On Nemytskii operator in the space of set-valued functions of bounded p-variation in the sense of Riesz

By N. MERENTES (Caracas) and S. RIVAS (Caracas)

Abstract

We sonsider the Nemytskii operator, i.e. the composition operator defined by $(N u)(t)=H(t, u(t))$, where H is a given set-valued function. It is shown that if the operator N maps the space of set-valued functions of bounded p-variation in the sense of Riesz into the space of set-valued functions of bounded q-variation in the sense of Riesz, there is $1 \leq q \leq p<\infty$, and if it is globally Lipschitzian, then it has to be of the form $(N u)(t)=A(t) u(t)+B(t)$, where $A(t)$ are linear continuous set-valued and B is a set-valued function of bounded q-variation in the sense of Riesz. This generalizes results of G. Zawadzka [8], A. Smajdor and W. Smajdor [7], N. Merentes and K. Nikodem [3].

Introduction

In [7] A. Smajdor and W. Smajdor proved that every Nemytskii operator N, i.e. $(N u)(t)=H(t, u(t))$ mapping the space $\operatorname{Lip}([a, b], c c(Y))$ into itself and globally Lipschitzian has to be of the form

$$
(N u)(t)=A(t) u(t)+B(t), \quad u \in \operatorname{Lip}([a, b], c c(Y)), \quad t \in[a, b],
$$

where $A(t)$ are linear continuous set-valued functions and B is a setvalued function belonging to the space $\operatorname{Lip}([a, b]), c c(Y))$. For the first time a theorem of such a type for single-valued functions was proved by J. Matkowski [1] in the space of Lipschitz functions. Similar characterizations of the Nemytskii operator have been also obtained by G. ZAWADZKA (see [8]) in the space of set-valued functions of bounded variation in the classical Jordan sense. For single-valued functions it was proved by

[^0]J. Matkowski and J. Miś [2]. Recently N. Merentes and K. Nikodem (see [3]) proved an analogous theorem in the space of set-valued functions of bounded p-variation in the sense of Riesz. The aim of this paper is prove an analogous result in the case when the Nemytskii operator N maps the space of set-valued functions of bounded p-variation in the sense of Riesz into the space of set-valued functions of bounded q-variation in the sense of Riesz, where $1 \leq q \leq p<\infty$ and N is globally Lipschitzian. The particular cases $p=q$ has been already considered by N. Merentes and K. Nikodem (see [3]), but the present case of possibly different spaces requires a different proof technique, and this extension may turn out to be useful in some applications.

1. Preliminary results

Let $(X,\|\cdot\|)$ be a normed space and $p \geq 1$ be a fixed number. Given a function $u:[a, b] \rightarrow X$ and a partition $\pi: a=t_{0}<\cdots<t_{n}=b$ of the interval $[a, b]$, we define:

$$
\sigma_{p}(u ; \pi):=\sum_{i=1}^{n} \frac{\left\|u\left(t_{i}\right)-u\left(t_{i-1}\right)\right\|^{p}}{\left|t_{i}-t_{i-1}\right|^{p-1}}
$$

The number:

$$
V_{p}(u,[a, b] ; X):=\sup _{\pi} \sigma_{p}(u, \pi),
$$

where the supremum is taken over all partitions π of $[a, b]$, is called the p-variation of u in $[a, b]$. A function u is said to be of bounded p-variation if $V_{p}(u,[a, b] ; X)<\infty$. Denote by $R V_{p}([a, b], X)$ the space of all functions $u:[a, b] \rightarrow X$ of bounded p-variation equipped with the norm

$$
\|u\|_{p}:=\|u(a)\|+\left(V_{p}(u,[a, b] ; X)\right)^{\frac{1}{p}} .
$$

Clearly, for $p=1$ the space $R V_{1}([a, b], X)$ coincides with the classical space $B V([a, b], X)$ of functions of bounded variation. In the particular case when $X=\mathbb{R}$ and $1<p<\infty$, then we have the space $R V_{p}[a, b]$ of functions of bounded Riesz p-variation, and the following characterization is well-known:

