Publ. Math. Debrecen 47 / 1-2 (1995), 15–27

On Nemytskii operator in the space of set-valued functions of bounded *p*-variation in the sense of Riesz

By N. MERENTES (Caracas) and S. RIVAS (Caracas)

Abstract. We sonsider the Nemytskii operator, i.e. the composition operator defined by (Nu) (t) = H(t, u(t)), where H is a given set-valued function. It is shown that if the operator N maps the space of set-valued functions of bounded p-variation in the sense of Riesz into the space of set-valued functions of bounded q-variation in the sense of Riesz, there is $1 \le q \le p < \infty$, and if it is globally Lipschitzian, then it has to be of the form (Nu) (t) = A(t)u(t) + B(t), where A(t) are linear continuous set-valued and B is a set-valued function of bounded q-variation in the sense of Riesz. This generalizes results of G. ZAWADZKA [8], A. SMAJDOR and W. SMAJDOR [7], N. MERENTES and K. NIKODEM [3].

Introduction

In [7] A. SMAJDOR and W. SMAJDOR proved that every Nemytskii operator N, i.e. (Nu) (t) = H(t, u(t)) mapping the space Lip([a, b], cc(Y)) into itself and globally Lipschitzian has to be of the form

$$(Nu)(t) = A(t)u(t) + B(t), \quad u \in \operatorname{Lip}([a, b], cc(Y)), \quad t \in [a, b],$$

where A(t) are linear continuous set-valued functions and B is a setvalued function belonging to the space $\operatorname{Lip}([a, b]), cc(Y))$. For the first time a theorem of such a type for single-valued functions was proved by J. MATKOWSKI [1] in the space of Lipschitz functions. Similar characterizations of the Nemytskii operator have been also obtained by G. ZA-WADZKA (see [8]) in the space of set-valued functions of bounded variation in the classical Jordan sense. For single-valued functions it was proved by

Mathematics Subject Classification: 47H99, 54C60, 39B70.

Key words and phrases: Nemytskii operator, Composition operator, p-variation in the sense of Riesz, set-valued function.

J. MATKOWSKI and J. MIŚ [2]. Recently N. MERENTES and K. NIKODEM (see [3]) proved an analogous theorem in the space of set-valued functions of bounded *p*-variation in the sense of Riesz. The aim of this paper is prove an analogous result in the case when the Nemytskii operator N maps the space of set-valued functions of bounded *p*-variation in the sense of Riesz into the space of set-valued functions of bounded *q*-variation in the sense of Riesz, where $1 \le q \le p < \infty$ and N is globally Lipschitzian. The particular cases p = q has been already considered by N. MERENTES and K. NIKODEM (see [3]), but the present case of possibly different spaces requires a different proof technique, and this extension may turn out to be useful in some applications.

1. Preliminary results

Let $(X, \|\cdot\|)$ be a normed space and $p \ge 1$ be a fixed number. Given a function $u : [a, b] \to X$ and a partition $\pi : a = t_0 < \cdots < t_n = b$ of the interval [a, b], we define:

$$\sigma_p(u;\pi) := \sum_{i=1}^n \frac{\|u(t_i) - u(t_{i-1})\|^p}{|t_i - t_{i-1}|^{p-1}}$$

The number:

$$V_p(u, [a, b]; X) := \sup_{\pi} \sigma_p(u, \pi),$$

where the supremum is taken over all partitions π of [a, b], is called the *p*-variation of *u* in [a, b]. A function *u* is said to be of bounded *p*-variation if $V_p(u, [a, b]; X) < \infty$. Denote by $RV_p([a, b], X)$ the space of all functions $u : [a, b] \to X$ of bounded *p*-variation equipped with the norm

$$||u||_p := ||u(a)|| + (V_p(u, [a, b]; X))^{\frac{1}{p}}.$$

Clearly, for p = 1 the space $RV_1([a, b], X)$ coincides with the classical space BV([a, b], X) of functions of bounded variation. In the particular case when $X = \mathbb{R}$ and $1 , then we have the space <math>RV_p[a, b]$ of functions of bounded Riesz *p*-variation, and the following characterization is well-known:

Lemma 1 (see [5]). $u \in RV_p([a, b], \mathbb{R})$ if and only if u is absolutely continuous on [a, b] and its derivative $u' \in L_p([a, b]; \mathbb{R})$. In that case we also have the equality

$$V_p(u, [a, b]; \mathbb{R}) = \int_a^b |u'(t)|^p dt.$$

,

Let cc(X) be the family of all non-empty convex compact subsets of X and D be the Hausdorff metric in cc(X), i.e.

$$D(A,B) := \inf\{t > 0 : A \subseteq B + tS, B \subseteq A + tS\},\$$

where $S = \{y \in X : ||y|| \le 1\}.$

We say that a set-valued function $F : [a, b] \to cc(X)$ has bounded *p*-variation $(1 \le p < \infty)$ if

$$W_p(F, [a, b]; cc(X)) := \sup_{\pi} \sum_{i=1}^n \frac{(D(F(t_i), F(t_{i-1}))^p}{|t_i - t_{i-1}|^{p-1}} < \infty,$$

where the supremum is taken over all partitions π of [a, b].

Denote by $RW_p([a, b]; cc(X))$ the space of all set-valued functions $F : [a, b] \to cc(X)$ of bounded *p*-variation equipped with the metric

$$D_p(F_1, F_2) :=$$

$$D(F_1(a), F_2(a)) + \left(\sup_{\pi} \sum_{i=1}^n \frac{(D(F_1(t_i) + F_2(t_{i-1}), F_1(t_{i-1}) + F_2(t_i)))^p}{|t_i - t_{i-1}|^{p-1}} \right)^{\frac{1}{p}}.$$

Clearly, for p = 1 the space $RW_1([a, b]; cc(X))$ coincides with the space BV([a, b]; cc(X)) of set-valued functions of bounded variation.

Now, let $(X \| \cdot \|)$, $(Y, \| \cdot \|)$ be two normed spaces and K be a convex cone in X. Given a set-valued function $H : [a, b] \times K \to cc(Y)$ we consider the Nemytskii operator N genereted by H, that is the composition operator defined by:

$$(Nu)(t) := H(t, u(t)), \quad u : [a, b] \to K, \quad t \in [a, b].$$

We denote by L(K; cc(Y)) the space of all set-valued function $A : K \to cc(Y)$ additive and positively homogeneous. We say that A is linear if $A \in L(K; cc(Y))$.

In the proof of the main results of this paper we will use some facts which we list here as lemmas.

Lemma 2 (see [6], Lemma 3). Let $(X, \|\cdot\|)$ be a normed space and let A, B, C be subsets of X. If A, B are convex compact and C is non-empty and bounded, then

$$D(A+C, B+C) = D(A, B).$$

Lemma 3 (see [4], Th. 5.6). Let $(X, \|\cdot\|)$, $(Y\|\cdot\|)$ be normed spaces and K be a convex cone in X. A set-valued function $F : K \to cc(Y)$ satisfies the Jensen equation

$$F\left(\frac{x+y}{2}\right) = \frac{1}{2}(F(x) + F(y)), \quad x, y \in K,$$

if and only if there exists an additive set-valued function $A: K \to cc(Y)$ and a set $B \in cc(Y)$ such that F(x) = A(x) + B, $x \in K$.

