
Publ. Math. Debrecen

46 / 3-4 (1995), 339–347

On equal values of binary forms over
finitely generated fields

By B. BRINDZA1 (Debrecen) and Á. PINTÉR2 (Debrecen)

As it was pointed out by Lang [4, p. 245] and others, certain finiteness
results for diophantine equations over algebraic number fields can be ex-
tended, by using deep algebraic geometrical arguments, to rather general
cases when the ground domain of unknowns is a finitely generated field or
a finitely generated subring of it.

The purpose of this paper is to establish a surprisingly elementary
method, through a concrete equation, to obtain these kind of general re-
sults.

Let f(X,Y ) and g(X,Y ) be binary forms (homogeneous polynomials
in two variables) with complex coefficients of degree m and n, respectively.
The binary form fg splits into linear factors (over C) and in the sequel,
we suppose that the linear factors are pairwise non-proportional. Let K
be a finitely generated subfield of C. Then K can be written in the form
Q(z1, . . . , zq, u), where z1, . . . , zq is a transcendence basis of K and we may
assume without loss of generality that the element u is integral over the
polynomial ring Z[z1, . . . , zq].

Theorem. If n ≥ 1 and m− n ≥ 5 then the equation

(1) f(x, y) = g(x, y)

in x, y ∈ K has only finitely many solutions.

In other words, on the curve f − g = 0 there are only finitely many
points of K ×K. Deeper reasons of the technical assumption m − n ≥ 5
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are related to the genus of the curve and the approximation properties of
the solutions. Similar theorems can also be proved for other polynomial
equations, e.g. for Thue or superelliptic equations.

Unfortunately, there seems to be no way to make the above Daven-
port-Roth-type theorem effective. In the algebraic number field case, when
x and y are S-integers in a given number field, similar and effective results
were proved by Evertse, Győry, Shorey and Tijdeman [1]. A more
general, however ineffective result was given in [6]. For further references
we refer to the book of Shorey and Tijdeman [8, Chapter 7]. We remark
that an effective method for a large class of diophantine equations over
finitely generated integral domain was developed by Győry [3].

Auxiliary results

Let R be an integral domain with divisor theory and let G be the
quotient field of R. Denote by MG the set of (additive) valuations of G
with value group Z, further let S be a finite set of MG. An element α ∈ G
is said to be S-integral if v(α) ≥ 0 for all v ∈ MG\S. These elements
form a ring, denoted by OG,S , and the units of OG,S are called S-units.
Moreover, let f, g ∈ G[X, Y ] be binary forms of degree m,n, respectively.
To avoid technical difficulties we assume that these forms split into linear
factors over G. For otherwise, the whole argument can be repeated in the
splitting field of fg. Furthermore, we suppose that the linear factors of fg
are non-proportional.

Write

f(X, Y ) = f0(X − α1Y ) · · · (X − αmY ),

g(X, Y ) = g0(X − β1Y ) · · · (X − βnY )

and let T be the set of the elements αi − αj (1 ≤ i < j ≤ m), βi − βj

(1 ≤ i ≤ n), f0, g0 and αi − βj (1 ≤ i ≤ m, 1 ≤ j ≤ n).
The following simple lemma plays a crucial rôle in the proofs of further

preliminaries.

Lemma 1. Let v be an additive valuation on G such that v(α) = 0
for every α ∈ T . Moreover, let (x, y) ∈ G2 be a solution to the equation

f(x, y) = g(x, y) with xy 6= 0.

If m > n ≥ 1, then v
(

x−α1y
x−α2y

)
is divisible by m− n.

Proof. Since the degree of f and g are not equal, we certainly have
two factors, say x− γy and x− δy, γ, δ ∈ {α1, . . . , αm, β1, . . . , βn} with

v(x− γy) > v(x− δy).
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For an arbitrary factor x − εy distinct from x − γy, simple properties of
valuations and the Siegel-identity

x− εy =
ε− δ

γ − δ
(x− γy) +

γ − ε

γ − δ
(x− δy)

yield

(3) v(x− εy) = v(x− δy).

Omitting the trivial case v(x − α1y) = v(x − α2y) we may assume that
v(x − α1y) > v(x − α2y). One can see by using (3) that the inequalities
0 > v(x− α1y), v(x− α2y) > 0 and m > n lead to contradiction.

In the remaining case v(x− α1y) ≥ 0, v(x− α2y) < 0 and we obtain

v

(
x− α1y

x− α2y

)
= v(x− α1y)− v(x− α2y) = (n−m)v(x− α2y),

therefore, Lemma 1 is proved.

