The Catalan equation over finitely generated integral domains

By B. BRINDZA (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Introduction

In 1976, Tijdeman [T] showed that the so-called Catalan equation

$$
x^{p}-y^{q}=1
$$

has only finitely many rational integer solutions $x, y, p, q>1$ and by using Baker's method an effectively computable upper bound for $\max \{x, y, p, q\}$ can be given. Later, van der Poorten [vdP] proved the p-adic analogue of the above result, and Brindza, Győry and Tijdeman [BGy\&T] extended Tijdeman's theorem to the case of algebraic number fields, that is, x and y are algebraic integers in an arbitrary but fixed algebraic number field. A further generalization when x and y are S-integers in an algebraic number field was proved by Brindza [B1] (see Lemma 2).

The purpose of this note is to give a further generalization of these results. After certain auxiliary steps the proof will be surprisingly simple.

Let G be a finitely generated extension of the rational number field Q. Then G can be written as

$$
G=\mathbf{Q}\left(z_{1}, \ldots, z_{r}, u\right), \quad(r \geq 0)
$$

where $\left\{z_{1}, \ldots, z_{r}\right\}$ is a transcendence basis of G over \mathbf{Q} and u is integral over the polynomial ring $\mathbf{Z}\left[z_{1}, \ldots, z_{r}\right]$. Any element α of G has a unique representation (up to sign) in the form

$$
\begin{equation*}
\alpha=\frac{P_{0}+P_{1} u+\cdots+P_{\delta-1} u^{\delta-1}}{P_{\delta}}, \tag{1}
\end{equation*}
$$

Research supported in part by Grant 1641 from the Hungarian National Foundation for Scientific Research.
where δ is the degree of u over $\mathbf{Q}\left(z_{1}, \ldots, z_{r}\right)$ and $P_{0}, \ldots, P_{\delta} \in \mathbf{Z}\left[z_{1}, \ldots, z_{r}\right]$ are relatively prime polynomials. Adopting the concepts and notation of GYŐRY [Gy2] we define the size of a non-zero polynomial $P \in \mathbf{Z}\left[z_{1}, \ldots, z_{r}\right]$ as

$$
s(P)=\max \left\{\log H(P), 1+\max _{1 \leq i \leq r} \operatorname{deg}_{z_{i}} P\right\},
$$

where $H(P)$ is the usual height of P, i.e. the maximum of the absolute values of its coefficients. The size a non-zero $\alpha \in G$ written in the form (1) (with respect to the generating set $\left\{z_{1}, \ldots, z_{r}, u\right\}$) is defined by

$$
s(\alpha)=\max _{0 \leq i \leq \delta}\left\{s\left(P_{i}\right)\right\}
$$

It is clear that there are only finitely many elements in G with bounded size, and $s(\alpha)$ depends on the generating set. Let

$$
R=\mathbf{Z}\left[\omega_{1}, \ldots, \omega_{t}\right]
$$

be a finitely generated subring of G. Then we have
Theorem. All the solutions of the equation

$$
\begin{equation*}
x^{p}-y^{q}=1 \tag{2}
\end{equation*}
$$

in rational integers p, q and $x, y \in R$ with $p>1, q>1, p q>4$ and x, y are not a root of unity, satisfy

$$
\max \{p, q, s(x), s(y)\}<C
$$

where C is an effectively computable constant depending only on G and R.

It is easy to see that the conditions made on p, q, x and y are necessary.

Preliminaries

For fixed exponents p and q equation (2) can be considered as a special hyperelliptic equation. We may assume that G is a subfield of \mathbf{C}. Let $f(X) \in G[X]$ be a polynomial having zeros $\alpha_{1}, \ldots, \alpha_{k} \in \mathbf{C}$ with multiplicities r_{1}, \ldots, r_{k}, respectively. Moreover, let $m>1$ be a rational integer and put

$$
t_{i}=\frac{m}{\left(m, r_{i}\right)}, \quad i=1, \ldots, k
$$

Lemma 1. (Brindza [B2]) Suppose that $\left\{t_{1}, \ldots, t_{k}\right\}$ is not a permutation of the k-tuples

$$
\{t, 1, \ldots, 1\}, \quad t \geq 1 ; \quad\{2,2,1, \ldots, 1\}
$$

Then all the solutions of the equation

$$
f(x)=y^{m} \quad \text { in } x, y \in R
$$

satisfy

$$
\max \{s(x), s(y)\}<C_{1}
$$

where C_{1} is an effectively computable constant depending only on the generating set of G, R, f and m.

At this stage it may turn out to be useful to remark that R is not a Dedekind ring, generally, and hyperelliptic equations (over G) cannot be reduced to Thue-equations. The proof of Lemma 1 is based on Győry's specialization method. In [B2] it is assumed that f splits into linear factors over G, however, this technical assumption can be avoided; one can repeat the whole argument in the splitting field of f, which has the same transcendence degree, instead of G.