Lemma 4. If $F \in RW_p([a, b], cc(Y))$ with p > 1, then F is continuous. In the case p = 1, we have $F^-(\cdot, x) \in BW([a, b], cc(Y))$ for all $x \in K$, where

$$F^{-}(t,x) := \begin{cases} \lim_{s \uparrow t} F(s,x), & t \in (a,b], \ x \in K, \\ F(a,x), & t = a, \ x \in K. \end{cases}$$

PROOF. For 1 , this follows immediately from the inequality

$$D(F(t), F(t_0)) = \left(\frac{(D(F(t), F(t_0)))^p |t - t_0|^{p-1}}{|t - t_0|^{p-1}}\right)^{\frac{1}{p}}$$

$$\leq W_p(F, [a, b]; cc(Y)) |t - t_0|^{1 - \frac{1}{p}}.$$

For the case p = 1, see [8].

2. Main results

In this section we shall present a characterization of functions H: $[a,b] \times K \to cc(Y)$ for which the Nemytskii operator N generated by H maps the space $RV_p([a,b],K)$ into the space $RW_q([a,b],cc(Y))$, where 1 < q < p, and it is globally Lipschitzian. On the other hand if 1 ,then the Nemytskii operator <math>N is constant.

Theorem 1. Let $(X, \|\cdot\|), (Y, \|\cdot\|)$ be normed spaces and K be a convex cone in X and 1 < q < p. If the Nemytskii operator N generated by a set-valued function $H : [a, b] \times K \to cc(Y)$ maps the space $RV_p([a, b], K)$ into the space $RW_q([a, b], cc(Y))$ and if it is globally Lipschitzian, then the set-valued function H satisfies the following conditions:

a) For all $t \in [a, b]$ there exists M(t), such that

(1)
$$D(H(t,x), H(t,y)) \le M(t) ||x-y|| \quad (x, y \in X)$$

On Nemytskii operator in the space of set-valued functions ...

19

b) H(t, x) = A(t)x + B(t) $(t \in [a, b], x \in K)$, where $A : [a, b] \to L(K, cc(Y))$ and $B \in RW_q([a, b], cc(Y))$.

PROOF. The Nemytskii operator N is globally Lipschitzian, then there exists a constant M, such that

$$D_q(Nu_1, Nu_2) \le M \|u_1 - u_2\|_p \quad (u_1, u_2 \in RV_p([a, b], K)).$$

Let $t \in (a, b]$. Using the definition of the operator N and of the metric D_q we have

(2)
$$D_q(H(t, u_1(t))) + H(a, u_2(a)), H(a, u_1(a)) + H(t, u_2(t))) \leq M|t-a|^{1-\frac{1}{q}} ||u_1 - u_2||_p, \quad (u_1, u_2 \in RV_p([a, b], K)).$$

Define the function $\alpha: [a, b] \to [0, 1]$ by:

$$\alpha(\tau) := \begin{cases} \frac{\tau - a}{t - a}, & a \le \tau \le t, \\ 1, & t \le \tau \le b. \end{cases}$$

The function $\alpha \in RV_p[a, b]$ and

$$V_p(\alpha; [a, b]) = \frac{1}{|t - a|^{p-1}}.$$

Let us fix $x, y \in K$ and define the functions $u_i : [a, b] \to K$ (i = 1, 2) by:

(3)
$$u_1(\tau) := x, \quad \tau \in [a, b], \quad u_2(\tau) := \alpha(\tau)(y - x) + x, \ \tau \in [a, b].$$

The functions $u_i \in RV_p([a, b], K)$ (i = 1, 2) and

$$||u_1 - u_2||_p = (V_p(\alpha; [a, b]))^{\frac{1}{p}} ||x - y|| = \frac{||x - y||}{|t - a|^{1 - \frac{1}{p}}}$$

Hence, substituting in inequality (2) the particular functions u_i (i = 1, 2) defined by (3), we obtain

(4)
$$D(H(t,x) + H(a,x), H(a,x) + H(t,y)) \le M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}} ||x-y||,$$

for all $t \in [a, b], x, y \in K$.

By Lemma 2 and the inequality (4) we have

$$D(H(t,x),H(t,y)) \le M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}} ||x-y||,$$

for all $t \in (a, b], x, y \in K$.

