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On equal values of binary forms over
finitely generated fields

By B. BRINDZA! (Debrecen) and A. PINTER? (Debrecen)

As it was pointed out by Lang [4, p. 245] and others, certain finiteness
results for diophantine equations over algebraic number fields can be ex-
tended, by using deep algebraic geometrical arguments, to rather general
cases when the ground domain of unknowns is a finitely generated field or
a finitely generated subring of it.

The purpose of this paper is to establish a surprisingly elementary
method, through a concrete equation, to obtain these kind of general re-
sults.

Let f(X,Y) and g(X,Y) be binary forms (homogeneous polynomials
in two variables) with complex coefficients of degree m and n, respectively.
The binary form fg splits into linear factors (over C) and in the sequel,
we suppose that the linear factors are pairwise non-proportional. Let K
be a finitely generated subfield of C. Then K can be written in the form
Q(#1,- .., 2q,u), where z1,. .., 2, is a transcendence basis of K and we may
assume without loss of generality that the element w is integral over the
polynomial ring Z[z1, ..., 24].

Theorem. Ifn > 1 and m —n > 5 then the equation
(1) flxy) = g(z,y)
in x,y € K has only finitely many solutions.

In other words, on the curve f — g = 0 there are only finitely many
points of K x K. Deeper reasons of the technical assumption m —n > 5
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are related to the genus of the curve and the approximation properties of
the solutions. Similar theorems can also be proved for other polynomial
equations, e.g. for Thue or superelliptic equations.

Unfortunately, there seems to be no way to make the above Daven-
port-Roth-type theorem effective. In the algebraic number field case, when
x and y are S-integers in a given number field, similar and effective results
were proved by EVERTSE, GYORY, SHOREY and TIIDEMAN [1]. A more
general, however ineffective result was given in [6]. For further references
we refer to the book of SHOREY and TIJIDEMAN [8, Chapter 7]. We remark
that an effective method for a large class of diophantine equations over
finitely generated integral domain was developed by GYORY [3].

Auxiliary results

Let R be an integral domain with divisor theory and let G be the
quotient field of R. Denote by Mg the set of (additive) valuations of G
with value group Z, further let S be a finite set of Mg. An element o € G
is said to be S-integral if v(a) > 0 for all v € Mg\S. These elements
form a ring, denoted by Og g, and the units of Og g are called S-units.
Moreover, let f,g € G[X,Y] be binary forms of degree m,n, respectively.
To avoid technical difficulties we assume that these forms split into linear
factors over G. For otherwise, the whole argument can be repeated in the
splitting field of fg. Furthermore, we suppose that the linear factors of fg
are non-proportional.

Write
JX,Y) = fo(X —aaY) - (X —anY),
g(X,Y) =go(X = B1Y) - (X = B,Y)
and let T be the set of the elements a; —a; (1 < i < j < m), B; — 5;
(1<i<n), fo,goand a; —f; (1<i<m,1<j<n).

The following simple lemma plays a crucial role in the proofs of further
preliminaries.

Lemma 1. Let v be an additive valuation on G such that v(a) = 0
for every a € T. Moreover, let (z,y) € G? be a solution to the equation

f(z,y) =g(x,y) with zy#0.

If m >n > 1, then v (x_—zé‘;/[) is divisible by m — n.

r—

PROOF. Since the degree of f and g are not equal, we certainly have
two factors, say x — vy and x — dy, v, € {a1,...,am,B1,...,Bn} with

v(x —vy) > v(z = dy).
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For an arbitrary factor x — ey distinct from x — ~yy, simple properties of
valuations and the Siegel-identity

_e—90 v—¢
.r—<€y—7_5(3j vy)+7_5(w 6y)
yield
(3) v(z —ey) = v(z — dy).

Omitting the trivial case v(z — a1y) = v(z — azy) we may assume that
v(z — a1y) > v(z — azy). One can see by using (3) that the inequalities
0> v(z — a1y), v(z — azy) > 0 and m > n lead to contradiction.

In the remaining case v(x — a1y) > 0, v(z — azy) < 0 and we obtain

v (i:—w — v(z — ary) — v(z — azy) = (n — m)o(z - azy),

therefore, Lemma 1 is proved.

