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Nullstellensatz theorems and radical classes

By N. R. McCONNELL (Queensland) and TIMOTHY STOKES (Tasmania)

Let U be a universal class of associative rings. It is well-known that
the class of nil rings in U is a radical class. For a field K, finitely generated
commutative nil K-algebras are significant in algebraic geometry because
of their relationship to the Hilbert Nullstellensatz, which states that for
all I / K[x1, x2, . . . , xn], the nil radical of K[x1, x2, . . . , xn]/I is IV(I)/I
where IV(I) is the ideal of all polynomials which vanish over any algebraic
closure L of K whenever all polynomials in I vanish over L. We show
that such a situation is typical for any universal class U of multioperator
groups: whenever there is some kind of a Nullstellensatz (literally, “zero
place theorem”) for some R in the variety generated by U , there is a
corresponding induced radical class, and the radical and semisimple objects
may be described in terms of the Nullstellensatz for R. This leads to
information about the possible kinds of Nullstellensatz theorems which
can arise. A number of examples for groups and rings are considered.

Throughout, N is the set of natural numbers, and Q, R and C are the
rings of rational, real and complex numbers respectively.

1. Multi-operator groups

Multi-operator groups of signature Ω are henceforth referred to as Ω-
groups, as in [2]. We refer the reader to [2] for the definition and proofs of
basis properties of Ω-groups. We shall use additive notation for the group
operation on all Ω-groups, whether or not the operation is commutative,
consistent with the notational convention used in [2].

Let M be an Ω-group, I a normal subgroup of 〈M, +〉. I is an ideal
of M if for each n ∈ N and each n-ary operator % ∈ Ω,

− %(a1, a2, . . . , aj−1, i + aj , aj+1, . . . , an)+

+ %(a1, a2, . . . , aj−1, aj , aj+1, . . . , an) ∈ I,
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for all ak ∈ M , i ∈ I, j = 1, 2, . . . , n. Notation: I / M . This definition re-
duces to the usual definitions of normal subgroup, ideal and R-submodule
(where R is an associative ring) in the universal classes of groups, rings
and R-modules respectively.

Let I be a normal subgroup of the Ω-group M . From ([2], p.101), I
is an ideal of M if and only if the quotient group M/I is a Ω-group, with
the mapping %n defined by

%n(a1 + I, a2 + I, . . . , an + I) = %n(a1, a2, . . . , an) + I

for all a1, a2, . . . , an ∈ M .
The set of ideals of the Ω-group M is a complete lattice where meet

is intersection, and join is additive normal subgroup product, as is shown
in [2]. Hence the join of a set of ideals {Iλ : λ ∈ Λ} of M is denoted by∑{Iλ : λ ∈ Λ}; the join of two ideals I, J / M will be denoted by I + J .

For S ⊆ M , the ideal generated by S is the smallest ideal of M con-
taining S, and is denoted by (S)M . If S = {s1, s2, . . . , sr} ⊆ M , then
(S)M will often be denoted by (s1, s2, . . . , sr)M .

Let W be a variety, with G a class of free Ω-groups in W. Let Q(G)
denote the class of all homomorphic images in W of the elements of G. If
G is all free Ω-groups in the variety W, then Q(G) is the universal class
W. If W is the variety of commutative rings and G is all finitely generated
free commutative rings, then Q(G) is the universal class of all finitely
generated commutative rings; similar remarks apply for abelian groups,
K-vector spaces and commutative K-algebras for any field K.

2. Closure operations and radical classes

We now introduce the concept of a radical operation, which provides
a characterisation of the notion of a radical class that is particularly useful
for our purposes. Recall that a closure operation on some set P of subsets
of a set S is a function C : P → P, satisfying, for all X,Y ∈ P:

(i) X ⊆ C(X);
(ii) if X ⊆ Y , then C(X) ⊆ C(Y ); and
(iii) C(C(X)) = C(X).

Definition 2.1. A radical operation on a class of Ω-groups U is a col-
lection C = {CR : R ∈ U} where each CR is a closure operation on the set
of ideals of R, such that for all R, S ∈ U , if I, K / R with K ⊆ I, J / S,
and I/K ∼= CS(J)/J , then I ⊆ CR(K).

For Ω-groups, a radical class can be defined as follows (c.f. Defini-
tion 1.3.1 of [1]):
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Definition 2.2. A non-empty subclass R of a universal class U of Ω-
groups is a radical class if

(a) A ∈ R, A ∼= B imply B ∈ R,
(b) I / A ∈ R implies A/I ∈ R,
(c) R(A) =

∑{J : J / A, J ∈ R} ∈ R for any A ∈ U and
(d) R(A/R(A)) = {0} for any A ∈ U .

A ∈ U is said to be R-radical if R(A) = A (equivalently, if A ∈ R)
and R-semisimple if R(A) = {0}.

Theorem 2.3. Let U be a universal class of Ω-groups.
(i) Let R be a radical class on U . For all R ∈ R and I / R, define

CR(I) =
∑

{J : J / R, I ⊆ J, J/I ∈ R}.