The function field case

Using the notation of Lemma 1 let, specially G be an algebraic func-
tion field with genus G over an algebraically closed field k of characteristic
zero, that is G is a finite algebraic extension of the rational function field
k(z). The valuation theory on G is given by the extensions of the valu-
ations on k(z). In the sequel, we assume that the set S contains all the
infinite valuations of G. The additive height of a non-zero element α of G
is defined by

HG(α) = −
∑

v∈MG

min{0, v(α)}.

By using the well-known “sum-formula” one can rewrite the above relation
as

HG(α) =
∑

v∈MG

max{0, v(α)},

that is the number of valuations for which v(α) 6= 0 is at most 2HG(α).
The inequality

(4) max{HG(αβ},HG(α + β)} ≤ HG(α) + HG(β) (α, β ∈ G)

is an immediate consequence of the definition. The height of a polynomial
P (X) = a(X−x1) · · · (X−xk) with a, x1, . . . , xk ∈ G is defined by H(P ) =
HG(a) +

∑k
i=1 HG(xi).

An additive relation between S-units implies an upper bound for the
height of these elements:
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Lemma 2 (Mason [5]). Let γ1, γ2 be S-units in G such that γ1+γ2 =1.
Then

HG(γ1) ≤ |S|+ 2G − 2.

( |S| denotes the cardinality of the set S.)

A similar result had been proved by Győry [3] with larger constants.
His proof is based on Schmidt’s theorem on Thue equations over function
fields ([7]).

Lemma 3. Let m − n ≥ 5 and n ≥ 1. Then all the solutions of the
equation

(5) f(x, y) = g(x, y) in x, y ∈ G

satisfy

max{HG(x), HG(y)}
≤ (m + n)(2G − 2) + (m + n)(2n + 2m + 1){H(f) + H(g)}.

The constants certainly can be improved, however from the viewpoint
of the Theorem it makes no difference.

Proof. We may assume that xy 6= 0, for otherwise the lemma can
trivially be proved. Let (x, y) ∈ G2 be an arbitrary but fixed non-zero
solution to (5). Let S1 denote the set of valuations v on G such that
v(α) 6= 0 for some α ∈ T . An easy calculation gives

|S1| ≤ 2(n + m− 1)(H(f) + H(g)).

Let k1, k2, l1, l2 be the cardinalities of the sets of valuations v ∈ MG\S1

for which v
(

x−α2y
x−α1y

)
> 0, v

(
x−α2y
x−α1y

)
< 0, v

(
x−α3y
x−α1y

)
> 0, v

(
x−α3y
x−α1y

)
< 0,

respectively. Applying Lemmas 1, 2 to the identity

α1 − α3

α2 − α3

x− α2y

x− α1y
+

α2 − α1

α2 − α3

x− α3y

x− α1y
= 1

we obtain that both (k1 + k2)(m−n) and (l1 + l2)(m−n) are bounded by

2HG

(
x− α2y

x− α1y

)
≤ 2|S1|+ 2(k1 + k2 + l1 + l2) + 4G − 4 + 4H(f).

This relation yields

k1 + k2 + l1 + l2 ≤ 4|S1|+ 8G − 8 + 8H(f)

and

HG

(
x− α2y

x− α1y

)
≤ 5|S1|+ 10G − 10 + 10H(f).
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The inequality (4) implies

HG(x/y) ≤ 5|S1|+ 10G − 10 + 12H(f),

and

5HG(y) ≤ (m− n)HG(y) ≤ HG(f(x/y, 1)) + HG(g(x/y, 1))

≤ (m + n)HG(x/y) + H(f) + H(g)

≤ 5(m + n){|S1|+ 2G − 2}+ {12(m + n) + 1}H(f) + H(g).

Finally, a calculation completes the proof of Lemma 3.