Now, let t = a. Define the function $\beta : [a, b] \to [0, 1]$ by

$$\beta(\tau) := \frac{\tau - a}{b - a}, \quad (\tau \in [a, b]).$$

The function $\beta \in RV_p[a,b]$ and

$$\beta(\tau) = \frac{1}{|b-a|^{p-1}}.$$

Let us fix $x, y \in K$ and define the functions $u_i : [a, b] \to K$ (i = 1, 2) by

(5)
$$u_1(\tau) := x \quad \tau \in [a, b], \quad u_2(\tau) := \beta(\tau)(x - y) + y, \ \tau \in [a, b].$$

The functions $u_i \in RV_p([a, b], K) \ (i = 1, 2)$ and

$$||u_1 - u_2||_p = \left(1 + \left(V_p(\beta; [a, b])\right)^{\frac{1}{p}}\right)||x - y|| = \left(1 + \frac{1}{|b - a|^{1 - \frac{1}{p}}}\right)||x - y||.$$

Hence, substituting in the inequality (2), the particular functions u_i (i = 1, 2) defined by (5), we obtain

$$D(H(b,x) + H(a,y), H(a,x) + H(b,x)) \le \le M|b-a|^{1-\frac{1}{q}} \left(1 + \frac{1}{|b-a|^{1-\frac{1}{p}}}\right) \|x-y\|.$$

By Lemma 2 and the above inequality, we have

$$D(H(a,y),H(a,x)) \le M|b-a|^{1-\frac{1}{q}} \left(1 + \frac{1}{|b-a|^{1-\frac{1}{p}}}\right) \|x-y\|.$$

Define the function $M:[a,b] \to \mathbb{R}$ by

$$M(t) := \begin{cases} M \frac{|t-a|^{1-\frac{1}{q}}}{|t-a|^{1-\frac{1}{p}}}, & a < t \le b, \\ M|b-a|^{1-\frac{1}{q}} \left(1 + \frac{1}{|b-a|^{1-\frac{1}{p}}}\right), & t = a. \end{cases}$$

Hence

$$D(H(t,x), H(t,y)) \le M(t) ||x - y|| \quad (x, y \in X, \ t \in [a,b]),$$

and, consequently, for every $t \in [a,b]$ the function $H(t,\cdot): K \to cc(Y)$ is continuous.

20

Next we shall prove that H satisfies equality b).

Let us fix $t, t_0 \in [a, b]$ such that $t_0 < t$. Since the Nemytskii operator N is globally Lipschitzian, there exists a constant M, such that

(6)
$$D(H(t, u_1(t)) + H(t_0, u_2(t_0)), H(t_0, u_1(t_0)) + H(t, u_2(t))) \le$$

 $\le M ||u_1 - u_2||_p |t - t_0|^{1 - \frac{1}{q}}.$

Define the function $\gamma : [a, b] \to [0, 1]$ by

$$\gamma(\tau) := \begin{cases} \frac{\tau - a}{t_0 - a}, & a \le \tau \le t_0, \\ -\frac{\tau - t}{t - t_0}, & t_0 \le \tau \le t, \\ 0, & t \le \tau \le b. \end{cases}$$

The function $\gamma \in RV_p[a, b]$.

Let us fix $x, y \in K$ and define the functions $u_i : [a, b] \to K$ by

(7)
$$u_{1}(\tau) := \frac{\gamma(\tau)}{2}x + \left(1 - \frac{\gamma(\tau)}{2}\right)y, \quad (\tau \in [a, b])$$
$$u_{2}(\tau) := \frac{1 + \gamma(\tau)}{2}x + \frac{1 - \gamma(\tau)}{2}y, \quad (\tau \in [a, b]).$$

The functions $u_i \in RV_p([a, b], K)$ (i = 1, 2) and

$$||u_1 - u_2||_p = \frac{||x - y||}{2}.$$

Hence, substituting in the inequality (6) the particular functions u_i (i = 1, 2) defined by (7), we obtain