Then C = {CR : R ∈ U} is a radical operation on U .

(ii) Let C = {CR : R ∈ U} be a radical operation on U . Then

R = {A : there exist R ∈ U and M / R such that A ∼= CR(M)/M}
is a radical class on U , and R(A) = CA({0}) for all A ∈ U .

Proof. (i) If R is a radical class, let I, K be ideals of R ∈ U , J an
ideal of S ∈ U with K ⊆ I and I/K ∼= CS(J)/J . Then CS(J)/J ∈ R
(from the definition of CS and by (c) of Definition 2.2), so I/K ∈ R too.
But then by the definition of CR, I ⊆ CR(K), so C is a radical operation.

(ii) (a) of Definition 2.2 is immediate from the definition of a radical
operation. Let R be as described in the theorem. If I / A ∈ R, let
A ∼= CR(J)/J for some J / R, R ∈ U , and let I ∼= M/J . Then A/I ∼=
(CR(J)/J)/(M/J) ∼= CR(J)/M . Now J ⊆ M , so CR(J) ⊆ CR(M); also
M ⊆ CR(J), so CR(M) ⊆ CR(CR(J)) = CR(J), and so CR(J) = CR(M).
Thus A/I ∼= CR(M)/M ∈ R and (b) holds.

For R as above, let R(A) be defined as in (c) for A ∈ U , and consider
J ∈ R. Then there exist R, K with K / R and J ∼= CR(K)/K. Hence
J/{0} ∼= CR(K)/K, so J ⊆ CA({0}) and so R(A) ⊆ CA({0}). But
CA({0}) ∼= CA({0})/{0} ∈ R, so CA({0}) ⊆ R(A). That is, R(A) =
CA({0}) ∈ R and (c) holds.

Finally, let L / A/R(A) = A/CA({0}), and let L ∼= M/CA({0}). If
L ∈ R, then M/CA({0}) ∼= CR(J)/J for some J / R ∈ U . Thus M ⊆
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CA(CA({0})), so L = {0} and R(A/R(A)) = {0}. Hence (d) holds and R
is a radical class. ¤

Hence there is a one-to-one correspondence between radical operations
on U and radical classes in U .

Proposition 2.4. Let G be a class of free Ω–groups in the variety W
such that U = Q(G) is a universal class. Let C = {CF : F ∈ G} be a radical

operation on G. For all F ∈ G, J / F and R ∼= F/J ∈ U via ψ : F/J → R,

define CR(I) / R by setting CR(I) = ψ(CF (I ′)/J), where I ′ / F satisfies

I ∼= I ′/J . Then CU = {CR : R ∈ U} is a radical operation on U .

Proof. First we show that CR is well-defined for each R ∈ Q(G),
that is, that it is independent of the representation of R as a quotient of
a free Ω-group. Let F , G ∈ G and J / F , K / G be such that there exist
isomorphisms ψ : F/J → R, φ : G/K → R. Let I / R, with IF / F and
IG / G such that ψ(IF /J) = I = φ(IG/K). Define CR(I) = φ(CF (IF )/J).

Now there exists N / G with IG ⊆ N and CR(I) = φ(N/K). Hence
CF (IF /J) ∼= N/K, so CF (IF )/IF

∼= (CF (IF )/J)/(IF /J) ∼=
(N/K)/(IG/K) ∼= N/IG, so by Definition 2.1, N ⊆ CG(IG). Similarly we
may define C ′R in terms of G, and there exists M / F with IF ⊆ M such
that C ′R(I) = ψ(M/J). Then CG(IG)/K ∼= M/J , and we may obtain M ⊆
CF (IF ) as above. So CR(I) ∼= N/K ⊆ CG(IG)/K ∼= M/J ⊆ CF (IF )/J ∼=
CR(I), so that in fact N/K = CG(IG)/K and M/J = CF (IF )/J , and so
CR(I) = C ′R(I) as required. Hence CR is indeed well-defined.

Clearly CR is a closure operation for all R ∈ U . Suppose R, S ∈ U ,
I, K / R, K ⊆ I, J / S and I/K ∼= CS(J)/J , and let S ∼= F/N , R ∼= G/M

for some F, G ∈ G. Let I ∼= I ′/M , K ∼= K ′/M , J ∼= J ′/N . Then I ′/K ′ ∼=
(I ′/M)/(K ′/M) ∼= I/K ∼= CS(J)/J ∼= (CG(J ′)/N)/(J ′/N) ∼= CG(J ′)/J ′,
so by assumption I ′ ⊆ CF (K ′); that is, I ∼= I ′/M ⊆ CF (K ′)/M ∼= CR(K).
Hence CU is a radical operation. ¤

Hence if U = Q(G) for some collection of free Ω-groups G in some
variety W, then any radical operation on Q(G) is completely determined
by its effect on the free Ω-groups in Q(G).

Let U be a universal class. Denote by RC the radical class in U
associated with the radical operation C defined on U . If U = Q(G) where
G ⊆ W is a collection of free Ω-groups, and C is a radical operation on
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G, let RC denote the radical class on Q(G) associated with the induced
radical operation on all of Q(G) as in Proposition 2.4.

