there is Q ≤ P . Now the statement
of the Corollary follows directly from Theorem 1. ¤

Remark. This result is analogous to Corollary 3 in [3], where the sep-
arability with (nonsymmetric) bilinear functions is considered. One can
also see, that taking R ≡ −∞, the statement of this Corollary reduces to
that of Theorem 1. Using this separation theorem, the so called extension
version of Theorem 1 or Corollary 1 could also be formulated. An anal-
ogous result with (nonsymmetric) bilinear forms is stated in Theorem 1
of [3].

In the following Corollary we characterize those functions that can be
obtained as pointwise suprema of symmetric bilinear functions.

Corollary 2. Let P : X ×X → R be an arbitrary function. Then the
following three assertions are equivalent:
(i) There exists a family Q of symmetric bilinear forms such that

(6) P (x, y) = max
Q∈Q

Q(x, y) for all x, y ∈ X;

(ii) There exists a family Q of symmetric bilinear forms such that

(7) P (x, y) = sup
Q∈Q

Q(x, y) for all x, y ∈ X;

(iii) The function P is positively bihomogeneous and, whenever the ele-
ments x0, x1, . . . , xk, y0, y1, . . . , yk ∈ X satisfy

(8) 〈x∗, x0〉 〈x∗, y0〉 = 〈x∗, x1〉 〈x∗, y1〉+ · · ·+ 〈x∗, xk〉 〈x∗, yk〉
(∀x∗ ∈ X∗),
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then

(9) P (x0, y0) ≤ P (x1, y1) + · · ·+ P (xk, yk).

Proof. The implication (i) ⇒ (ii) is obvious. Assume now that
(ii) is valid. The positive bihomogeneity of P follows immediately. Let
x0, x1, . . . , xk, y0, y1, . . . , yk ∈ X satisfy (8). We are going to deduce (9).
Let ε > 0 be arbitrary. Then, by (ii), there exists a symmetric bilinear
function Q ∈ Q such that

Q ≤ P and P (x0, y0)− ε ≤ Q(x0, y0).

In other words, Q separates the functions P and

R(x, y) :=
{

λµ(P (x0, y0)− ε) if (x, y) = (λx0, µy0), λ, µ > 0
−∞ otherwise.

Therefore, (8) and Corollary 1 yield that

P (x0, y0)− ε ≤ P (x1, y1) + · · ·+ P (xk, yk).

Taking the limit ε → 0, we obtain (9), what was to proved.
Assume now that (iii) holds. Let Q be the set of those symmetric

bilinear forms Q that satisfy Q ≤ P on X×X. We are going to show that,
for an arbitrary point (x0, y0) there exists Q ∈ Q such that Q(x0, y0) =
P (x0, y0). This equation then validates (6) at the point (x0, y0). Define
R : X ×X → R by

R(x, y) :=
{

λµP (x0, y0) if (x, y) = (λx0, µy0), λ, µ > 0
−∞ otherwise.

It follows from (iii) that the necessary and sufficient condition of Corol-
lary 1 holds true for this R and for P . Hence, there exists a symmetric
bilinear function Q such that R ≤ Q ≤ P , i.e.

Q ≤ P and P (x0, y0) ≤ Q(x0, y0).

Thus Q ∈ Q and Q(x0, y0) = P (x0, y0). The proof is complete. ¤

Remark. The statement of this Corollary is related to that of Corol-
lary 2 in [3]. The equivalence of (i) and (ii) is, however, an additional
statement.

In the following examples we show that (iii) implies, among others,
the bisublinearity of P .
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Examples 1. Since, for all x1, x2, y ∈ X and x∗ ∈ X∗, we have

〈x∗, x1 + x2〉 〈x∗, y〉 = 〈x∗, x1〉 〈x∗, y〉+ 〈x∗, x2〉 〈x∗, y〉 .
Hence, by (iii),

P (x1 + x2, y) ≤ P (x1, y) + P (x2, y),

which is the subadditivity of P ( . , y). Therefore P must be bisublinear.
2. Similarly, we get

P (x1 + x2 + x3, y1 + y2 + y3) ≤ P (x1, y1 + y2) + P (x1 + x2, y3)

+P (x3, y2 + y3) + P (x2 + x3, y1) + P (x2, y2),

which cannot be deduced from the bisublinearity of P .
3. The obvious relation

〈x∗, x〉 〈x∗, y〉 =
1
4
〈x∗, x + y〉2 − 1

4
〈x∗, x− y〉2

yields that

P (x, y) ≤ 1
4
P (x + y, x + y) +

1
4
P (x− y, y − x).