Lemma 1 (see [5]). $u \in R V_{p}([a, b], \mathbb{R})$ if and only if u is absolutely continuous on $[a, b]$ and its derivative $u^{\prime} \in L_{p}([a, b] ; \mathbb{R})$. In that case we also have the equality

$$
V_{p}(u,[a, b] ; \mathbb{R})=\int_{a}^{b}\left|u^{\prime}(t)\right|^{p} d t
$$

Let $c c(X)$ be the family of all non-empty convex compact subsets of X and D be the Hausdorff metric in $c c(X)$, i.e.

$$
D(A, B):=\inf \{t>0: A \subseteq B+t S, B \subseteq A+t S\}
$$

where $S=\{y \in X:\|y\| \leq 1\}$.
We say that a set-valued function $F:[a, b] \rightarrow c c(X)$ has bounded p-variation $(1 \leq p<\infty)$ if

$$
W_{p}(F,[a, b] ; c c(X)):=\sup _{\pi} \sum_{i=1}^{n} \frac{\left(D\left(F\left(t_{i}\right), F\left(t_{i-1}\right)\right)^{p}\right.}{\left|t_{i}-t_{i-1}\right|^{p-1}}<\infty
$$

where the supremum is taken over all partitions π of $[a, b]$.
Denote by $R W_{p}([a, b] ; c c(X))$ the space of all set-valued functions F : $[a, b] \rightarrow c c(X)$ of bounded p-variation equipped with the metric
$D_{p}\left(F_{1}, F_{2}\right):=$
$D\left(F_{1}(a), F_{2}(a)\right)+\left(\sup _{\pi} \sum_{i=1}^{n} \frac{\left(D\left(F_{1}\left(t_{i}\right)+F_{2}\left(t_{i-1}\right), F_{1}\left(t_{i-1}\right)+F_{2}\left(t_{i}\right)\right)\right)^{p}}{\left|t_{i}-t_{i-1}\right|^{p-1}}\right)^{\frac{1}{p}}$.
Clearly, for $p=1$ the space $R W_{1}([a, b] ; c c(X))$ coincides with the space $B V([a, b] ; c c(X))$ of set-valued functions of bounded variation.

Now, let $(X\|\cdot\|),(Y,\|\cdot\|)$ be two normed spaces and K be a convex cone in X. Given a set-valued function $H:[a, b] \times K \rightarrow c c(Y)$ we consider the Nemytskii operator N genereted by H, that is the composition operator defined by:

$$
(N u)(t):=H(t, u(t)), \quad u:[a, b] \rightarrow K, \quad t \in[a, b] .
$$

We denote by $L(K ; c c(Y))$ the space of all set-valued function A : $K \rightarrow c c(Y)$ additive and positively homogeneous. We say that A is linear if $A \in L(K ; c c(Y))$.

In the proof of the main results of this paper we will use some facts which we list here as lemmas.

Lemma 2 (see [6], Lemma 3). Let $(X,\|\cdot\|)$ be a normed space and let A, B, C be subsets of X. If A, B are convex compact and C is non-empty and bounded, then

$$
D(A+C, B+C)=D(A, B)
$$

Lemma 3 (see [4], Th. 5.6). Let $(X,\|\cdot\|),(Y\|\cdot\|)$ be normed spaces and K be a convex cone in X. A set-valued function $F: K \rightarrow c c(Y)$ satisfies the Jensen equation

$$
F\left(\frac{x+y}{2}\right)=\frac{1}{2}(F(x)+F(y)), \quad x, y \in K
$$

if and only if there exists an additive set-valued function $A: K \rightarrow c c(Y)$ and a set $B \in c c(Y)$ such that $F(x)=A(x)+B, x \in K$.

Lemma 4. If $F \in R W_{p}([a, b], c c(Y))$ with $p>1$, then F is continuous. In the case $p=1$, we have $F^{-}(\cdot, x) \in B W([a, b], c c(Y))$ for all $x \in K$, where

$$
F^{-}(t, x):= \begin{cases}\lim _{\uparrow \uparrow t} F(s, x), & t \in(a, b], x \in K, \\ F(a, x), & t=a, x \in K\end{cases}
$$

Proof. For $1<p<\infty$, this follows immediately from the inequality

$$
\begin{gathered}
D\left(F(t), F\left(t_{0}\right)\right)=\left(\frac{\left(D\left(F(t), F\left(t_{0}\right)\right)\right)^{p}\left|t-t_{0}\right|^{p-1}}{\left|t-t_{0}\right|^{p-1}}\right)^{\frac{1}{p}} \\
\leq W_{p}(F,[a, b] ; c c(Y))\left|t-t_{0}\right|^{1-\frac{1}{p}}
\end{gathered}
$$

For the case $p=1$, see [8].