Proposition 2.5. Let C = {CR : R ∈ U} be a radical operation on U ,
I / M ∈ U . Then RC(M/I) = CM (I)/I.

Proof.

RC(M/I) =
∑

{J/I : J/I / M/I, J/I ∈ RC}
=

∑
{J : J / M, I ⊆ J, J/I ∈ RC}/I

= CM (I)/I. ¤

Lemma 2.6. Let G be a class of free Ω-groups in W such that Q(G)
is a universal class, with C = {CF : F ∈ G} a family of closure operations
on G. The following conditions are equivalent.

(i) C is a radical operation on G.

(ii) Let F, G ∈ G. For I, K / F with CF (K) ⊆ I and J / G, if
I/CF (K) ∼= CG(J)/J , then I = CF (K).

Proof. Suppose (ii) holds. We show that, whenever I,K / F with
K ⊆ I, J / G, if I/K ∼= CG(J)/J , then I ⊆ CF (K). Suppose rather that
I properly contains CF (K). Then CF (K) / I and (I/K)/(CF (K)/K) ∼=
I/CF (K), and so {0} 6= I/CF (K) ∼= (CG(J)/J)/(L/J) ∼= CG(J)/L, for
some ideal L of G satisfying J ⊆ L ⊆ CG(J), whence CF (J) ⊆ CG(L) ⊆
CG(CG(J)), so that CG(J) = CG(L). Thus I/CF (K) ∼= CG(L)/L 6= {0},
which is impossible by assumption, so I ⊆ CF (K), and C is a radical
operation, that is, (i) holds. The converse is clear. ¤

3. Ideals and zero sets over Ω-groups

Let W be a variety of Ω-groups, M ∈ W. Let FX be a free Ω-group
in W on the generators X = {xi : i ∈ J }, J an index set. Let MX be
the set of functions X → M viewed as the |X|-fold Cartesian product of
copies of M ; (ai) denotes a typical element of MX .

FX may be be viewed as an algebra of (not necessarily distinct) poly-
nomial functions acting on elements of MX by substitution. For any
f ∈ FX , we shall use the notation f(a) to denote the result of substi-
tuting each ai in a = (ai) ∈ MX for the corresponding xi ∈ X occurring
in f . We shall at times use the notation ai ∈ M as an abbreviation for
a1, a2, . . . ak ∈ M for some specified k; similarly for bj ∈ M , and so on.
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Definition 3.1. The zero set associated with H ⊆ FX is the set

VX
M (H) = {a : a ∈ MX , f(a) = 0 for all f ∈ H}.

The ideal associated with S ⊆ MX is the set

IX
M (S) = {f : f ∈ FX , f(a) = 0 for all a ∈ S}.

Algebraic geometry provides the canonical example for these con-
cepts. One difference is that the notion of polynomial used here requires all
“constant” terms to be zero. In order to minimise confusion between its
two quite distinct meanings, we use the term “zero set” in preference to
“variety”.

Proposition 3.2.

IX
M (S) / FX .

Proof. Let f1, f2 ∈ IX
M (S). Then for all s ∈ S, (f1 − f2)(s) =

f1(s)− f2(s) = 0−0 = 0, so f1− f2 ∈ IX
M (S), and so IX

M (S) is a subgroup
of FX . If g ∈ FX , then for all s ∈ S,

(g + f1 − g)(s) = g(s) + f1(s)− g(s) = g(s) + 0− g(s) = 0,

so g + f1 − g ∈ IX
M (S). Hence IX

M (S) is normal.
If % ∈ Ω has arity n, f ∈ IX

M (S) and g1, g2, . . . , gn ∈ FX , then for all
s ∈ S,
[−%(g1, g2, . . . , f + gi, . . . , gn) + %(g1, g2, . . . , gi, . . . , gn)

]
(s)

= −%(g1(s), . . . , f(s) + gi(s), . . . , gn(s)) + %(g1(s), . . . , gi(s), . . . , gn(s))

= −%(g1(s), . . . , 0 + gi(s), . . . , gn(s)) + %(g1(s), . . . , gi(s), . . . , gn(s))
= 0,

so

−%(g1, g2, . . . , f + gi, . . . , gn) + %(g1, g2, . . . , gi, . . . , gn) ∈ IX
M (S)

which is therefore an ideal of FX . ¤
Proposition 3.3. Let H1, H2 ⊆ FX and S1, S2 ⊆ MX .

(i) If H1 ⊆ H2, then VX
M (H1) ⊇ VX

M (H2).

(ii) If S1 ⊆ S2, then IX
M (S1) ⊇ IX

M (S2).

(iii) S1 ⊆ VX
M (IX

M (S1)).

(iv) H1 ⊆ IX
M (VX

M (H1)).
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The proofs of (i) to (iv) are straightforward. Then establish the exis-
tence of a Galois correspondence (see [5]) between the lattice of zero sets
in MX and the lattice of ideals of FX of the form IX

M (S), both of which
are therefore complete lattices. Hence we have the following

Proposition 3.4. The function IVX
M : J 7→ IX

M (VX
M (J)), J / FX , is a

closure operation on the ideals of FX .