4. Given x, y ∈ X, one can easily establish that

〈x∗, x + y〉2 = 2 〈x∗, x〉2 + 2 〈x∗, y〉2 − 〈x∗, x− y〉2 for all x∗ ∈ X∗.

Hence

P (x + y, x + y) ≤ 2P (x, x) + 2P (y, y) + P (x− y, y − x).

3. Symmetric linear selections of set-valued functions

Throughout this section assume that F : X → 2X∗
is a set-valued

mapping with nonempty weak-∗ compact convex values in X∗. Such a
set-valued function is called upper semicontinuous at the origin if for any
neighborhood V of the set F (0) ⊂ X∗ there exists a neighborhood U of
0 ∈ X such that F (x) ⊂ V whenever x ∈ U .

Theorem 2. Let F be a positively homogeneous set-valued function
which is continuous at the origin in its first variable. Then F admits
a continuous symmetric linear selection A : X → X∗ if and only if the
inclusion

(10) 0 ∈ 〈F (x1), y1〉+ · · ·+ 〈F (xk), yk〉
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holds true whenever x1, . . . , xk, y1, . . . , yk ∈ X and (2) is valid.

Proof. We are going to deduce this result from Theorem 1. Define
the function P : X ×X → R by

(11) P (x, y) := sup 〈F (x), y〉 .
Then P is a positively bihomogeneous function which is continuous at the
origin in its first variable.

To prove the necessity of (10), assume that A is a symmetric linear
selection of F . Then Q(x, y) = 〈Ax, y〉 defines a symmetric bilinear form
which satisfies Q ≤ P . Applying Theorem 1, then (2) yields

(12)
0 ≤ P (x1, y1) + · · ·+ P (xk, yk) and

0 ≤ P (x1,−y1) + · · ·+ P (xk,−yk)

whence (10) follows with the help of the formula

(13) 〈F (x), y〉 = [−P (x,−y), P (x, y)].

Now we proceed to prove the sufficiency of the condition. Using the
above argument, we see that (12) holds whenever (2) is true. Therefore,
by Theorem 1, there exists a symmetric bilinear function that satisfies
Q ≤ P . The continuity of P at the origin in its first variable yields that
Q is continuous in the first variable everywhere. By symmetry, Q is also
continuous in its second variable. Fixing x ∈ X, define ax ∈ X∗ by the
equality 〈ax, y〉 = Q(x, y). Then

〈ax, y〉 ∈ 〈F (x), y〉 for y ∈ X.

Since F (x) is convex and weak-∗ compact, therefore ax ∈ F (x) (by the
Hahn-Banach separation theorem). On the other hand, the mapping x→ax

is a linear mapping (using the linearity of Q in the first variable), hence
the formula Ax := ax defines a linear map A : X → X∗. The continuity of
A follows from the usc of F easily. Thus A is the required selection of F .

¤
Remark. If F is a symmetric set-valued mapping, i.e. 〈F (x), y〉 =

〈F (y), x〉 for all x, y ∈ X, then the domain of (10) described by (2) can be
replaced by the domain described in (5). This follows by the argument used
in the Remark after Theorem 1. The statement of the above Theorem is
similar to that of Corollary 4 in [3], which was deduced from the extension
version of this theorem for nonsymmetric selections. The extension version
for symmetric mappings can be obtained in a similar way, therefore it is
omitted here.

The next result describes those set valued mappings that can be gen-
erated by families of symmetric linear mappings.
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Corollary 3. For the set-valued map F , which is usc at the origin,
the following three properties are equivalent:
(i) There exists a family A of continuous symmetric linear operators such

that

(14) F (x) = {Ax : A ∈ A} for all x ∈ X.

(ii) There exists a family A of continuous symmetric linear operators such
that

(15) F (x) = {Ax : A ∈ A} for all x ∈ X.

(iii) F is homogeneous, symmetric and, whenever x0, x1, . . . , xk, y0, y1, . . . ,
yk ∈ X satisfy (8), then

(16) 〈F (x0), y0〉 → 〈F (x1), y1〉+ · · ·+ 〈F (xk), yk〉
holds true.