2. Main results

In this section we shall present a characterization of functions H : $[a, b] \times K \rightarrow c c(Y)$ for which the Nemytskii operator N generated by H maps the space $R V_{p}([a, b], K)$ into the space $R W_{q}([a, b], c c(Y))$, where $1<q<p$, and it is globally Lipschitzian. On the other hand if $1<p<q$, then the Nemytskii operator N is constant.

Theorem 1. Let $(X,\|\cdot\|),(Y,\|\cdot\|)$ be normed spaces and K be a convex cone in X and $1<q<p$. If the Nemytskii operator N generated by a set-valued function $H:[a, b] \times K \rightarrow c c(Y)$ maps the space $R V_{p}([a, b], K)$ into the space $R W_{q}([a, b], c c(Y))$ and if it is globally Lipschitzian, then the set-valued function H satisfies the following conditions:
a) For all $t \in[a, b]$ there exists $M(t)$, such that

$$
\begin{equation*}
D(H(t, x), H(t, y)) \leq M(t)\|x-y\| \quad(x, y \in X) \tag{1}
\end{equation*}
$$

b) $H(t, x)=A(t) x+B(t)(t \in[a, b], x \in K)$,
where $A:[a, b] \rightarrow L(K, c c(Y))$ and $B \in R W_{q}([a, b], c c(Y))$.
Proof. The Nemytskii operator N is globally Lipschitzian, then there exists a constant M, such that

$$
D_{q}\left(N u_{1}, N u_{2}\right) \leq M\left\|u_{1}-u_{2}\right\|_{p} \quad\left(u_{1}, u_{2} \in R V_{p}([a, b], K)\right) .
$$

Let $t \in(a, b]$. Using the definition of the operator N and of the metric D_{q} we have

$$
\begin{align*}
& \left.D_{q}\left(H\left(t, u_{1}(t)\right)\right)+H\left(a, u_{2}(a)\right), H\left(a, u_{1}(a)\right)+H\left(t, u_{2}(t)\right)\right) \leq \\
& \quad \leq M|t-a|^{1-\frac{1}{q}}\left\|u_{1}-u_{2}\right\|_{p}, \quad\left(u_{1}, u_{2} \in R V_{p}([a, b], K)\right) . \tag{2}
\end{align*}
$$

Define the function $\alpha:[a, b] \rightarrow[0,1]$ by:

$$
\alpha(\tau):= \begin{cases}\frac{\tau-a}{t-a}, & a \leq \tau \leq t \\ 1, & t \leq \tau \leq b\end{cases}
$$

The function $\alpha \in R V_{p}[a, b]$ and

$$
V_{p}(\alpha ;[a, b])=\frac{1}{|t-a|^{p-1}} .
$$

Let us fix $x, y \in K$ and define the functions $u_{i}:[a, b] \rightarrow K(i=1,2)$ by:

$$
\begin{equation*}
u_{1}(\tau):=x, \quad \tau \in[a, b], \quad u_{2}(\tau):=\alpha(\tau)(y-x)+x, \tau \in[a, b] \tag{3}
\end{equation*}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\left(V_{p}(\alpha ;[a, b])\right)^{\frac{1}{p}}\|x-y\|=\frac{\|x-y\|}{|t-a|^{1-\frac{1}{p}}}
$$

Hence, substituting in inequality (2) the particular functions u_{i} ($i=1,2$) defined by (3), we obtain

$$
\begin{equation*}
D(H(t, x)+H(a, x), H(a, x)+H(t, y)) \leq M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}}\|x-y\| \tag{4}
\end{equation*}
$$

for all $t \in[a, b], x, y \in K$.
By Lemma 2 and the inequality (4) we have

$$
D(H(t, x), H(t, y)) \leq M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}}\|x-y\|
$$

for all $t \in(a, b], x, y \in K$.
Now, let $t=a$. Define the function $\beta:[a, b] \rightarrow[0,1]$ by