In the next section we show that IVX
M is in fact a radical closure

operation on U providing there is a Nullstellensatz for M is a certain
sense; in such a case the radical and semisimple objects may be described
equationally.

4. Equationally defined radical classes arising
from Nullstellensatz theorems

For the remainder of this article, we assume that W is a variety of
Ω-groups and G is a collection of free Ω-groups in W containing all finitely
generated free Ω-groups in W, such that U = Q(G) is a universal class.

Let M ∈ W. Let Xn = {x1, x2, . . . , xn}; then FXn ∈ U for all n by
assumption. Let N = {x1, x2 . . . }. Viewing FXn as a subset of FXn+1 and
of FN in the obvious way, we see that FN =

⋃
i∈N FXi . For f ∈ FN and

a, a1, a2, · · · ∈ M , let f(a, a1, a2, . . . ) be denoted by f(a, ai).

Definition 4.1. Suppose F ⊆ FN , and M ∈ U with S ⊆ M . Define

FM (S) = {a : a ∈ M, there exist f ∈ F and ai ∈ M

such that f(a, ai) ∈ (S)M}.

Lemma 4.2. Let F ⊆ FN be such that FM ({0}) = {0}. Let R =
FX/IVX

M (H). Then for all H ⊆ FX , FR({0}) = {0}.
Proof. Suppose that FM ({0}) = {0}, that is, that for some f ∈ FN

and for all a, ai ∈ M , it is the case that a = 0 whenever f(a, ai)=0.
Suppose h ∈ FR({0}); thus there exists f ∈ F and hi ∈ R such that
f(h, hi) = 0. But h = g + IVX

M (H) and hi = gi + IVX
M (H) for some

g, gi ∈ FX . Hence f(g + IVX
M (H), gi + IVX

M (H)) = 0 + IVX
M (H), that is,

f(g, gi) ∈ IVX
M (H). Hence, for all (aj) ∈ VX

M (H), f(g(aj), gi(aj)) = 0, and
so g(aj) = 0, whence g ∈ IVX

M (H). That is, h = g + IVX
M (H) = 0 ∈ R.

¤
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Definition 4.3. M possesses a Nullstellensatz in U with family F ⊆
FN if, for each FX ∈ G, FFX

(H) = IVX
M (H) for all H ⊆ FX .

Let G be the class of all free finitely generated commutativeQ-algebras,
each of which is a copy of Q0[x1.x2, . . . , xn], the ring of rational polyno-
mials in n variables without constant term, n ∈ N. Now the Hilbert
Nullstellensatz may easily be restricted to polynomials having zero con-
stant term (that is, to the elements of G). It then states that C possesses
a Nullstellensatz in G, with family F = {xn

1 : n ∈ N}.
Let G be as above, H ⊆ FXn

= Q0[x1, x2, . . . , xn]. The Real Nullstel-
lensatz of [6] may likewise be restricted to polynomials having zero constant
term, and it then says that f ∈ IVX

R (H) if and only if there exist non-
negative integers ci, m and t such that x2m

1 + c2x
2
2 + · · ·+ ctx

2
t ∈ (H)FXn

.
Hence R possesses a Nullstellensatz in G with family F = {x2m

1 + c2x
2
2 +

· · ·+ ctx
2
t : ci,m, t ∈ N}.

We assume for the rest of the section that M possesses a Nullstellen-
satz in U with family F ⊆ FN .

Lemma 4.4.
FM ({0}) = {0}.

Proof. Let f ∈ F . Then f ∈ ⋃
i∈N FXi , so for some n > 0,

f ∈ FXn ∈ U . Now M possesses a Nullstellensatz with family F , so
FFXn

({f}) = IVXn

M ({f}). But f(x1, x2, . . . , xn) ∈ (f)FXn
, so by defi-

nition, x1 ∈ FFXn
({f}) = IVXn

M ({f}). Thus if f(a, ai) = 0 for some
a, ai ∈ M , then a = 0. Now if a ∈ FM ({0}), then there exists f ∈ F ,
ai ∈ M such that f(a, ai) = 0, whence a = 0. ¤

Theorem 4.5. C = {IVX
M : FX ∈ G} is a radical operation on G.

Proof. We begin by noting that IVX
M is a closure operation on the

ideals of FX for each FX ∈ G by Proposition 3.4.
Let FX , FY ∈ G. Let I / FX , L / FY . Suppose I/CFX (K) ∼=

CFY (L)/L 6= {0}. Now FFX/CFX
(K)({0}) = {0}, so for all f ∈ F , for

all a, ai ∈ FX/CFX
(K), f(a, ai) = 0 implies a = 0 by Lemmas 4.2 and 4.4.

Hence the same is true for all a, ai ∈ I/CFX (K) / FX/CFX (K), that is,
FI/CFX

(K)({0}) = {0}.
Let g ∈ CFY (L) − L. Then there exist f ∈ F and gi ∈ CFY (L) such

that f(g, gi) ∈ L. Hence f(g + L, gi + L) = 0 + L, yet g + L 6= 0 + L since
g /∈ L, so FCFY

(L)/L({0}) 6= {0}, contradicting the assumed isomorphism.

