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The Catalan equation over finitely
generated integral domains

By B. BRINDZA (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Introduction

In 1976, Tijdeman [T] showed that the so-called Catalan equation

xp − yq = 1

has only finitely many rational integer solutions x, y, p, q > 1 and by using
Baker’s method an effectively computable upper bound for max{x, y, p, q}
can be given. Later, van der Poorten [vdP] proved the p–adic analogue
of the above result, and Brindza, Győry and Tijdeman [BGy&T] ex-
tended Tijdeman’s theorem to the case of algebraic number fields, that is,
x and y are algebraic integers in an arbitrary but fixed algebraic number
field. A further generalization when x and y are S–integers in an algebraic
number field was proved by Brindza [B1] (see Lemma 2).

The purpose of this note is to give a further generalization of these
results. After certain auxiliary steps the proof will be surprisingly simple.

Let G be a finitely generated extension of the rational number field
Q. Then G can be written as

G = Q(z1, . . . , zr, u), (r ≥ 0)

where {z1, . . . , zr} is a transcendence basis of G over Q and u is integral
over the polynomial ring Z[z1, . . . , zr]. Any element α of G has a unique
representation (up to sign) in the form

(1) α =
P0 + P1u + · · ·+ Pδ−1u

δ−1

Pδ
,
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where δ is the degree of u over Q(z1, . . . , zr) and P0, . . . , Pδ ∈ Z[z1, . . . , zr]
are relatively prime polynomials. Adopting the concepts and notation of
Győry [Gy2] we define the size of a non-zero polynomial P ∈ Z[z1, . . . , zr]
as

s(P ) = max{log H(P ), 1 + max
1≤i≤r

degzi
P},

where H(P ) is the usual height of P , i.e. the maximum of the absolute
values of its coefficients. The size a non-zero α ∈ G written in the form
(1) (with respect to the generating set {z1, . . . , zr, u}) is defined by

s(α) = max
0≤i≤δ

{s(Pi)}.

It is clear that there are only finitely many elements in G with bounded
size, and s(α) depends on the generating set. Let

R = Z[ω1, . . . , ωt]

be a finitely generated subring of G. Then we have
Theorem. All the solutions of the equation

(2) xp − yq = 1

in rational integers p, q and x, y ∈ R with p > 1, q > 1, pq > 4 and x, y
are not a root of unity, satisfy

max{p, q, s(x), s(y)} < C,

where C is an effectively computable constant depending only on G and
R.

It is easy to see that the conditions made on p, q, x and y are necessary.

Preliminaries

For fixed exponents p and q equation (2) can be considered as a spe-
cial hyperelliptic equation. We may assume that G is a subfield of C. Let
f(X) ∈ G[X] be a polynomial having zeros α1, . . . , αk ∈ C with multiplic-
ities r1, . . . , rk, respectively. Moreover, let m > 1 be a rational integer and
put

ti =
m

(m, ri)
, i = 1, . . . , k.

Lemma 1. (Brindza [B2]) Suppose that {t1, . . . , tk} is not a permu-
tation of the k–tuples

{t, 1, . . . , 1}, t ≥ 1; {2, 2, 1, . . . , 1}.
Then all the solutions of the equation

f(x) = ym in x, y ∈ R
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satisfy
max{s(x), s(y)} < C1,

where C1 is an effectively computable constant depending only on the
generating set of G,R, f and m.

At this stage it may turn out to be useful to remark that R is not a
Dedekind ring, generally, and hyperelliptic equations (over G) cannot be
reduced to Thue-equations. The proof of Lemma 1 is based on Győry’s
specialization method. In [B2] it is assumed that f splits into linear fac-
tors over G, however, this technical assumption can be avoided; one can
repeat the whole argument in the splitting field of f , which has the same
transcendence degree, instead of G.

The following lemma corresponds to that special case of the Theorem,
when r = 0, that is when G is an algebraic number field.

Let K be an algebraic number field, and S a finite set of (additive)
valuations of K. An element α ∈ K is said be S–integral if v(α) ≥ 0 for
all valuations v /∈ S.These elements of K form a ring which is denoted by
OK,S . By the height H(α) of an algebraic number α we mean, as usual,
the height of its minimal defining polynomial (over Z).