The function field case

Using the notation of Lemma 1 let, specially G be an algebraic func-
tion field with genus G over an algebraically closed field k of characteristic
zero, that is G is a finite algebraic extension of the rational function field
k(z). The valuation theory on G is given by the extensions of the valu-
ations on k(z). In the sequel, we assume that the set S contains all the
infinite valuations of GG. The additive height of a non-zero element a of G

is defined by
Hea(o) =— ) min{0,v(a)}.
UEMG

By using the well-known “sum-formula” one can rewrite the above relation

Hg(a) = Z max{0,v(a)},

vEMg
that is the number of valuations for which v(a) # 0 is at most 2Hg(«).
The inequality

(4)  max{Hg(af}, Ho(a+P)} < Ha(a) + Ha(B) (o8 € G)
is an immediate consequence of the definition. The height of a polynomial
P(X)=a(X—x1) - (X—xk) with a,z1, ..., zx € G is defined by H(P) =

Ha(a) + iy Ho(w:).
An additive relation between S-units implies an upper bound for the
height of these elements:
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Lemma 2 (Mason [5]). Let 1,72 be S-units in G such that y1+y2=1.
Then
Hea(m) < [S]+26 - 2.

(S| denotes the cardinality of the set S.)

A similar result had been proved by GYORY [3] with larger constants.
His proof is based on Schmidt’s theorem on Thue equations over function
fields ([7]).

Lemma 3. Let m —n > 5 and n > 1. Then all the solutions of the
equation
(5) flz,y) =g(x,y) in z,yeC
satisfy

max{Hq(z), Ha(y)}
< (m+n)(2G = 2) + (m +n)(2n + 2m + D{H(f) + H(9)}-

The constants certainly can be improved, however from the viewpoint
of the Theorem it makes no difference.

PrOOF. We may assume that xy # 0, for otherwise the lemma can
trivially be proved. Let (z,y) € G? be an arbitrary but fixed non-zero
solution to (5). Let S; denote the set of valuations v on G such that
v(a) # 0 for some o € T'. An easy calculation gives

51 < 2(n+m —1)(H(f) + H(g))-

Let kq, ks, [1, I be the cardinalities of the sets of valuations v € Mg\ St
for which v (w> > 0,v <w) < 0,v (m) >0, (w—ocsy> <0,

r—ay T—o1y r—oy T—ony
respectively. Applying Lemmas 1, 2 to the identity

a1 — O3 x—a2y+0z2—a1 r — asy 1

g — (3 T — (1Y Qg — O3 T — Q1Y

we obtain that both (k1 + k2)(m —n) and (1 +l2)(m — n) are bounded by

2H¢ (z—ZZ?Q <251+ 2(k + ke + 1l +12) +4G — 4+ 4H(f).
-

This relation yields
ki + ko + 11 +1la < 4]S1]| +8G — 8+ 8H(f)

and

He (x - a2y) < 5|S1| + 10G — 10 + 10H(f).
T — 0y
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The inequality (4) implies
He(z/y) < 5S1| + 10G — 10 + 12H(f),

and

5Ha(y) < (m—n)He(y) < Ha(f(z/y,1)) + Ha(g(z/y, 1))
< (m-+n)Hg(z/y)+ H(f)+ H(g)
<5(m+n){|S1] +2G — 2} +{12(m +n) + 1}H(f) + H(g).

Finally, a calculation completes the proof of Lemma 3.

The number field case

In this paragraph let G (see the preparation of Lemma 1) be an al-
gebraic number field, that is a finite extension of the field of rationals. In
this case the finite valuations on G are given by the prime ideals of the
ring of integers of G. For an arbitrary but fixed solution (z,y) € G? of the
equation

(6) f(2,y) = g(z,y)
the fractional ideal generated by i:—g;g can be written in the form

mm(m—n)kl L n(m—n)ks
1 t )

where the fractional ideal 9t belongs to a finite set (independent of x
and y), Pi,..., P are distinct prime ideals (¢ > 0) and the exponents
ki,..., ks are rational integers. By taking fixed representatives from every
ideal class of G we can rewrite the above principal ideal as