Hence CFY
(L)/L = {0} and C is indeed a radial operation. ¤
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Thus, by Proposition 2.4, all of U = Q(G) inherits the radical opera-
tion C = {CR : R ∈ U} from G in a natural way.

Proposition 4.6. For all R ∈ U , CR(I) = FR(I) for all I / R.

Proof. Let R = FX/J , I / R, with I = I ′/J for some I ′ / FX . Now
for all g ∈ FX , the following statements are equivalent:

(i) b + J ∈ FR(I);
(ii) there exist gi ∈ FX such that f(b + J, gi + J) ∈ I = I ′/J ;
(iii) there exist gi ∈ FX such that f(b, gi) + J ∈ I ′/J ;
(iv) there exist gi ∈ FX such that f(b, gi) ∈ I ′;
(v) b ∈ FFX (I ′);
(vi) b + J ∈ FFX

(I ′)/J .

Hence FR(I) = (FFX (I ′)/J = IVX
M (I ′)/J = CFX (I ′)/J = CR(I). ¤

Corollary 4.7. R ∈ U is RC-semisimple if and only if FR({0}) = {0},
and is RC-radical if and only if FR({0}) = R.

Proof. By Theorem 2.3 (ii), RC(R) = CR({0}) = FR({0}). ¤

Thus if M ∈ W possesses a Nullstellensatz in U with family F , in-
ducing a radical operation C on U , then R ∈ U is RC-semisimple if for all
a, ai ∈ R and f ∈ F , f(a, ai) = 0 implies a = 0. Hence M fails to be
semisimple if for some non-zero a ∈ M there exists f ∈ F and ai ∈ M for
which f(a, ai) = 0. On the other hand, M is radical if for every a ∈ M
there exists f ∈ F and ai ∈ M for which f(a, ai) = 0.

Example 4.8. The Nil Radical:

Let G be the class of finitely generated free commutative Q-algebras
and U = Q(G) the universal class of finitely generated commutative Q-
algebras. Then by the restricted Hilbert Nullstellensatz and Corollary 4.7,
the subclass of U consisting of all R such that for all r ∈ R there exists n>0
such that rn = 0 is a radical class (the nil radical on U); the semisimple
class consists of all R ∈ U fo which, for all r ∈ R, if rn = 0 then r = 0.
Hence the associated Nullstellensatz family is {xn

1 : n ∈ N}. Of course, it
turns out that the class of nil associative rings is a radical class although
the semisimple rings are not so easily described.

If U is the class of finitely generated commutative rings, then the
Nullstellensatz family for C becomes F = {mxn

1 : m,n ∈ N}. The resulting
radical class is the Veldsman radical on U , and similar remarks apply as
for the nil radical.
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Example 4.9. The Real Radical:
Let G and U be the same as at the beginning of the previous example.

The Real Nullstellensatz for G has family

F = {x2m
1 + c2x

2
2 + · · ·+ ctx

2
t : ci,m, t ∈ N}.

The induced radical and semisimple classes are then easily described by
means of Corollary 4.7. If U is instead the class of finitely generated
commutative rings, then the associated family is

F = {c1x
2m
1 + c2x

2
2 + · · ·+ ctx

2
t : ci,m, t ∈ N}.

Example 4.10. Fields in General:
Let k be a field and let K be a subfield of the algebraic closure of

k such that k ⊆ K. Let U be the universal class of finitely generated
commutative k-algebras. Let km = k[x1, x2, . . . , xm], the polynomial ring
in m commuting variables over k (and not simply the free commutative
k-algebra on m generators). Let Pm = {f ∈ km : f is homogeneous and
x1 ∈ IVK(f)} (where IK and VK have their obvious meanings in terms of
km). Let P =

⋃
m≥0 Pm. Note that P contains no polynomials with non-

zero constant term, so P ⊆ FN . The main theorem in [3] states that for all
I / km, IVK(I) = P(I). By restricting to polynomials with zero constant
term as above, it follows easily that K possesses a Nullstellensatz in U with
family P. Hence there is an induced radical class in U consisting of all R
such that for all a ∈ R there exists f ∈ P and ai ∈ R such that f(a, ai) = 0.
The previous two examples provide explicit Nullstellensatz families for
their respective fields. In general, pinning down such an explicitly defined
family is not possible. (See [3].)