$$
\beta(\tau):=\frac{\tau-a}{b-a}, \quad(\tau \in[a, b])
$$

The function $\beta \in R V_{p}[a, b]$ and

$$
\beta(\tau)=\frac{1}{|b-a|^{p-1}}
$$

Let us fix $x, y \in K$ and define the functions $u_{i}:[a, b] \rightarrow K(i=1,2)$ by

$$
\begin{equation*}
u_{1}(\tau):=x \quad \tau \in[a, b], \quad u_{2}(\tau):=\beta(\tau)(x-y)+y, \tau \in[a, b] . \tag{5}
\end{equation*}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\left(1+\left(V_{p}(\beta ;[a, b])\right)^{\frac{1}{p}}\right)\|x-y\|=\left(1+\frac{1}{|b-a|^{1-\frac{1}{p}}}\right)\|x-y\|
$$

Hence, substituting in the inequality (2), the particular functions u_{i} ($i=1,2$) defined by (5), we obtain

$$
\begin{aligned}
& D(H(b, x)+H(a, y), H(a, x)+H(b, x)) \leq \\
& \leq M|b-a|^{1-\frac{1}{q}}\left(1+\frac{1}{|b-a|^{1-\frac{1}{p}}}\right)\|x-y\|
\end{aligned}
$$

By Lemma 2 and the above inequality, we have

$$
D(H(a, y), H(a, x)) \leq M|b-a|^{1-\frac{1}{q}}\left(1+\frac{1}{|b-a|^{1-\frac{1}{p}}}\right)\|x-y\| .
$$

Define the function $M:[a, b] \rightarrow \mathbb{R}$ by

$$
M(t):= \begin{cases}M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}}, & a<t \leq b, \\ M|b-a|^{1-\frac{1}{q}}\left(1+\frac{1}{|b-a|^{1-\frac{1}{p}}}\right), & t=a .\end{cases}
$$

Hence

$$
D(H(t, x), H(t, y)) \leq M(t)\|x-y\| \quad(x, y \in X, t \in[a, b]),
$$

and, consequently, for every $t \in[a, b]$ the function $H(t, \cdot): K \rightarrow c c(Y)$ is continuous.

Next we shall prove that H satisfies equality b).
Let us fix $t, t_{0} \in[a, b]$ such that $t_{0}<t$. Since the Nemytskii operator N is globally Lipschitzian, there exists a constant M, such that

$$
\begin{align*}
D\left(H\left(t, u_{1}(t)\right)+\right. & \left.H\left(t_{0}, u_{2}\left(t_{0}\right)\right), H\left(t_{0}, u_{1}\left(t_{0}\right)\right)+H\left(t, u_{2}(t)\right)\right) \leq \tag{6}\\
& \leq M\left\|u_{1}-u_{2}\right\|_{p}\left|t-t_{0}\right|^{1-\frac{1}{q}}
\end{align*}
$$

Define the function $\gamma:[a, b] \rightarrow[0,1]$ by

$$
\gamma(\tau):= \begin{cases}\frac{\tau-a}{t_{0}-a}, & a \leq \tau \leq t_{0} \\ -\frac{\tau-t}{t-t_{0}}, & t_{0} \leq \tau \leq t \\ 0, & t \leq \tau \leq b\end{cases}
$$

The function $\gamma \in R V_{p}[a, b]$.
Let us fix $x, y \in K$ and define the functions $u_{i}:[a, b] \rightarrow K$ by

$$
\begin{array}{ll}
u_{1}(\tau):=\frac{\gamma(\tau)}{2} x+\left(1-\frac{\gamma(\tau)}{2}\right) y, & (\tau \in[a, b]) \tag{7}\\
u_{2}(\tau):=\frac{1+\gamma(\tau)}{2} x+\frac{1-\gamma(\tau)}{2} y, & (\tau \in[a, b])
\end{array}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\frac{\|x-y\|}{2}
$$

Hence, substituting in the inequality (6) the particular functions u_{i} $(i=1,2)$ defined by (7), we obtain

$$
\begin{gather*}
D\left(H\left(t_{0}, x\right)+H(t, y), H\left(t_{0}, \frac{x+y}{2}\right)+H\left(t, \frac{x+y}{2}\right)\right) \leq \tag{8}\\
\leq \frac{M}{2}\left|t-t_{0}\right|^{1-\frac{1}{q}}\|x-y\|
\end{gather*}
$$

Since N maps $R V_{p}([a, b], K)$ into $R W_{q}([a, b], c c(Y))(1<q<p)$, then $H(\cdot, z)$ is continuous for all $z \in K$. Hence, letting $t_{0} \uparrow t$ in the inequality (8), we get

$$
D\left(H(t, x)+H(t, y), H\left(t, \frac{x+y}{2}\right)+H\left(t, \frac{x+y}{2}\right)\right)=0
$$

for all $t \in[a, b]$ and $x, y \in K$.