(8)
$$D\left(H(t_0, x) + H(t, y), H\left(t_0, \frac{x+y}{2}\right) + H\left(t, \frac{x+y}{2}\right)\right) \le \frac{M}{2} |t-t_0|^{1-\frac{1}{q}} ||x-y||.$$

Since N maps $RV_p([a, b], K)$ into $RW_q([a, b], cc(Y))$ (1 < q < p), then $H(\cdot, z)$ is continuous for all $z \in K$. Hence, letting $t_0 \uparrow t$ in the inequality (8), we get

$$D\left(H(t,x) + H(t,y), H\left(t,\frac{x+y}{2}\right) + H\left(t,\frac{x+y}{2}\right)\right) = 0,$$

for all $t \in [a, b]$ and $x, y \in K$.

Thus for all $t \in [a, b], x, y \in K$, we have

$$H\left(t,\frac{x+y}{2}\right) + H\left(t,\frac{x+y}{2}\right) = H(t,x) + H(t,y).$$

Since that values of H are convex, we have

(9)
$$H\left(t, \frac{x+y}{2}\right) = \frac{1}{2}(H(t, x) + H(t, y)),$$

for all $t \in [a, b]$, $x, y \in K$. Thus for all $t \in [a, b]$, the set-valued function $H(t, \cdot) : K \to cc(Y)$ satisfies the Jensen equation (9). Now by the Lemma 3, there exists an additive set-valued function $A(t) : K \to cc(Y)$ and a set $B(t) \in cc(Y)$, such that

$$H(t,x) = A(t)(x) + B(t), \quad (x \in K, t \in [a,b]).$$

Substituting H(t, x) = A(t)(x) + B(t) into inequality (1), we obtain, for all $t \in [a, b]$ that there exists M(t), such that

$$D(A(t)(x), A(t)(y)) \le M(t) ||x - y|| \quad (x, y \in K),$$

consequently, the set-valued function $A(t) : K \to cc(Y)$ is continuous, and $A(t)(\cdot) \in L(K, cc(Y))$.

 $A(t)(\cdot)$ is additive and $0 \in K$, then $A(t) = \{0\}$, thus $H(\cdot, 0) = B(\cdot)$.

The Nemytskii operator N maps the space $RV_p([a, b], K)$ into the space $RW_q([a, b], c(Y))$, then $H(\cdot, 0) = B(\cdot) \in RW_q([a, b], K)$. Consequently the set-valued function H has to be of the form

$$H(t,x) = A(t)(x) + B(t),$$

for all $t \in [a, b]$, $x \in K$, where $A(t) \in L(K, cc(Y))$ and $B \in RW_q([a, b], cc(Y))$.

Theorem 2. Let $(X, \|\cdot\|)$, $(Y, \|\cdot\|)$ be normed spaces, K a convex cone in X and 1 . If the Nemytskii operator <math>N generated by a set-valued function $H : [a, b] \times K \to cc(Y)$ maps the space $RV_p([a, b], K)$ into the space $RW_q([a, b], cc(Y))$ and if it is globally Lipschitzian, then the set-valued function H satisfies the following condition

$$H(t, x) = H(t, 0) \quad (t \in [a, b], \ x \in K);$$

i.e. the Nemytskii operator is constant.

PROOF. Since the Nemytskii operator N is globally Lipschitzian between $RV_p([a,b], K)$ and the space $RW_q([a,b], cc(Y))$, 1 , thenthere exists a constant M, such that

$$D_q(Nu_1, Nu_2) \le M \|u_1 - u_2\|_p$$
 $(u_1, u_2 \in RV_p([a, b], K))$

22

Let us fix $t, t_0 \in [a, b]$ such that $t_0 < t$. Using the definitions of the operator N and of the metric D_q , we have