The following lemma corresponds to that special case of the Theorem, when $r=0$, that is when G is an algebraic number field.

Let \mathbf{K} be an algebraic number field, and S a finite set of (additive) valuations of \mathbf{K}. An element $\alpha \in \mathbf{K}$ is said be S-integral if $v(\alpha) \geq 0$ for all valuations $v \notin S$. These elements of \mathbf{K} form a ring which is denoted by $\mathcal{O}_{\mathbf{K}, S}$. By the height $H(\alpha)$ of an algebraic number α we mean, as usual, the height of its minimal defining polynomial (over \mathbf{Z}).

Lemma 2. (Brindza [B1]) All the solutions of equation (2) in rational integers p, q and $x, y \in \mathcal{O}_{\mathbf{K}, S}$ with $p>1, q>1, p q>4$ and x, y are not a root of unity, satisfy

$$
\max \{p, q, H(x), H(y)\}<C_{2}
$$

where C_{2} is an effectively computable constant depending only on \mathbf{K} and S.

Let k be an algebraically closed field of characteristic zero and \mathbf{L} be a finite algebraic extension of the rational function field $k(t)$ with genus $g(\mathbf{L})$. For a non-zero element $\alpha \in \mathbf{L}$, the (additive) height $H_{\mathbf{L} / k}(\alpha)$ of α is defined by

$$
H_{\mathbf{L} / k}(\alpha)=\sum_{v} \max \{0, v(\alpha)\}
$$

where v runs through the (additive) valuations of \mathbf{L} / k with value group Z. It is easy to see that $H_{\mathbf{L} / k}(\alpha) \geq 0$ and $H_{\mathbf{L} / k}(\alpha)=0$ if an only if $\alpha \in k$. Furthermore, we have

$$
H_{\mathbf{L} / k}\left(\alpha^{n}\right)=|n| H_{\mathbf{L} / k}(\alpha), \quad n \in \mathbf{Z} .
$$

Lemma 3. (Mason $[\mathrm{M}])$ Let $S=\left\{v_{1}, \ldots, v_{s}\right\}$ be a finite set of valuations of \mathbf{L} / k containing all the infinite valuations and let $\gamma_{1}, \gamma_{2}, \gamma_{3}$ be non-zero elements of \mathbf{L} such that

$$
\gamma_{1}+\gamma_{2}+\gamma_{3}=0
$$

and that $v\left(\gamma_{1}\right)=v\left(\gamma_{2}\right)=v\left(\gamma_{3}\right)=0$ for all $v \notin S$. Then either $\gamma_{1} / \gamma_{2} \in k$ or

$$
H_{\mathbf{L} / k}\left(\gamma_{1} / \gamma_{2}\right) \leq s+2 g(\mathbf{L})-2
$$

We remark that a similar inequality had been proved by GYŐRY [Gy1] with larger constants.

Proof of the Theorem

Let x, y, p, q be an arbitrary solution to equation (2). We may assume that $r>0$, for otherwise Lemma 2 implies the Theorem. Put

$$
T_{i}=\left\{z_{1}, \ldots, z_{r}\right\} \backslash\left\{z_{i}\right\} \quad \text { and } \quad k_{i}=\mathbf{Q}\left(T_{i}\right), \quad i=1, \ldots, r .
$$

For a field k let \bar{k} denote its algebraic closure and write

$$
M_{i}=\bar{k}_{i}\left(z_{i}\right)\left(u^{(1)}, \ldots, u^{(\delta)}\right), \quad i=1, \ldots, r,
$$

where $u^{(1)}, \ldots, u^{(\delta)}$ are the conjugates of u over $\mathbf{Q}\left(z_{1}, \ldots, z_{r}\right)$. We show that

$$
\begin{equation*}
\bigcap_{i=1}^{r} \overline{k_{i}}=\overline{\mathbf{Q}} . \tag{3}
\end{equation*}
$$