The number field case

In this paragraph let G (see the preparation of Lemma 1) be an al-
gebraic number field, that is a finite extension of the field of rationals. In
this case the finite valuations on G are given by the prime ideals of the
ring of integers of G. For an arbitrary but fixed solution (x, y) ∈ G2 of the
equation

(6) f(x, y) = g(x, y)

the fractional ideal generated by x−α1y
x−α2y can be written in the form

MP
(m−n)k1
1 · · ·P(m−n)kt

t ,

where the fractional ideal M belongs to a finite set (independent of x
and y), P1, . . . , Pt are distinct prime ideals (t ≥ 0) and the exponents
k1, . . . , kt are rational integers. By taking fixed representatives from every
ideal class of G we can rewrite the above principal ideal as

Rm−nM

(
(P1Q1)k1 · · · (PtQt)kt

R
Qkt

1 · · ·Qkt
t

)m−n

,

where Q1, . . . , Qt and R belong to the inverse ideal class of P1, . . . , Pt and
Qk1

1 · · ·Qkt
t , respectively. Since the unit group of G is finitely generated,

this sophisticated form shows that the element x−α1y
x−α2y can be written as

uzm−n where u, z ∈ G and u can be choosen from a finite set (independent
of x and y) given by the generators of the ideals Rm−nM. Therefore, the
Siegel-identity for the factors x − α1y, x − α2y, x − α3y lead to finitely
many Fermat-curves of degree m − n, and by using Faltings’ result on
Mordell-conjecture (see [2]) we have

Lemma 4. If n ≥ 1 and m−n ≥ 4 then the equation (5) in (x, y) ∈ G2

has only finitely many solutions.
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Proof of the Theorem

We may suppose that q > 0, for otherwise our theorem is a conse-
quence of Lemma 4. Following the notation and concepts of Győry [3]
let

ki = Q(z1, . . . , zi−1, zi+1, . . . , zq)

for an arbitrary but fixed index i with 1 ≤ i ≤ q. Further, let ki denote
its algebraic closure (in a fixed algebraic closure of K). Moreover, for
simplicity we write z for zi. If ω is an element of the polynomial ring
Q[z1, . . . , zq] then we denote by ω∗ the element of ki[z] obtained from ω
by the substitution zi 7→ z. Let

F (X) = Xδ + F1X
δ−1 + · · ·+ Fδ

be the minimal polynomial of u with discriminant DF and let u(1) =
u, . . . , u(δ) be the conjugates of u over Q(z1, . . . , zq). Set Mi = ki(z)(u(1),
. . . , u(δ)) and ∆i = [Mi : ki(z)] and denote by G (Mi) the genus of Mi/ki.
Then ∆i ≤ δ! and u(1), . . . , u(δ) are integral over ki[z]. We write α ∈ K in
the form

α =
Pα,0 + Pα,1u + · · ·+ Pα,δ−1u

δ−1

Qα
,

where the polynomials Pα,0, . . . , Pα,δ−1, Qα ∈ Z[z1, . . . , zq] are relatively
prime and uniquely determined (up to sign). The Degree of α (with
respect to the generating set {z1, . . . , zq, u}) is defined by

Deg(α) = max{Deg(Pα,0), . . . , Deg(Pα,δ−1),Deg(Qα)}.
Set

α(j) =
P ∗α,0 + P ∗α,1u

(j) + · · ·+ P ∗α,δ−1(u
(j))δ−1

Q∗
α

for j = 1, . . . , δ. Then α(1), . . . , α(δ) ∈ Mi and the Degree of α with
respect to the generating set {z1, . . . , zq, u} is equal to the Degree of α(j)

with respect to the generating set {z1, . . . , zq, u
(j)} of the conjugate field

Q(z1, . . . zq, u
(j)).

Let (x, y) ∈ K2 be an arbitrary but fixed solution to the equation (1).
Then

f
(l)
0

m∏

i=1

(x(l) − α
(l)
i y(l)) = g

(l)
0

n∏

j=1

(x(l) − β
(l)
j y(l)), 1 ≤ l ≤ δ,
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and by Lemma 3 we obtain

(7) max
1≤l≤δ

{HMi(x
(l)), HMi(y

(l))} < c1.

The relations

x(l) =
P ∗x,0

Q∗x
+

P ∗x,1

Q∗x
u(l) + · · ·+ P ∗x,δ−1

Q∗x
(u(l))δ−1, (1 ≤ l ≤ δ),

can be considered as a linear system of equations in unknows P∗x,0
Q∗x

, . . . ,
P∗x,δ−1

Q∗x
and Cramer’s rule with (7) imply

max
0≤l≤δ−1

{HMi

(
P ∗x,l

Q∗
x

)
} < c2.

Let Vi be the set of finite valuations of Mi/ki for which v(Q∗x) 6= 0 and
v(P ∗x,i) = 0, i = 0, . . . , δ − 1. Since the polynomials P ∗x,0, . . . , P

∗
x,δ−1, Q

∗
x

are relatively prime over ki[z] we have

δ−1⋃

i=0

Vi = {v ∈ MG : v(Q∗
x) > 0}.