(10)
$$D(H(t, u_1(t)) + H(t_0, u_2(t_0)), H(t_0, u_1(t_0)) + H(t, u_2(t)) \le$$

 $\le M |t - t_0|^{1 - \frac{1}{q}} ||u_1 - u_2||_p, \quad (u_1, u_2 \in RV_p([a, b], K).$

Define the function $\alpha : [a, b] \to [0, 1]$ by

$$\alpha(\tau) := \begin{cases} 1, & a \le \tau \le t_0, \\ -\frac{\tau - t}{t - t_0}, & t_0 \le \tau \le t, \\ 0, & t \le \tau \le b. \end{cases}$$

The function $\alpha \in RV_p[a, b]$ and

$$V_p(\alpha; [a, b]) = \frac{1}{|t - t_0|^{p-1}}.$$

Let us fix $x \in K$ and define the functions $u_i : [a, b] \to K$ (i = 1, 2) by

(11)
$$u_1(\tau) := x \quad \tau \in [a, b], \quad u_2(\tau) := \alpha(\tau)x \quad \tau \in [a, b].$$

The functions $u_i \in RV_p([a, b], K)$ (i = 1, 2) and

$$||u_1 - u_2||_p = \frac{||x||}{|t - t_0|^{1 - \frac{1}{p}}}$$

Hence, substituting in the inequality (10) the particular functions u_i (i = 1, 2) defined by (11), we obtain

$$D(H(t,x) + H(t_0,x), H(t_0,x) + H(t,0)) \le M \frac{|t - t_0|^{1 - \frac{1}{q}}}{|t - t_0|^{1 - \frac{1}{p}}} ||x||.$$

By Lemma 2 and the above inequality, we get

$$D(H(t,x),H(t,0)) \le M \frac{|t-t_0|^{1-\frac{1}{q}}}{|t-t_0|^{1-\frac{1}{p}}} \|x\|.$$

Since q > p. Letting $t_0 \uparrow t$ in the above inequality, we have D(H(t, x), H(t, 0)) = 0, thus for all $t \in [a, b]$ and for all $x \in K$, we get

$$H(t,x) = H(t,0).$$

Theorem 3. Let $(X, \|\cdot\|), (Y, \|\cdot\|)$ be normed spaces, K be a convex cone in X and 1 . If the Nemytskii operator <math>N generated by a set-valued function $H : [a, b] \times K \to cc(Y)$ maps the space $RV_p([a, b], K)$ into the space BW([a, b], cc(Y)) and if it is globally Lipschitzian, then the left regularization $H^* : [a, b] \times K \to cc(Y)$ of the function H defined by

$$H^{*}(t,x) := \begin{cases} H^{-}(t,x), & t \in (a,b], \ x \in K, \\ \lim_{s \downarrow a} H(s,x), & t = a, \ x \in K, \end{cases}$$

satisfies the following conditions:

a) for all $t \in [a, b]$ there exists M(t), such that

$$D_1(H^*(t,x), H^*(t,y)) \le M(t) ||x-y|| \quad (x,y \in X)$$

b) $H^*(t,x) = A(t)x + B(t)$ $(t \in [a,b], x \in K)$, where A(t) is linear continuous set-valued function, and $B \in BW([a,b], cc(Y))$.

PROOF. Take $t \in [a, b]$, and define the function $\alpha : [a, b] \to [0, 1]$ by:

$$\alpha(t) := \begin{cases} 1, & a \le \tau \le t, \\ \frac{\tau - b}{t - b}, & t \le \tau \le b. \end{cases}$$

The function $\alpha \in RV_p[a, b]$ and

$$V_p(\alpha, [a, b]) = \frac{1}{|b - t|^{p-1}}$$

Let us fix $x, y \in K$ and define the functions $u_i : [a, b] \to K$ (i = 1, 2) by

(12)
$$u_1(\tau) := x \quad \tau \in [a,b], \quad u_2(\tau) := \alpha(\tau)(y-x) + x, \quad \tau \in [a,b].$$