To do so we need the following simple observation. If $F_{1} \subset F_{2}$ are fields and $\mu, \nu \in F_{2}$ algebraically independent over F_{1}, then

$$
\overline{F_{1}(\mu)} \cap \overline{F_{1}(\nu)}=\bar{F}_{1}
$$

Indeed, let τ be an element of $\overline{F_{1}(\mu)} \cap \overline{F_{1}(\nu)}$ and suppose that $\tau \notin \overline{F_{1}}$. Then τ satisfies a polynomial relation

$$
f_{s} \tau^{s}+\cdots+f_{1} \tau+f_{0}=0
$$

with $f_{i} \in F_{1}[\mu], i=0, \ldots, s$ and at least one $f_{i}, i \geq 0$, is not a constant in μ. Hence μ satisfies a similar non-trivial relation with coefficients from $F_{1}[\tau]$, that is $\mu \in \overline{F_{1}(\tau)}$ and the same argument gives $\nu \in \overline{F_{1}(\tau)}$ which is a contradiction, since μ and ν are algebraically independent over F_{1}. After this we have

$$
\bigcap_{i=1}^{r} \overline{k_{i}}=\bigcap_{i=2}^{r}\left(\overline{k_{i}} \cap \overline{k_{1}}\right)=\bigcap_{i=2}^{r} \overline{\mathbf{Q}\left(T_{i} \backslash\left\{z_{1}\right\}\right)}
$$

and one can obtain relation (3) by induction on the transcendence degree. We may assume that there exist an $i \in\{1, \ldots, r\}$ such that $x \notin \overline{k_{i}}$, for otherwise $x \in \overline{k_{i}}$ and $y \in \overline{k_{i}}, i=1, \ldots, r$; hence x, y belong to the algebraic number field $\overline{\mathbf{Q}} \cap G$ and by applying Lemma 2 we have the Theorem.

If $x \notin \overline{k_{i}}$ for some i, then $y \notin \overline{k_{i}}$ and

$$
\min \left\{H_{M_{i} / \overline{k_{i}}}(x), \quad H_{M_{i} / \overline{k_{i}}}(y)\right\} \geq 1
$$

Let S denote the subset of valuations v of $M_{i} / \overline{k_{i}}$ containing all the infinite valuations, for which either $v\left(\omega_{j}\right)<0$ holds for at least one $j \in\{1, \ldots, t\}$, or $\max \{v(x), v(y)\}>0$. Then we get $v(x)=v(y)=0$ for all $v \notin S$ and

$$
\begin{aligned}
&|S| \leq \sum_{j=1}^{t} \sum_{v\left(\omega_{j}\right)<0} 1+\sum_{v(x)>0} 1+\sum_{v(y)>0} 1 \leq \\
& \leq \sum_{j=1}^{t} H_{M_{i} / \overline{k_{i}}}\left(\omega_{j}\right)+H_{M_{i} / \overline{k_{i}}}(x)+H_{M_{i} / \overline{k_{i}}}(y)
\end{aligned}
$$

Now, we can consider equation (2) as an S-unit equation. Since $x^{p} \notin \overline{k_{i}}$ and $y^{q} \notin \overline{k_{i}}$, Lemma 3 yields

$$
\begin{aligned}
p-2+q-2 \leq(p-2) H_{M_{i} / \overline{k_{i}}}(x) & +(q-2) H_{M_{i} / \overline{k_{i}}}(y) \leq \\
\leq & 2 \sum_{j=1}^{t} H_{M_{i} / \overline{k_{i}}}\left(\omega_{j}\right)+4 g\left(M_{i} / \overline{k_{i}}\right)-4
\end{aligned}
$$

and the genus of $M_{i} / \overline{k_{i}}$ can be estimated by the defining polynomial of u (cf. [Sch]).

Therefore, p and q are bounded and Lemma 1 completes the proof.
Acknowledgements. The author is grateful to Professor GYŐRy for his valuable remarks.

References

[B1] B. Brindza, On S-integral solutions of the Catalan equation, Acta Arith. 48 (1987), 397-412.
[B2] B. Brindza, On the equation $f(x)=y^{m}$ over finitely generated domains, Acta Math. Hungar. 53 (1989), 377-383.
[BGy\&T] B. Brindza, K. Győry and R.Tijdeman, The Catalan equation over algebraic number fields, J. reine angew. Math. 367 (1986), 90-102.
[Gy1] K. GYŐRy, Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains, Acta Math. Hungar. 42 (1983), 45-80.
[Gy2] K. GYőry, Effective finiteness theorems for polynomials with given discriminant and integral elements with given distriminant over finitely generated domains, J. reine angew. Math. 346 (1984), 54-100.
[M] R.C. Mason, Diophantine Equations over Function Fields, LMS Lecture Notes, Cambridge University Press 96 (1984).
[Sch] W.M. Schmid t, Thue's equation over function fields, J. Austral Math. Soc (Series A) 25 (1978), 385-422.
[vdP] A.J. van Der Poorten, Effectively computable bounds for the solutions of certain diophantine equations, Acta Arith. 33 (1977), 195-207.
[T] R. Tijdeman, On the equation of Catalan, Acta Arith. 29 (1976), 197-209.
B. BRINDZA

MATHEMATICAL INSTITUTE
KOSSUTH LAJOS UNIVERSITY
DEBRECEN P.O. BOX 12
H-4010
HUNGARY