Thus for all $t \in[a, b], x, y \in K$, we have

$$
H\left(t, \frac{x+y}{2}\right)+H\left(t, \frac{x+y}{2}\right)=H(t, x)+H(t, y) .
$$

Since that values of H are convex, we have

$$
\begin{equation*}
H\left(t, \frac{x+y}{2}\right)=\frac{1}{2}(H(t, x)+H(t, y)), \tag{9}
\end{equation*}
$$

for all $t \in[a, b], x, y \in K$. Thus for all $t \in[a, b]$, the set-valued function $H(t, \cdot): K \rightarrow c c(Y)$ satisfies the Jensen equation (9). Now by the Lemma 3, there exists an additive set-valued function $A(t): K \rightarrow c c(Y)$ and a set $B(t) \in c c(Y)$, such that

$$
H(t, x)=A(t)(x)+B(t), \quad(x \in K, t \in[a, b]) .
$$

Substituting $H(t, x)=A(t)(x)+B(t)$ into inequality (1), we obtain, for all $t \in[a, b]$ that there exists $M(t)$, such that

$$
D(A(t)(x), A(t)(y)) \leq M(t)\|x-y\| \quad(x, y \in K)
$$

consequently, the set-valued function $A(t): K \rightarrow c c(Y)$ is continuous, and $A(t)(\cdot) \in L(K, c c(Y))$.
$A(t)(\cdot)$ is additive and $0 \in K$, then $A(t)=\{0\}$, thus $H(\cdot, 0)=B(\cdot)$.
The Nemytskii operator N maps the space $R V_{p}([a, b], K)$ into the space $R W_{q}([a, b], c(Y))$, then $H(\cdot, 0)=B(\cdot) \in R W_{q}([a, b], K)$. Consequently the set-valued function H has to be of the form

$$
H(t, x)=A(t)(x)+B(t)
$$

for all $t \in[a, b], x \in K$, where $A(t) \in L(K, c c(Y))$ and $B \in R W_{q}([a, b], c c(Y))$.
Theorem 2. Let $(X,\|\cdot\|),(Y,\|\cdot\|)$ be normed spaces, K a convex cone in X and $1<p<q$. If the Nemytskii operator N generated by a set-valued function $H:[a, b] \times K \rightarrow c c(Y)$ maps the space $R V_{p}([a, b], K)$ into the space $R W_{q}([a, b], c c(Y))$ and if it is globally Lipschitzian, then the set-valued function H satisfies the following condition

$$
H(t, x)=H(t, 0) \quad(t \in[a, b], x \in K)
$$

i.e. the Nemytskii operator is constant.

Proof. Since the Nemytskii operator N is globally Lipschitzian between $R V_{p}([a, b], K)$ and the space $R W_{q}([a, b], c c(Y)), 1<p<q$, then there exists a constant M, such that

$$
D_{q}\left(N u_{1}, N u_{2}\right) \leq M\left\|u_{1}-u_{2}\right\|_{p} \quad\left(u_{1}, u_{2} \in R V_{p}([a, b], K)\right) .
$$

Let us fix $t, t_{0} \in[a, b]$ such that $t_{0}<t$. Using the definitions of the operator N and of the metric D_{q}, we have

$$
\begin{align*}
& D\left(H\left(t, u_{1}(t)\right)+H\left(t_{0}, u_{2}\left(t_{0}\right)\right), H\left(t_{0}, u_{1}\left(t_{0}\right)\right)+H\left(t, u_{2}(t)\right) \leq\right. \tag{10}\\
& \quad \leq M\left|t-t_{0}\right|^{1-\frac{1}{q}}\left\|u_{1}-u_{2}\right\|_{p}, \quad\left(u_{1}, u_{2} \in R V_{p}([a, b], K) .\right.
\end{align*}
$$