The functions $u_i \in RV_p([a, b], K)$ (i = 1, 2) and

$$||u_1 - u_2||_p = (V_p(\alpha; [a, b]))^{\frac{1}{p}} ||x - y|| = \left(1 + \frac{1}{|b - t|^{1 - \frac{1}{p}}}\right) ||x - y||.$$

Since the Nemytskii operator N is globally Lipschitzian between $RV_p([a, b], K)$ and BW([a, b], cc(Y)), then there exists a constant M, such that

$$D(H(b, u_1(b)) + H(t, u_2(t)), H(t, u_1(t)) + H(b, u_2(b)) \le M ||u_1 - u_2||_p.$$

By Lemma 2, substituting the particular functions u_i (i = 1, 2) defined by (12) in the above inequality, we obtain

(13)
$$D(H(t,x), H(t,y)) \le M(t) ||x-y|| \quad (x,y \in K, t \in [a,b]),$$

where

$$M(t) := M\left[1 + \frac{1}{|b-t|^{1-\frac{1}{p}}}\right]$$

In the case where t = b, by a similar reasoning as above, we obtain that there exists a constant M(b), such that

(14)
$$D(H(b,x), H(b,y)) \le M(b) ||x-y|| \quad (x,y \in K).$$

Hence, passing to the limit in the inquality (13) by the inequality (14) and the definition of H^* we have for all $t \in [a, b]$ that there exists M(t), such that

$$D(H^*(t,x), H^*(t,y)) \le M(t) ||x-y|| \quad (x,y \in K).$$

Now we shall proof that H^* satisfies the following equality

$$H^*(t,x) = A(t)x + B(t) \quad (t \in [a,b], \ x \in K),$$

where A(t) is linear continuous set-valued functions, and $B \in BW([a, b], cc(Y))$.

Let us fix $t, t_0 \in [a, b]$, $n \in \mathbb{N}$ such that $t_0 < t$. Define the partition π_n of the interval $[t_0, t]$ by $\pi_n : a < t_0 < t_1 < \cdots < t_{2n-1} < t_{2n} = t$, where

$$t_i - t_{i-1} = \frac{t - t_0}{2n}, \quad i = 1, 2, \dots, 2n.$$

The Nemytskii operator N is globally Lipschitzian between RVp([a, b], K) and BW([a, b], cc(Y)), then there exists a constant M, such that

(15)
$$\sum_{i=1}^{n} D(H(t_{2i}, u_1(t_{2i})) + H(t_{2i-1}, u_2(t_{2i-1}))),$$
$$H(t_{2i-1}, u_1(t_{2i-1})) + H(t_{2i}, u_2(t_{2i}))) \leq M ||u_1 - u_2||$$
$$(u_1, u_2 \in BV_p([a, b], K)).$$

Define the function $\alpha : [a, b] \to [0, 1]$ in the following way:

$$\alpha(\tau) := \begin{cases} 0, & a \le \tau \le t_0, \\ \frac{\tau - t_{i-1}}{t_i - t_{i-1}}, & t_{i-1} \le \tau \le t_i, \ i = 1, 3, \dots, 2n - 1, \\ -\frac{\tau - t_i}{t_i - t_{i-1}}, & t_{i-1} \le \tau \le t_i, \ i = 2, 4, \dots, 2n, \\ 0, & t \le \tau \le b. \end{cases}$$

The function $\alpha \in RV_p([a, b])$ and

$$V_p(\alpha; [a, b]) = \frac{2^p n^p}{|t - t_0|^{p-1}}$$

Let us fix $x, y \in K$ and define the functions $u_i : [a, b] \to K$ by:

(16)
$$u_{1}(\tau) := \frac{\alpha(\tau)}{2}x + \left(1 - \frac{\alpha(\tau)}{2}y\right), \quad (\tau \in [a, b])$$
$$u_{2}(\tau) := \frac{1 + \alpha(\tau)}{2}x + \frac{1 - \alpha(\tau)}{2}y, \quad (\tau \in [a, b]).$$