Lemma 2. (Brindza [B1]) All the solutions of equation (2) in ratio-
nal integers p, q and x, y ∈ OK,S with p > 1, q > 1, pq > 4 and x, y are not
a root of unity, satisfy

max{p, q,H(x),H(y)} < C2,

where C2 is an effectively computable constant depending only on K and
S.

Let k be an algebraically closed field of characteristic zero and L be
a finite algebraic extension of the rational function field k(t) with genus
g(L). For a non-zero element α ∈ L, the (additive) height HL/k(α) of α is
defined by

HL/k(α) =
∑

v

max{0, v(α)}

where v runs through the (additive) valuations of L/k with value group
Z. It is easy to see that HL/k(α) ≥ 0 and HL/k(α) = 0 if an only if α ∈ k.
Furthermore, we have

HL/k(αn) = |n|HL/k(α) , n ∈ Z.

Lemma 3. (Mason [M]) Let S = {v1, . . . , vs} be a finite set of val-
uations of L/k containing all the infinite valuations and let γ1, γ2, γ3 be
non-zero elements of L such that

γ1 + γ2 + γ3 = 0
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and that v(γ1) = v(γ2) = v(γ3) = 0 for all v /∈ S. Then either γ1/γ2 ∈ k
or

HL/k(γ1/γ2) ≤ s + 2g(L)− 2.

We remark that a similar inequality had been proved by Győry [Gy1]
with larger constants.

Proof of the Theorem

Let x, y, p, q be an arbitrary solution to equation (2). We may assume
that r > 0, for otherwise Lemma 2 implies the Theorem. Put

Ti = {z1, . . . , zr} \ {zi} and ki = Q(Ti), i = 1, . . . , r.

For a field k let k denote its algebraic closure and write

Mi = ki(zi)(u(1), . . . , u(δ)), i = 1, . . . , r,

where u(1), . . . , u(δ) are the conjugates of u over Q(z1, . . . , zr). We show
that

(3)
r⋂

i=1

ki = Q.

To do so we need the following simple observation. If F1 ⊂ F2 are fields
and µ, ν ∈ F2 algebraically independent over F1, then

F1(µ) ∩ F1(ν) = F 1

Indeed, let τ be an element of F1(µ) ∩ F1(ν) and suppose that τ /∈ F1.
Then τ satisfies a polynomial relation

fsτ
s + · · ·+ f1τ + f0 = 0

with fi ∈ F1[µ], i = 0, . . . , s and at least one fi, i ≥ 0, is not a constant
in µ. Hence µ satisfies a similar non-trivial relation with coefficients from
F1[τ ], that is µ ∈ F1(τ) and the same argument gives ν ∈ F1(τ) which is a
contradiction, since µ and ν are algebraically independent over F1. After
this we have

r⋂

i=1

ki =
r⋂

i=2

(ki ∩ k1) =
r⋂

i=2

Q(Ti \ {z1})

and one can obtain relation (3) by induction on the transcendence degree.
We may assume that there exist an i ∈ {1, . . . , r} such that x /∈ ki, for
otherwise x ∈ ki and y ∈ ki, i = 1, . . . , r; hence x, y belong to the algebraic
number field Q ∩G and by applying Lemma 2 we have the Theorem.
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If x /∈ ki for some i, then y /∈ ki and

min{HMi/ki
(x), HMi/ki

(y)} ≥ 1.

Let S denote the subset of valuations v of Mi/ki containing all the infinite
valuations, for which either v(ωj) < 0 holds for at least one j ∈ {1, . . . , t},
or max{v(x), v(y)} > 0. Then we get v(x) = v(y) = 0 for all v /∈ S and

|S| ≤
t∑

j=1

∑

v(ωj)<0

1 +
∑

v(x)>0

1 +
∑

v(y)>0

1 ≤

≤
t∑

j=1

HMi/ki
(ωj) + HMi/ki

(x) + HMi/ki
(y).

Now, we can consider equation (2) as an S-unit equation. Since xp /∈ ki

and yq /∈ ki, Lemma 3 yields

p− 2 + q − 2 ≤ (p− 2)HMi/ki
(x) + (q − 2)HMi/ki

(y) ≤

≤ 2
t∑

j=1

HMi/ki
(ωj) + 4g(Mi/ki)− 4

and the genus of Mi/ki can be estimated by the defining polynomial of u
(cf. [Sch]).

Therefore, p and q are bounded and Lemma 1 completes the proof.

Acknowledgements. The author is grateful to Professor Győry for
his valuable remarks.
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