Hence, inequality (7) and the sum-formula yield

degzi
Qx = degz Q∗x = ∆−1

i HMi(Q
∗
x) = ∆−1

i

∑

v(Q∗x)>0

v(Q∗x)

= ∆−1
i

δ−1∑

i=0

∑

v∈Vi

v(Q∗
x) = ∆−1

i

δ−1∑

i=0

∑

v∈Vi

v

(
Q∗x
P ∗x,i

)
≤ ∆−1

i δHMi

(
Q∗x
P ∗x,i

)

= ∆−1
i δHMi

(
P ∗x,i

Q∗x

)
< ∆−1

i δc2 = c3.

Let d be a positive integer and P ∈ Z[z1, . . . , zq] be a polynomial of degree
less than d in each zj . Then the polynomial

ΦP (t) = P (t, td, . . . , td
q−1

)

(obtained by Kronecker’s substitution) has the same set of non-zero co-
efficients as P and deg ΦP (t) ≤ dq − 1. If Q ∈ Z[z1, . . . , zq] is another
polynomial with degzj

Q < d and degzj
PQ < d for every j, then ΦP+Q =

ΦP + ΦQ and ΦPQ = ΦP · ΦQ. At this stage we note that the above part
of our proof is kept from Győry [3].
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Put
X = {x : (x, y) ∈ K2 and f(x, y) = g(x, y)}.

By taking d > max{c3, Deg(DF }, we have deg(ΦDF
· ΦQx

) < 2dq for
every x ∈ X. Let M denote the set of subsets of (Z ∩ [−2dq, 2dq]) \ {0}
with cardinality less than 2dq (including the empty set). Moreover, for an
M ∈M, let XM be the subset of X satisfying that the set of the rational
integer zeros of ΦDF

·ΦQx
in (Z∩ [−2dq, 2dq])\{0} is M for every x ∈ XM .

Then obviously
X =

⋃

M∈M
XM .

In the sequel, we fix M and prove that XM is finite. For a t0 ∈
M = (Z ∩ [−2dq, 2dq]) \ ({0} ∪M) let U1, . . . , Uδ(∈ C) be the zeros of the
polynomial

Ft0(X) = Xδ + ΦF1(t0)X
δ−1 + · · ·+ ΦFδ

(t0) ∈ Z[X].

Since ΦDF (t0) 6= 0, the zeros of Ft0(X) are pairwise distinct. The substi-
tutions

z1 7→ t, . . . zq 7→ td
q−1

, u 7→ Uk (1 ≤ k ≤ δ)

define homomorphisms of the field K into the algebraic number field Mt0 =
Q(U1, . . . , Uδ). The image of α ∈ K under this mapping is

Φα(t0, k) =
ΦPα,0(t0) + · · ·+ ΦPα,δ−1(t0)U

δ−1
k

ΦQα(t0)
, (1 ≤ k ≤ δ).

From our equation and Lemma 4 we get

Φf0(t0, k)
m∏

i=1

(Φx(t0, k)− Φαi(t0, k)Φy(t0, k))

= Φg0(t0, k)
n∏

j=1

(Φx(t0, k)− Φβj (t0, k)Φy(t0, k)),

and the elements Φx(t0, k) belong to a finite set for all 1 ≤ k ≤ δ. Using the
non-vanishing Vandermonde-type matrix (U j

k) in Cramer’s rule we obtain
that the δ-tuples (

ΦPx,0(t0)
ΦQx(t0)

, . . . ,
ΦPx,δ−1(t0)

ΦQx(t0)

)

also form a finite set for every t0 ∈ M .
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If the cardinality of XM is infinite then there are x1 6= x2 such that

ΦPx1,i
(t0)

ΦQx1
(t0)

=
ΦPx2,i

(t0)
ΦQx2

(t0)
(0 ≤ i ≤ δ − 1)

for every t0 ∈ M . Since | M |> 2dq, the rational functions

ΦPx1,i
(t)

ΦQx1
(t)

and
ΦPx2,i

(t)
ΦQx2

(t)

are identically equal in t, for 0 ≤ i ≤ δ − 1. Finally, we have

Px1,i(z1, . . . , zq)
Qx1(z1, . . . , zq)

=
Px2,i(z1, . . . , zq)
Qx2(z1, . . . , zq)

, (0 ≤ i ≤ δ − 1)

therefore, x1 = x2. The finiteness of the sets XM and M complete the
proof of the theorem.
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