RN ((‘Blﬂl)kl - (Pe)™ SL ft)m_n,

R

where 91, ..., and R belong to the inverse ideal class of Py, ..., P, and
Qlfl Qf t. respectively. Since the unit group of G is finitely generated,
this sophisticated form shows that the element i:—g;g can be written as
uz™~"™ where u, z € G and u can be choosen from a finite set (independent
of x and y) given by the generators of the ideals R~ "9. Therefore, the
Siegel-identity for the factors x — a1y, * — aoy, © — asy lead to finitely
many Fermat-curves of degree m — n, and by using Faltings’ result on
Mordell-conjecture (see [2]) we have

Lemma 4. Ifn > 1 and m—n > 4 then the equation (5) in (x,y) € G?
has only finitely many solutions.
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Proof of the Theorem

We may suppose that ¢ > 0, for otherwise our theorem is a conse-
quence of Lemma 4. Following the notation and concepts of GYORY [3]
let

k?i = @(21,--~;Zi—1azi+1;---7zq)

for an arbitrary but fixed index ¢ with 1 < ¢ < q. Further, let k,; denote
its algebraic closure (in a fixed algebraic closure of K). Moreover, for
simplicity we write z for z;. If w is an element of the polynomial ring
Ql[z1, ..., 2] then we denote by w* the element of k;[z] obtained from w
by the substitution z; — z. Let

FX)=X°+ R X' 4... 4+ F;

be the minimal polynomial of u with discriminant Dp and let u =
u, ..., u®) be the conjugates of u over Q(z1,...,2,). Set M; = k;(2)(uV),
e ,u(‘;)) and A; = [M; : k;(2)] and denote by G (_MZ) the genus of M, /k;.
Then A; < 8! and vV, ..., 49 are integral over k; [2]. We write o € K in
the form
_ Pao4Pajut ot Pysoqui?
Qa ’

where the polynomials P, q,...,Pas—1,Qa € Z|z21,...,24] are relatively

prime and uniquely determined (up to sign). The Degree of a (with
respect to the generating set {z1,...,2,, u}) is defined by

Deg(a) = max{Deg(Pn.0),--.,Deg(Pa,5-1), Deg(Qa)}-

Set ' ‘
o) — Pgo+ P;,lu(J) +oe P;,é—l(u(”)é_l
Q%
for j = 1,...,6. Then o™,...,a® € M, and the Degree of o with
respect to the generating set {z1,..., 2, u} is equal to the Degree of al?)

with respect to the generating set {z1, ..., zq, u9)} of the conjugate field

Q(21, . .. 24, u?)),
Let (z,y) € K2 be an arbitrary but fixed solution to the equation (1).
Then

fo! [T =y ) =" [T = 879, 1<1<0,
i=1 =1
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and by Lemma 3 we obtain

7) e {Har, (2), Har, (y0)} < ex.

The relations

P P P
0 — —=0 z,1 (1) x,6—=1/ (1)\6—1
pl) = 204 iy g 220y . (1<1<9),
Q:  Q; Q* (™) ( )
2,0

. . . . P
can be considered as a linear system of equations in unknows O
x

*
Pa:,ﬁfl

Qx

and Cramer’s rule with (7) imply

Py
max {HMi( ’)}<02.

0<I<6—1 Qx

Let V; be the set of finite valuations of M;/k; for which v(Q%) # 0 and
v(Py;) =0,i=0,...,6 — 1. Since the polynomials P;,...,P;s ;,Q;
are relatively prime over k;[z] we have

6—1
UVi:{veMgzv(Q;)>0}.

i=0
Hence, inequality (7) and the sum-formula yield

deg,, Qo =deg, Q; = A Har () = A7 ) v(QF)
v(Q%)>0

5—-1 "
=AY Y @) =AY D ( = ) < A7'6Hy, (P)

=0 veV; 1=0 veV; T,

*

= ATISH (P“’) < A7S¢y =
— i Mi Q* i CQ = C3.