Define the function $\alpha:[a, b] \rightarrow[0,1]$ by

$$
\alpha(\tau):= \begin{cases}1, & a \leq \tau \leq t_{0} \\ -\frac{\tau-t}{t-t_{0}}, & t_{0} \leq \tau \leq t \\ 0, & t \leq \tau \leq b\end{cases}
$$

The function $\alpha \in R V_{p}[a, b]$ and

$$
V_{p}(\alpha ;[a, b])=\frac{1}{\left|t-t_{0}\right|^{p-1}} .
$$

Let us fix $x \in K$ and define the functions $u_{i}:[a, b] \rightarrow K(i=1,2)$ by

$$
\begin{equation*}
u_{1}(\tau):=x \quad \tau \in[a, b], \quad u_{2}(\tau):=\alpha(\tau) x \quad \tau \in[a, b] . \tag{11}
\end{equation*}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\frac{\|x\|}{\left|t-t_{0}\right|^{1-\frac{1}{p}}} .
$$

Hence, substituting in the inequality (10) the particular functions u_{i} ($i=1,2$) defined by (11), we obtain

$$
D\left(H(t, x)+H\left(t_{0}, x\right), H\left(t_{0}, x\right)+H(t, 0)\right) \leq M \frac{\left|t-t_{0}\right|^{1-\frac{1}{q}}}{\left|t-t_{0}\right|^{1-\frac{1}{p}}}\|x\|
$$

By Lemma 2 and the above inequality, we get

$$
D(H(t, x), H(t, 0)) \leq M \frac{\left|t-t_{0}\right|^{1-\frac{1}{q}}}{\left|t-t_{0}\right|^{1-\frac{1}{p}}}\|x\| .
$$

Since $q>p$. Letting $t_{0} \uparrow t$ in the above inequality, we have $D(H(t, x)$, $H(t, 0))=0$, thus for all $t \in[a, b]$ and for all $x \in K$, we get

$$
H(t, x)=H(t, 0)
$$

Theorem 3. Let $(X,\|\cdot\|),(Y,\|\cdot\|)$ be normed spaces, K be a convex cone in X and $1<p<\infty$. If the Nemytskii operator N generated by a set-valued function $H:[a, b] \times K \rightarrow c c(Y)$ maps the space $R V_{p}([a, b], K)$ into the space $B W([a, b], c c(Y))$ and if it is globally Lipschitzian, then the left regularization $H^{*}:[a, b] \times K \rightarrow c c(Y)$ of the function H defined by

$$
H^{*}(t, x):= \begin{cases}H^{-}(t, x), & t \in(a, b], x \in K, \\ \lim _{s \downarrow a} H(s, x), & t=a, x \in K,\end{cases}
$$

satisfies the following conditions:
a) for all $t \in[a, b]$ there exists $M(t)$, such that

$$
D_{1}\left(H^{*}(t, x), H^{*}(t, y)\right) \leq M(t)\|x-y\| \quad(x, y \in X)
$$

b) $H^{*}(t, x)=A(t) x+B(t)(t \in[a, b], x \in K)$, where $A(t)$ is linear continuous set-valued function, and $B \in B W([a, b], c c(Y))$.

Proof. Take $t \in[a, b]$, and define the function $\alpha:[a, b] \rightarrow[0,1]$ by:

$$
\alpha(t):= \begin{cases}1, & a \leq \tau \leq t \\ \frac{\tau-b}{t-b}, & t \leq \tau \leq b\end{cases}
$$

The function $\alpha \in R V_{p}[a, b]$ and

$$
V_{p}(\alpha,[a, b])=\frac{1}{|b-t|^{p-1}} .
$$

Let us fix $x, y \in K$ and define the functions $u_{i}:[a, b] \rightarrow K(i=1,2)$ by

$$
\begin{equation*}
u_{1}(\tau):=x \quad \tau \in[a, b], \quad u_{2}(\tau):=\alpha(\tau)(y-x)+x, \quad \tau \in[a, b] . \tag{12}
\end{equation*}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\left(V_{p}(\alpha ;[a, b])\right)^{\frac{1}{p}}\|x-y\|=\left(1+\frac{1}{|b-t|^{1-\frac{1}{p}}}\right)\|x-y\| .
$$