Example 4.11. A Ring with Involution:
Let U be the universal class of finitely generated commutative Q-

algebras with involution. Define C(i) = {α + βi : α, β ∈ C} to be the
commutative C-algebra with identity satisfying i2 = −1, and with involu-
tion defined by 1̄ = 1 and ī = −i. Let M = 〈C(i), +,×,−〉. By a result in
[7], M possesses a Nullstellensatz with family F = {xn

1 : n ∈ N}.
Example 4.12. The Additive Rationals:
Let M = 〈Q,+〉, the additive group of rationals, and let U = Q(G)

be the universal class of finitely generated abelian groups, G the class of
all free groups in U . Each subgroup of each FXn is finitely generated, so
we assume without loss of generality that H ⊆ FXn is finite. By a simple
argument involving row reduction, f ∈ IVX

M (H) if and only if there exist
αi ∈ Q and hi ∈ H such that f =

∑
i αihi. Multiplying through by the

lowest common denominator m of the αi gives mf =
∑

i βihi where the
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βi are integers. Hence any f ∈ IVX
M (H) satisfies mf ∈ (H)FXn

. The
converse is obvious, and so

IVX
M (H)

= {f : f ∈ FXn
, and there exists m > 0 such that mf ∈ (H)FXn

}.
Hence M has a Nullstellensatz with family F = {mx1 : m ∈ N}.

By Theorem 4.5, R ∈ U is radical if and only if, for all r ∈ R, there
exists m > 0 such that mr = 0; this is the class of torsion groups in U . R
is semisimple if and only if for all r ∈ R, if mr = 0 for any m > 0, then
r = 0; this is the class of torsion-free groups in U .

5. A special case

In this section, we limit consideration to cases where each element of
G has a countable number of generators and so is embeddable in FN .

We note that the subset IVX
M ({0}) of FX ∈ G is closed under substi-

tution, in the sense that if g ∈ IVX
M ({0}), then g(pi) ∈ IVX

M ({0}) for all
pi ∈ FX .

Definition 5.1. M is semantically minimal in U if, for all FX ∈ T and
H ⊆ FX , IVX

M (H) = (H)FX
+ IVX

M ({0}).
Now for any M ∈ U and H ⊆ FX , IVX

M ({0}) ⊆ IVX
M (H), and H ⊆

IVX
M (H) / FX , so (H)FX ⊆ IVX

M (H). Hence M is semantically minimal if
IVX

M (H) is as small as possible for all H ⊆ FX .
If U is a variety and M is semantically minimal and generates U then

IVX
M ({0}) = {0}, so IVX

M (H) = (H)FX . It is then trivially the case that M

possesses a Nullstellensatz in U , with family F = {x1}. We may generalise
this.

Theorem 5.2. If M is semantically minimal in U , then M possesses
a Nullstellensatz in U with family

F = {x1 + g(x1, x2, . . . ) : g ∈ IVX
M ({0}), FX ∈ G}.

The induced radical class consists of all R ∈ U such that, for all a ∈ R,
there exist g ∈ IVX

M ({0}) and bi ∈ R such that a = g(bi). The induced
semisimple class is the intersection of U with the subvariety of W defined
by the equations g(xi) = 0 for all g ∈ IVX

M ({0}).
Proof. Let M , F be as in the theorem statement. Then for all

X and all H ⊆ FX , IVX
M (H) = (H)FX

+ IVX
M ({0}). If h ∈ FFXn

(H),
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then there exists f ∈ F and pi ∈ FX such that f(h, pi) ∈ (H)FX
, that

is, h + g(h, pi) ∈ (H)FX
⊆ IVX

M (H) where g ∈ IVX
M ({0}), so g(h, pi) ∈

IVX
M ({0}) ⊆ IVX

M (H) since IVX
M ({0}) is closed under substitution. Hence

f ∈ IVX
M (H).

Conversely, suppose h ∈ IVX
M (H). Then h ∈ (H)FX

+ IVX
M ({0}), so

that there exists g∈IVX
M ({0}) such that h+g ∈ (H)FX

. Let qi(x1, x2, . . . )=
xi+1, i = 1, 2, . . . . Let g′(x1, x2, . . . ) = g(q1, q2, . . . ) = g(x2, x3, . . . ). Then
g′ ∈ IVX

M ({0}) since IVX
M ({0}) is closed under substitution. Moreover,

letting f(x1, x2, . . . ) = x1 + g′(x1, x2, . . . ) ∈ F and pi(x1, x2, . . . ) = xi,
i = 1, 2, . . . , we have that f(h, p1, p2, . . . ) = h + g′(h, p1, p2, . . . ) = h +
g(x1, x2, . . . ) ∈ (H)FX

. Hence certainly h ∈ FFXn
(H).

The descriptions of the radical and semisimple classes induced by the
Nullstellensatz for M follow almost immediately from Theorem 4.5. ¤

Example 5.3. The idempotent radical:

Let R be the zero ring on the rationals. We view R as a Q-algebra
by setting αa equal to the usual product of α and a as rationals, for all
α ∈ Q, a ∈ R. Let FXn = Q0[x1, x2, . . . , xn], a typical free ring in the class
of finitely generated commutative Q-algebras U of which R is a member.
Let U = Q(

⋃{FXi = i ∈ N}), the universal class of finitely generated
Q-algebras. Then IVXn

R ({0}) comprises all polynomials which are sums of
products of polynomials, that is,

∑
j pjqj , where all pj , qj ∈ FXn .

