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Bitopologies and quasi-uniformities on spaces
of continuous functions

By SALVADOR ROMAGUERA (Valencia) and MARCOS RUIZ-GÓMEZ (Valencia)

Abstract. We introduce and investigate the notions of 2compact open bitopology
and bitopology of quasi-uniform convergence (on 2compacta). In particular, a charac-
terization of 2compact quasi-uniformizable spaces in terms of these bitopologies and
a necessary and sufficient condition for (bicomplete) quasi-pseudometrizability of the
2compact open bitopology are presented.

1. Introduction and preliminaries

In this paper the letters R and N will denote the set of real numbers
and positive integer numbers, respectively. If τ is a topology on a set X
and A ⊆ X, then τ clA (τ intA) will denote the closure (interior) of A in
the topological space (X, τ).

It is well-known that on the space C(X, Y ) of continuous functions
from a Tychonoff space X into a space Y , the topological properties of X
and Y interact with the topological properties of C(X, Y ) for the compact
open topology, the topology of uniform convergence (on compacta) etc.
(See, for example, [4], [8], [9], [10]).

In this paper we introduce and study the notions of 2compact open
bitopology and bitopology quasi-uniform convergence (on 2compacta).

We will show that the use of these bitopologies provides several ap-
propriate extensions of classical topological results. For instance, we prove
(Theorem 1) that given two bitopological spaces (X, τ1, τ2) and (Y, τ ′1, τ

′
2),

their 2compact open bitopology is quasi-uniformizable if and only if
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(Y, τ ′1, τ
′
2) is quasi-uniformizable. We also characterize (Theorem 2) 2com-

pact bitopological spaces in terms of the 2compact open bitopology and
the bitopology of quasi-uniform convergence. The key of this characteri-
zation is the bitopological counterpart (see Lemma 2) of a result proved
by R. Arens [1] about the coincidence between the compact open topol-
ogy and the topology of uniform convergence on compacta. Lemma 2
is also used for obtaining (Theorem 4) a necessary and sufficient con-
dition for quasi-pseudometrizability of the 2compact open bitopology in
terms of hemicompactness of (X, τ1,∨τ2) and quasi-pseudometrizability of
(Y, τ ′1, τ

′
2) similar to the metric case. Furthermore, some relevant examples

related to these subjects are presented. In particular, the Sorgenfrey line
and the Michael line are considered.

A bitopology on a set X is a pair (τ1, τ2) such that each τi, i = 1, 2, is
a topology on X. A bitopological space is [5] an ordered triple (X, τ1, τ2)
such that X is a non-empty set and (τ1, τ2) is a bitopology on X. We say
that two bitopologies (τ1, τ2) and (τ ′1, τ

′
2) on X coincide if τi = τ ′i , i = 1, 2.

Given a bitopology (τ1, τ2) on X, we denote by τ1 ∨ τ2 the supremum
topology of τ1 and τ2.

A bitopological space (X, τ1, τ2) is called:
(i) 2Hausdorff [14] if (X, τ1 ∨ τ2) is a Hausdorff space.
(ii) pairwise Hausdorff [5] if, for x 6= y, there is a τi-neighborhood of

x and a disjoint τj-neighborhood of y; i, j = 1, 2; i 6= j.
(iii) pairwise completely regular [7] if for each x ∈ X and each τi-open

set U with x ∈ U there is a τi-lower semicontinuous and τj-upper
semicontinuous function f : X → [0, 1] such that f(x) = 1 and
f(X \ U) = 0; i, j = 1, 2; i 6= j.

(iv) 2compact [14] if (X, τ1 ∨ τ2) is compact.
A quasi-uniformity on a set X is a filter U on X ×X such that: (i)

for each U ∈ U , ∆ = {(x, x) : x ∈ X} ⊆ U and (ii) for each U ∈ U there
is V ∈ U satisfying V 2 ⊆ U where V 2 = V ◦ V .