Since the Nemytskii operator N is globally Lipschitzian between $R V_{p}([a, b], K)$ and $B W([a, b], c c(Y))$, then there exists a constant M, such that

$$
D\left(H\left(b, u_{1}(b)\right)+H\left(t, u_{2}(t)\right), H\left(t, u_{1}(t)\right)+H\left(b, u_{2}(b)\right) \leq M\left\|u_{1}-u_{2}\right\|_{p}\right.
$$

By Lemma 2, substituting the particular functions $u_{i}(i=1,2)$ defined by (12) in the above inequality, we obtain

$$
\begin{equation*}
D(H(t, x), H(t, y)) \leq M(t)\|x-y\| \quad(x, y \in K, t \in[a, b]) \tag{13}
\end{equation*}
$$

where

$$
M(t):=M\left[1+\frac{1}{|b-t|^{1-\frac{1}{p}}}\right]
$$

In the case where $t=b$, by a similar reasoning as above, we obtain that there exists a constant $M(b)$, such that

$$
\begin{equation*}
D(H(b, x), H(b, y)) \leq M(b)\|x-y\| \quad(x, y \in K) \tag{14}
\end{equation*}
$$

Hence, passing to the limit in the inquality (13) by the inequality (14) and the definition of H^{*} we have for all $t \in[a, b]$ that there exists $M(t)$, such that

$$
D\left(H^{*}(t, x), H^{*}(t, y)\right) \leq M(t)\|x-y\| \quad(x, y \in K)
$$

Now we shall proof that H^{*} satisfies the following equality

$$
H^{*}(t, x)=A(t) x+B(t) \quad(t \in[a, b], x \in K)
$$

where $A(t)$ is linear continuous set-valued functions, and $B \in B W([a, b], c c(Y))$.

Let us fix $t, t_{0} \in[a, b], n \in \mathbb{N}$ such that $t_{0}<t$. Define the partition π_{n} of the interval $\left[t_{0}, t\right]$ by $\pi_{n}: a<t_{0}<t_{1}<\cdots<t_{2 n-1}<t_{2 n}=t$, where

$$
t_{i}-t_{i-1}=\frac{t-t_{0}}{2 n}, \quad i=1,2, \ldots, 2 n
$$

The Nemytskii operator N is globally Lipschitzian between
$R V p([a, b], K)$ and $B W([a, b], c c(Y))$, then there exists a constant M, such that

$$
\begin{gather*}
\sum_{i=1}^{n} D\left(H\left(t_{2 i}, u_{1}\left(t_{2 i}\right)\right)+H\left(t_{2 i-1}, u_{2}\left(t_{2 i-1}\right)\right)\right. \\
\left.H\left(t_{2 i-1}, u_{1}\left(t_{2 i-1}\right)\right)+H\left(t_{2 i}, u_{2}\left(t_{2 i}\right)\right)\right) \leq M\left\|u_{1}-u_{2}\right\| \tag{15}\\
\left(u_{1}, u_{2} \in B V_{p}([a, b], K)\right)
\end{gather*}
$$

Define the function $\alpha:[a, b] \rightarrow[0,1]$ in the following way:

$$
\alpha(\tau):= \begin{cases}0, & a \leq \tau \leq t_{0} \\ \frac{\tau-t_{i-1}}{t_{i}-t_{i-1}}, & t_{i-1} \leq \tau \leq t_{i}, i=1,3, \ldots, 2 n-1 \\ -\frac{\tau-t_{i}}{t_{i}-t_{i-1}}, & t_{i-1} \leq \tau \leq t_{i}, i=2,4, \ldots, 2 n \\ 0, & t \leq \tau \leq b\end{cases}
$$

The function $\alpha \in R V_{p}([a, b])$ and

$$
V_{p}(\alpha ;[a, b])=\frac{2^{p} n^{p}}{\left|t-t_{0}\right|^{p-1}}
$$

Let us fix $x, y \in K$ and define the functions $u_{i}:[a, b] \rightarrow K$ by:

$$
\begin{array}{ll}
u_{1}(\tau):=\frac{\alpha(\tau)}{2} x+\left(1-\frac{\alpha(\tau)}{2} y\right), & (\tau \in[a, b]) \tag{16}\\
u_{2}(\tau):=\frac{1+\alpha(\tau)}{2} x+\frac{1-\alpha(\tau)}{2} y, & (\tau \in[a, b])
\end{array}
$$