We note that each FXn is a Noetherian ring, so every ideal has the
form (H)FXn

for some finite set H ⊆ FXn , so we assume without loss of
generality that H is finite. For any f ∈ FXn , let f ′ denote the element
of the coset f + FXn/IVXn

R obtained from f by eliminating all non-linear
terms in the canonical representation of f . For H ⊆ FXn , let H ′ = {f ′ :
f ∈ H}. Then VXn

R (H) = VXn

R (H ′).
Now VXn

R (H ′) is the set of solutions of the linear system obtained by
setting each element of H ′ to zero. If f ∈ IVXn

R (H) = IVXn

R (H ′) then f ′ is
a linear combination of the elements of H ′, as in Example 4.12. Hence f ′ =∑

i αih
′
i =

∑
i αihi−

∑
j pjqj for some products of polynomials pjqj , where

the hi ∈ H. But f ′ = f −∑
k rksk for some products of polynomials rksk,

so f = f ′ +
∑

k rksk =
∑

i αihi −
∑

j pjqj +
∑

k rksk ∈ IVXn

R + (H)FXn
.

Conversely, if f ∈ IVXn

R + (H)FXn
, then it is obvious that f ∈ IVXn

R (H).
Hence IVXn

R (H) = IVXn

R ({0}) + (H)FXn
, so R is semantically min-

imal. By Theorem 5.2 M therefore has a Nullstellensatz family F =
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{x1 −
∑

i piqi : piqi ∈ FXn
} ⊆ FN , with the induced radical Q-algebras

exactly those M such that, for all a ∈ M , there exist rational polynomials
pi, qi without constant term and ai ∈ M such that a−∑

i pi(ai)qi(ai) = 0;
equivalently, a ∈ M2. Thus M is radical if and only if M = M2, so the
induced radical class is nothing but the idempotent radical on U . On the
other hand, it is easily seen that M is semisimple if and only if it is a zero
ring.

Example 5.4. Finite Fields:

Let U be the universal class of all finitely generated commutative rings.
Then for all n ∈ N, FXn

= Z0[x1, x2 . . . , xn]. Let p be a prime, m > 0.
Let Dpm

n = {xpm

1 − x1, x
pm

2 − x2, . . . , x
pm

n − xn, px1, px2, . . . , pxn} ⊆ FXn .
Let Bpm

n = FXn/(Dpm

n ). It is not hard to show that (Dpm

n ) sonsists of all
elements of the form

∑
i(f

pm

i − fi) +
∑

j pgj .
Let f ′ be the image of f ∈ FXn under the canonical homomorphism

FXn → Bpm

n ; similarly for sets. Again for H ⊆ FXn , let H ′ = {f ′, f ∈ H}.
Let K be the algebraic closure of GF (pm), the finite field of prime power
order pm.

Now for any (a1, a2, . . . , an) ∈ VXn

K (Dpm

n ), we have apm

i − ai = 0 for
each i. But K is a field, so ai(a

pm−1
i − 1) = 0, and so ai = 0 or ai is a

(pm−1)-th root of 1. But because the multiplicative group of a finite field
is a cyclic, each of the pm − 1 non-zero elements of GF (pm) satisfy this,
so all possible such roots in K lie in GF (pm). Hence (a1, a2, . . . , an) ∈
GF (pm)n ⊆ Kn. But
VXn

K (H ∪ Dpm

n ) = VXn

K (H) ∩ VXn

K (Dpm

n ) = VXn

GF (pm)(H) = VXn

GF (pm)(H ∪
Dpm

n ), so that IVXn

GF (pm)(H) = IVXn

GF (pm)(H ∪Dpm

n ) = IVXn

K (H ∪Dpm

n ). If

f ∈ IVXn

GF (pm)(H) then f ∈ IVXn

K (H∪Dpm

n ) so there exists % > 0 such that
f% ∈ (H ∪ Dpm

n )FXn
by the Hilbert Nullstellensatz, and so fpms ∈ (H ∪

Dpm

n )FXn
where s is chosen such that pms > %. Hence f ∈ (H ∪Dpm

n )FXn

(since the quotient ring FXn/(H∪Dpm

n ) ∼= Bpm

n /(H ′)
Bpm

n
satisfies g(pm)r

=
g for all r > 0), so f ′ ∈ (H ′)

Bpm
n

/ Bpm

n , since (H ′)
Bpm

n
= (H)′

Bpm
n

. Hence

f ∈ (H)FXn
+ (Dpm

n )FXn
.

But (Dpm

n )FXn
⊆ IVXn

GF (pm)({0}), so IVXn

GF (pm)(H)

⊆ (H)FXn
+ (Dpm

n )FXn
⊆ (H)FXn

+ IVn
GF (pm) ⊆ IVXn

GF (pm)(H), and so
the three sets are equal. Hence GF (pm) is semantically minimal. Letting
H = {0}, we obtain (Dpm

n )FXn
= IVn

GF (pm), so by Theorem 5.2, GF (pm)



78 N. R. McConnell and T. Stokes

has a Nullstellensatz, with family

F =
{

x1 −
∑

i

(gpm

i − gi)−
∑

i

phj : gi, hj ∈ FXn

}
.