If U is a quasi-uniformity on X, then T (U) = {A ⊆ X : if x ∈ A
there is U ∈ U with U(x) ⊆ A} is a topology on X, where U(x) = {y ∈
X : (x, y) ∈ U}. On the other hand, for each U ∈ U we can define
U−1 = {x, y} : (x, y) ∈ U}. Then U−1 = {U−1 : U ∈ U} is also a quasi-
uniformity on X called conjugate of U . The coarsest uniformity finer than
both U and U−1 is denoted by U ∨ U−1.

We say that a quasi-uniformity U on X is compatible with a bitopol-
ogy (τ1, τ2) on X if T (U) = τ1 and T (U−1) = τ2. A bitopological space
(X, τ1, τ2) is said to be quasi-uniformizable if there is a quasi-uniformity
U on X compatible with (τ1, τ2).

A quasi-pseudometric on a set X is a non-negative real-valued function
d on X ×X such that for all x, y, z ∈ X: (i) d(x, x) = 0 and (ii) d(x, y) ≤
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d(x, z) + d(z, y). A quasi-pseudometric d is called separating if d(x, y) +
d(y, x) > 0 whenever x 6= y and is called a quasi-metric if d(x, y) > 0
whenever x 6= y.

Each quasi-(pseudo)metric d on X generates a topology T (d) on X
which has as a base the family of d-balls {Bd(x, r) : x ∈ X, r > 0} where
Bd(x, r) = {y ∈ X : d(x, y) < r}. Since the conjugate of d, d−1, given by
d−1(x, y) = d(y, x) is also a quasi-(pseudo)metric, there is another topol-
ogy T (d−1) on X. Thus, a quasi-(pseudo)metric d on X is called compa-
tible with a bitopology (τ1, τ2) on X if T (d) = τ1 and T (d−1) = τ2. A
bitopological space (X, τ1, τ2) is said to be (separated) quasi-(pseudo)metr-
izable if there is a (separating)quasi-(pseudo)metric on X compatible with
(τ1, τ2).

Remark 1. Note that a quasi-pseudometric d on X is separating if
and only if (X,T (d), T (d−1)) is 2Hausdorff. Similarly, d is quasi-metric if
and only if (X, T (d), T (d−1)) is pairwise Hausdorff.

If d is a separating quasi-pseudometric on a set X, then d ∨ d−1,
defined by (d∨d−1)(x, y) = max{d(x, y), d−1(x, y)} is a metric on X com-
patible with T (d) ∨ T (d−1).

Let X = R and let d(x, y) = max{y − x, 0} for all x, y ∈ X. Then,
d is a separating quasi-pseudometric on X and basic T (d)-open sets are
of the form ] − ∞, a[ , a ∈ R; basic T (d−1)-open sets are of the form
]a,+∞[ , a ∈ R. The bitopological space (X, T (d), T (d−1)) is 2Hausdorff
(with T (d∨ d−1) the usual topology on R) but not pairwise Hausdorff. In
the rest of the paper, we denote by u and l, above topologies T (d) and
T (d−1), respectively. Note that ([0, 1], u, l) is a 2compact space.

2. The 2compact open bitopology

Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces. A function

f from X into Y is called bicontinuous if it is continuous from (X, τi) into
(Y, τ ′i) for i = 1, 2. In this case we will say that f : (X, τ1, τ2) → (Y, τ ′1, τ

′
2)

is bicontinuous.
Now denote by Y X the set of all continuous functions from (X, τ1∨τ2)

into (Y, τ ′1 ∨ τ ′2) and by BY X the subset of Y X which consists of all bi-
continuous functions from (X, τ1, τ2) into (Y, τ ′1, τ

′
2). In particular, by

BY [0,1] we will denote the set of all bicontinuous functions from ([0, 1], u, l)
into (Y, τ ′1, τ

′
2) and by B[0, 1]X the set of all bicontinuous functions from

(X, τ1, τ2) into ([0, 1], u, l). Similarly we define BY R and BRX . (In some
results we will assume that (Y, τ ′1, τ

′
2) contains a pairwise path, i.e., a bicon-

tinuous function p : ([0, 1], u, l) → (Y, τ ′1, τ
′
2) such that p(0) ∈ Y \ τ ′1 cl p(1)

and p(1) ∈ Y \ τ ′2 cl p(0)).
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Let K = {K ⊆ X : K is τ1 ∨ τ2-compact}. For each K ∈ K and each
Gi ∈ τ ′i , i = 1, 2; consider the set

[K,Gi] = {f ∈ Y X : f(K) ⊆ Gi}.
Obviously, {[K, Gi] : K ∈ K and Gi ∈ τ ′i} is a subbase for a topology

T i
k, i = 1, 2, on Y X . We will say that the bitopology (T 1

k , T 2
k ) is the

2compact open bitopology on Y X . The subset BY X of Y X with the
restriction of this bitopology is denoted by (BY X , T 1

k , T 2
k ).