The functions $u_{i} \in R V_{p}([a, b], K)(i=1,2)$ and

$$
\left\|u_{1}-u_{2}\right\|_{p}=\frac{\|x-y\|}{2}
$$

Substituting in the inequality (15) the particular functions $u_{i}(i=1,2)$ defined in (16), we obtain

$$
\begin{align*}
& \sum_{i=1}^{n} D\left(H\left(t_{2 i-1}, x\right)+H\left(t_{2 i}, y\right), H\left(t_{2 i-1}, \frac{x+y}{2}\right)+H\left(t_{2 i}, \frac{x+y}{2}\right)\right) \leq \\
& \leq \frac{M}{2}\|x-y\|, \tag{17}
\end{align*}
$$

for all $x, y \in K$.
The Nemytskii operator N maps the space $R V p([a, b], K)$ into the space $B W([a, b], c c(Y))$, then for all $z \in K$, the function $H(\cdot, z) \in B W([a, b], c c(Y))$. Letting $t_{0} \uparrow t$ in the inequality (17), we get

$$
D\left(H^{*}(t, x)+H^{*}(t, y), H^{*}\left(t, \frac{x+y}{2}\right)+H^{*}\left(t, \frac{x+y}{2}\right)\right) \leq \frac{M}{2 n}\|x-y\|
$$

Passing to the limit when $n \rightarrow \infty$, we get
$H^{*}\left(t, \frac{x+y}{2}\right)+H^{*}\left(t, \frac{x+y}{2}\right)+H^{*}(t, y)+H^{*}(t, x), \quad(t \in[a, b], x, y \in K)$.
$H^{*}(t, x)$ is a convex set, then

$$
H^{*}\left(t, \frac{x+y}{2}\right)=\frac{1}{2}\left(H^{*}(t, x)+H^{*}(t, y)\right) \quad(t \in[a, b], x, y \in K)
$$

Thus for every $t \in[a, b]$, the set-valued function $H^{*}(t, \cdot)$ satisfies the Jensen equation. By Lemma 3 and by the property a) previously established, we get that for all $t \in[a, b]$ there exist an additive set-valued
function $A(t): K \rightarrow c c(Y)$ and a set $B(t) \in c c(Y)$, such that

$$
H^{*}(t, x)=A(t) x+B(t) \quad(t \in[a, b], x \in K)
$$

By the same reasoning as in the proof of Theorem 1, we obtain that $A(t)(\cdot) \in L(K, c c(Y))$ and $B \in B W([a, b] c c(Y))$.

References

[1] J. Matkowski, Functional equations and Nemytskii operators, Funkc. Ekvac. 25 (1982), 127-132.
[2] J. Matkowski and J. Miś, On a characterization of Lipschitzian operators of substitution in the space $B V[a, b]$, Math. Nachr. 117 (1984), 155-159.
[3] N. Merentes and K. Nikodem, On Nemytskij operator and set-valued functions of bounded p-variation Ravodi Mat., (to appear).
[4] K. Nikodem, K-convex and K-concave set-valued functions, Politechnika Łódzka, Zeszyty Naukowe, vol. 559, Rozprawy Naukowe z. 114, Łódź, 1989.
[5] F. Riesz, Untersuchugen über systeme integrierbarer funktionen, Math. Annalen 69 (1910), 449-497.
[6] H. RÅdström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[7] A. Smajdor and W. Smajdor, Jensen equation and Nemytskij operator for setvalued functions, Radovi Mat. 5 (1989), 311-319.
[8] G. ZaWadZka, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, Radovi Mat. 6 (1990), 179-193.

```
N. MERENTES
CENTRAL UNIVERSITY OF VENEZUELA
CARACAS
VENEZUELA
S. RIVAS
OPEN NATIONAL UNIVERSITY
CARACAS
venEzuela
```

(Received August 16, 1993; revised November 1, 1994)

[^0]: Mathematics Subject Classification: 47H99, 54C60, 39B70.
 Key words and phrases: Nemytskii operator, Composition operator, p-variation in the sense of Riesz, set-valued function.