By Theorem 5.2, the induced radical class consists of all finitely gen-
erated commutative rings R ∈ U such that, for all r ∈ R, there exist
rk ∈ R for which r =

∑
i[gi(rk)pm − gi(rk)] − p

∑
j hj(rk), for some gi,

hj ∈ Z0[x1, x2, . . . , xm] for some m. Equivalently, R is such that for all
r ∈ R, there exist ai, b ∈ R such that r =

∑
i(a

pm

i −ai)+pb. The semisim-
ple class is likewise easily seen to be all R ∈ U satisfying the identities
xpm

= x, px = 0; when p = 2 and m = 1, this is the class of finitely
generated Boolean rings.

Example 5.5. The Abelian group Zp:

Let M = 〈Zp,+ 〉, U and G as in Example 4.12. Again, every subgroup
of FXn is finitely generated, so let H ⊆ FXn be finite, f ∈ FXn . Let
f ′ denote the element of FXn obtained by reducing the coefficients of f
modulo p; as usual, let H ′ = {f ′ : f ∈ H}.

Now IVXn

M (H) = IVXn

M (H ′), and f ∈ IVXn

M (H) if and only if f ′ ∈
IVXn

M (H ′). But because Zp is a field, by the same linear algebra argument

as was used in Example 5.3, f ′ ∈ IVXn

M (H ′) if and only if f ′ ∈ ∑
i αih

′
i,

0 ≤ αi ≤ p− 1, h′i ∈ H. But each h′i = hi +
∑

j pαijxj for some αij ∈ Z.

Likewise f ′ = f +
∑

j pβjxj , so f =
∑

i αih
′
i −

∑
j pβjxj =

∑
i αi(hi +∑

j pαijxj) −
∑

j pβjxj =
∑

i αihi + pg for some g ∈ FXn . Conversely,

any f of this form is evidently an element of IVXn

M (H), so IVXn

M (H) =
{f + pg : f ∈ (H)FXn

, g ∈ FXn} = (H)FXn
+ {pg : g ∈ FXn}. Now

J = {pg : g ∈ FXn} / FXn , with J ⊆ IVXn

M . Because (H)FXn
+ IVXn

M ⊆
IVXn

M (H), it follows that J = IVXn

M . Hence M is semantically minimal,
and so Theorem 5.2 may be applied to show that M has a Nullstellensatz
with family

F = {x1 + pg(x1, x2, . . . ) : g ∈ FXn}.

Simplifying a little, we see that M induces a radial class consisting of all
R ∈ U such that for all r ∈ R, there exist b ∈ R such that a = pb. This is
the class of p-divisible groups in U . The corresponding semisimple class is
all R such that pb = 0 for all r ∈ R, the class of p-torsion groups in U .
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6. The associating property for F

Let Y be a universal class. In [4], we define H ⊆ FN to be Y-
associating if, for all M ∈ Y, f, g ∈ F , r, ai ∈ M and bj ∈ I where I

is some ideal of M such that HI({0}) = I, if g(h(r, ai), bj) = 0, then there
exists h ∈ F and ck ∈ M such that h(r, ck) = 0. It was shown in [4] that if
H is Y-associating, then RH = {M : M ∈ U , M = HM ({0})} is a radical
class in Y, and the following result was proved.

Proposition 6.1. Let F ⊆ FN . If HM ({0}) / M for all M ∈ Y, and
if HHM ({0})({0}) = HM ({0}) for all M ∈ Y, then RH is a radical class if
and only if H is Y-associating.

From this, we obtain the following

Proposition 6.2. Suppose M possesses a Nullstellensatz in U with
family F . Then F is U -associating.

Proof. Let C be the radical operation on U induced by the Nullstel-
lensatz for M . Then RC = RF by Theorem 4.5. From Proposition 4.6
and Theorem 2.3 (ii), FR({0}) = RC(R) / R. Finally, FFR({0})({0}) =
RC(RC(R)) = RC(R) = FR({0}). Hence by Proposition 6.1, F is U -
associating. ¤

All the examples of Nullstellensatz families F ⊆ FN given in previous
sections are in fact strongly associating as defined in [4]: F is strongly
associating if for every f, g ∈ F , there exists h ∈ F and pk ∈ FN such
that f(g(x, yi), zj) = h(x, pk(x, yi, zj)). This property is expressed purely
in terms of the free algebra FN and is thus independent of U . If a Null-
stellensatz family F is strongly associating then the induced radical class
may be extended to the whole of the variety W containing U . Thus, for
instance, the nil, real and idempotent radicals are actually radical classes
of commutative Q-algebras (the nil and idempotent radical classes in fact
being radical classes of associative rings). It is easily shown that the Null-
stellensatz family arising from a semantically minimal M as in Theorem
5.2 must always be strongly associating.

It is a question of some interest to determine which radical classes
arise in some way from a Nullstellensatz theorem. Thus the Jacobson
radical for all rings — even all commutative rings — may not arise from
a Nullstellensatz theorem, even though the defining family H = {x1 +
x2 +x1x2} is (strongly) associating. However, within the universal class of
all finitely generated commutative Q-algebras (where the Jacobson radical
equals the nil radical), it does so arise.
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