Let d be a positive integer and P € Z[z1, . .., z4] be a polynomial of degree
less than d in each z;. Then the polynomial

Op(t) = Pt t%,... 17" )

(obtained by Kronecker’s substitution) has the same set of non-zero co-
efficients as P and deg®p(t) < d? — 1. If Q € Z[#,..., 74 is another
polynomial with deg, @ < d and deg. PQ < d for every j, then ®p g =
®p + P and Ppg = Pp - Pg. At this stage we note that the above part
of our proof is kept from GYORY [3].
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Put
X={z:(z,y) e K* and f(z,y) = g(z,y)}.
By taking d > max{c3, Deg(Dr}, we have deg(®p, - Pg,) < 2d? for
every © € X. Let M denote the set of subsets of (Z N [—2d9,2d%]) \ {0}
with cardinality less than 2d? (including the empty set). Moreover, for an
M € M, let Xjs be the subset of X satisfying that the set of the rational
integer zeros of ®p, - P, in (ZN[—2d7,2d9])\ {0} is M for every xz € X ;.
Then obviously
U Xu

MeMm

_ In the sequel, we fix M and prove that Xjs is finite. For a g €
M = (ZN[-2d7,2d?]) \ ({0} UM) let Uy,...,Us(€ C) be the zeros of the
polynomial

Fiy(X) = XO + ®p, (to) X2 + - + O, (to) € Z[X].

Since ®p,.(tg) # 0, the zeros of F}, (X) are pairwise distinct. The substi-
tutions
-1
zll—>t,...zq»—>tdq , u— U (1 <k <9)

define homomorphisms of the field K into the algebraic number field M;, =
Q(Uy,...,Us). The image of o € K under this mapping is

Op, o(to) + -+ Pp, ,, (to) U
®q., (to) ’

From our equation and Lemma 4 we get

q) (to,k‘)

(1<k<d).

Oy, (to, k) [ [(®a(to, a; (to, k)®y(to, k))
i=1

= ®, (to, k) H((I)f’f(to’ k) — @3, (to, k)®y(to, k)),
j=1

and the elements ®, (%o, k) belong to a finite set for all 1 < k£ < §. Using the
non-vanishing Vandermonde-type matrix (U}) in Cramer’s rule we obtain

that the d-tuples
(¢Pz,0(t0) ¢Pa:,51(t0))
®q,(to) 7 Pq.(to)

also form a finite set for every ¢ty € M.
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If the cardinality of Xy, is infinite then there are x; # x5 such that

) (t ) (t
Pyi(to) _ ®Pr,,.(t) 0<i<é—1)
®q,, (o)  Pq,,(to)

for every tq € M. Since | M |> 2d9, the rational functions

q)Pml,z‘ (t) (I)PzQ,i (t)
and

®q,, (1) ®q,, (t)

are identically equal in ¢, for 0 <7 < § — 1. Finally, we have

Pml’i(zl,...,zq) Pm,i(zl,...,zq)

Qzy (21,---,2) - Qus (21521 2¢)

therefore, x1 = x5. The finiteness of the sets X, and M complete the
proof of the theorem.

(0<i<d—1)

References

(1] J. H. Everrsg, K. Gy6ry, T. N. SHOREY and R. TIDEMAN, Equal values of
binary forms at integral points, Acta Arith. 48 (1987), 379-396.

[2] G. FAaLTINGS, Endlichkeitssitze fiir abelsche Varietdten {iber Zahlkérpern, Invent.
Math. 73 (1983), 349-366.

[3] K. GYSRyY, Bounds for the solutions of norm form discriminant form and index form
equations in finitely generated domains, Acta Math. Hungar. 42 (1983), 45-80.

[4] S. LaNG, Fundamentals of Diophantine Geometry, Springer Verlag, 1983.

[65] R. C. MaAsoN, Diophantine Equations over Function Fields, LMS Lecture Notes
No. 96, Cambridge University Press, 1984.

[6] A. SCHINZEL, An improvement of Runge’s theorem on diophantine equations, Com-
ment. Pontific. Acad. Sci. 2 no. 20 (1969), 9.

[7] W. M. ScuMIDT, Thue’s equation over function fields, J. Austral. Math. Soc. A 25
(1978), 385-422.

[8] T. N. SHOREY and R. TIJDEMAN, Exponential diophantine equations Cambridge
tracts in mathematics, vol. 87, Cambridge University Press, 1986.

B. BRINDZA AND A. PINTER
MATHEMATICAL INSTITUTE
KOSSUTH LAJOS UNIVERSITY
H-4010 DEBRECEN

P.O.BOX 12

HUNGARY

(Received July 21, 1994; revised November 9, 1994)