Proof. We are going to deduce the equivalence of (i),(ii) and (iii)
from the equivalence of the analogous statements of Corollary 2 following
the argument used in the proof of Theorem 2. Define P : X × X → R
by (11).

Clearly, (i) implies (ii). Assume that (ii) is valid. Then F turns out
to be homogeneous and symmetric at once and, consequently, P is bi-
homogeneous. Let Q be the set of continuous symmetric bilinear forms
Q(x, y) = 〈Ax, y〉, where A ∈ A is arbitrary. Then (ii) yields that the as-
sertion (ii) of Corollary 2 holds also true. Thus we have (iii) of Corollary 2.
Therefore, if (8) is satisfied, then

P (x0, y0) ≤ P (x1, y1) + · · ·+ P (xk, yk)

and
P (x0,−y0) ≤ P (x1,−y1) + · · ·+ P (xk,−yk)

whence, using (13), the inclusion (16) follows.
Conversely, assume that (iii) holds. Then (iii) of Corollary 2 is valid,

too. Therefore we have that P is the maximum of symmetric bilinear forms
that are (separately) continuous in both variables. We may assume that
the set Q is convex (since in the proof of Corollary 2 it was constructed as
the set of all symmetric bilinear forms that are below P ).

To prove (14), let x0 ∈ X be fixed, and x∗ ∈ F (x0) be arbitrary.
Define aQ ∈ X∗ by aQ(y) = Q(x0, y). Then the set H := {aQ : Q ∈ Q} is
convex, weak-∗ closed further

〈x∗, y〉 ≤ P (x0, y) = max
Q∈Q

aQ(y) for all y ∈ X.
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Therefore, by the Hahn-Banach theorem again, x∗ ∈ H, i.e. x∗ = aQ for
some Q ∈ Q. Defining the operator A : X → X∗ by the formula

〈Ax, y〉 = Q(x, y), (∀y ∈ X),

we can see that A is a continuous symmetric selection of F and x∗ = Ax0.
Thus (12) is proved. ¤

Remark. If (iii) is valid, then using the same relation as in Example 1,
we obtain

〈F (x1 + x2), y〉 ⊂ 〈F (x1), y〉+ 〈F (x2), y〉
for all x1, x2, y ∈ X. Hence

F (x1 + x2) ⊂ F (x1) + F (x2).

This property, together with the positive homogeneity, means that F is a
sublinear set-valued function. Therefore, the sublinearity of F is necessary
in order that condition (i) of Corollary 3 be valid. It is, however, far from
being sufficient.

4. Application for C1,1 functions

Let X be a normed space and let D ⊂ X be a nonempty open subset
of X. The class of differentiable functions f : D → R with Lipschitz
derivative will be denoted by C1,1. (See [2], [1], [4].) The second order
generalized directional derivative f ′◦ of f at x0 is defined by

f ′◦(x0; u, v) := lim sup
x→x0
ε→0+

〈∇f(x + εu)−∇f(x), v〉
ε

for u, v ∈ X,

where ∇f stands for the gradient of f . Cominetti and Correa has estab-
lished in [1, Prop. 1.3] a general result, which, for the C1,1 setting, reduces
to the following identity:

f ′◦(x0; u, v) = lim sup
x→x0

ε,δ→0+

f(x + εu + δv)− f(x + εu)− f(x + δv) + f(x)
εδ

and hence, f ′◦ turns out to be a symmetric bisublinear function.
The main result obtained in [4] is the following theorem.

Theorem 3. Let x0, x1, . . . , xk and y0, y1, . . . , yk be elements of X
such that (8) holds. Then, for all z0 ∈ D,

f ′◦(z0; x0, y0) ≤
k∑

i=1

f ′◦(z0; xi, yi).
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In other words, the function P (u, v) = f ′◦(x0;u, v) satisfies the con-
dition (iii) of Corollary 2. Thus, we immediately get that the set

∂2f(x0) := {Q : X ×X → R | Q is continuous, symmetric, bilinear

and Q(u, v) ≤ f ′◦(x0; u, v) ∀u, v ∈ X}.
is nonempty, moreover the formula

f ′◦(x0;u, v) = max
Q∈∂2f(x0)

Q(u, v)

holds. It follows from this result that ∂2f(x0) can be considered as general-
ized (set-valued) second order derivative for f , which seems to be analogous
to the first order generalized subgradient introduced by Clarke. For the
applications of these notions and ideas see the recent work of the author
with V. Zeidan [4].
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