The functions $u_i \in RV_p([a, b], K)$ (i = 1, 2) and

$$||u_1 - u_2||_p = \frac{||x - y||}{2}.$$

Substituting in the inequality (15) the particular functions u_i (i = 1, 2) defined in (16), we obtain

$$\sum_{i=1}^{n} D\left(H(t_{2i-1}, x) + H(t_{2i}, y), H\left(t_{2i-1}, \frac{x+y}{2}\right) + H\left(t_{2i}, \frac{x+y}{2}\right)\right) \le (17) \le \frac{M}{2} \|x-y\|,$$

for all $x, y \in K$.

The Nemytskii operator N maps the space RVp([a, b], K) into the space BW([a, b], cc(Y)), then for all $z \in K$, the function $H(\cdot, z) \in BW([a, b], cc(Y))$. Letting $t_0 \uparrow t$ in the inequality (17), we get

$$D\left(H^{*}(t,x) + H^{*}(t,y), H^{*}\left(t,\frac{x+y}{2}\right) + H^{*}\left(t,\frac{x+y}{2}\right)\right) \leq \frac{M}{2n} \|x-y\|$$

Passing to the limit when $n \to \infty$, we get

$$H^*\left(t, \frac{x+y}{2}\right) + H^*\left(t, \frac{x+y}{2}\right) + H^*(t, y) + H^*(t, x), \quad (t \in [a, b], \ x, y \in K).$$

 $H^*(t,x)$ is a convex set, then

$$H^*\left(t, \frac{x+y}{2}\right) = \frac{1}{2}(H^*(t, x) + H^*(t, y)) \quad (t \in [a, b], x, y \in K).$$

Thus for every $t \in [a, b]$, the set-valued function $H^*(t, \cdot)$ satisfies the Jensen equation. By Lemma 3 and by the property a) previously established, we get that for all $t \in [a, b]$ there exist an additive set-valued

function $A(t): K \to cc(Y)$ and a set $B(t) \in cc(Y)$, such that

$$H^*(t,x) = A(t)x + B(t) \quad (t \in [a,b], \ x \in K).$$

By the same reasoning as in the proof of Theorem 1, we obtain that $A(t)(\cdot) \in L(K, cc(Y))$ and $B \in BW([a, b]cc(Y))$.

References

- J. MATKOWSKI, Functional equations and Nemytskii operators, Funkc. Ekvac. 25 (1982), 127–132.
- [2] J. MATKOWSKI and J. MIŚ, On a characterization of Lipschitzian operators of substitution in the space BV[a, b], Math. Nachr. 117 (1984), 155–159.
- [3] N. MERENTES and K. NIKODEM, On Nemytskij operator and set-valued functions of bounded *p*-variation *Ravodi Mat.*, (to appear).
- [4] K. NIKODEM, K-convex and K-concave set-valued functions, Politechnika Łódzka, Zeszyty Naukowe, vol. 559, Rozprawy Naukowe z. 114, Łódź, 1989.
- [5] F. RIESZ, Untersuchugen über systeme integrierbarer funktionen, Math. Annalen 69 (1910), 449–497.
- [6] H. RÅDSTRÖM, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165–169.
- [7] A. SMAJDOR and W. SMAJDOR, Jensen equation and Nemytskij operator for setvalued functions, *Radovi Mat.* 5 (1989), 311–319.
- [8] G. ZAWADZKA, On Lipschitzian operators of substitution in the space of set-valued functions of bounded variation, *Radovi Mat.* 6 (1990), 179–193.

N. MERENTES CENTRAL UNIVERSITY OF VENEZUELA CARACAS VENEZUELA

S. RIVAS OPEN NATIONAL UNIVERSITY CARACAS VENEZUELA

(Received August 16, 1993; revised November 1, 1994)