Example 1. Let X = Y = R, τ1 = τ ′1 = u and τ2 = τ ′2 = l. Then the
function f : R → R, defined by f(x) = |x| for all x ∈ R, is in Y X but,
clearly, not in BY X .

Remark 2. BRX is dense in (RX , T i
k), i = 1, 2. In fact, given f ∈ RX

such that f ∈ ⋂{[Kj , Gj ] : j = 1, . . . , n} with Kj ∈ K and Gj u-open,
then Gj = ]−∞, aj [, j = 1, . . . , n. Let a = min{a1, . . . , an} and g ∈ BRX

such that g(x) = a− 1 for all x ∈ X. Then g ∈ ⋂{[Kj , Gj ] : j = 1, . . . , n}.
Similarly, for Gj l-open sets.

The following example shows that, in general, the topologies T 1
k and

T 2
k are not comparable.

Example 2. Let X = Y = R, τ1 = τ ′1 = u and τ2 = τ ′2 = l. If
f : R → R is the identity function on R, then f ∈ BY X ⊆ Y X . Put
K = {1}. So, f ∈ [K, G] ∈ T 2

k where G = ]0, +∞[ . Assume W a T 1
k -open

set such that f ∈ W ⊆ [K,G]. Then there exist τ1 ∨ τ2-compact sets
L1, . . . , Ln, and τ ′1-open sets H1, . . . , Hn, such that f ∈ ⋂{[Lj ,Hj ] : j =
1, . . . , n} ⊆ W . Therefore Lj ⊂ Hj , j = 1, . . . , n. Let Hj = ] − ∞, bj [
and b = max{bj : j = 1, . . . , n}. If b ≤ 0, the function g : R → R defined
by g(x) = x for x ≤ b and g(x) = b for x > b, satisfies g ∈ [Lj ,Hj ],
j = 1, . . . , n. However, g(1) = b ≤ 0, this is g /∈ [K,G]. If b > 0, define
g : R → R by g(x) = x − b for x ≤ b and g(x) = 0 for x > b. Newly,
g ∈ [Lj ,Hj ], j = 1, . . . , n, but g(1) ≤ 0. Thus, we have shown that
T 2

k 6⊂ T 1
k . Similarly, T 1

k 6⊂ T 2
k .

The easy proof of the following result is omitted.

Proposition 1. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological

spaces. Then:
(a) (Y X , T 1

k , T 2
k ) is 2Hausdorff if and only if (Y, τ ′1, τ

′
2) is 2Hausdorff.

(b) (Y X , T 1
k , T 2

k ) is pairwise Hausdorff if and only if (Y, τ ′1, τ
′
2) is pair-

wise Hausdorff.

In the proof of our next result we will use the fact that a bitopological
space is quasi-uniformizable if and only if it is pairwise completely regular
[7, Theorem 4.2].
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Theorem 1. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces.

Then the following are equivalent.
(1) (Y, τ ′1, τ

′
2) is quasi-uniformizable.

(2) (Y X , T 1
k , T 2

k ) is quasi-uniformizable.
(3) (BY X , T 1

k , T 2
k ) is quasi-uniformizable.

Proof. (1) → (2). Let f ∈ Y X , K ∈ K and G ∈ τ ′1 such that f ∈
[K, G]. Then for each a ∈ K there is ψa ∈ B[0, 1]Y such that ψa(f(a)) = 0
and ψa(Y \ G) = 1. Take ε > 0 with ε < 1. So, there is a finite subset
K ′ ⊆ K such that {ψ−1

a [0, ε[ : a ∈ K ′} is a τ ′1-open cover of f(K). Put
ψ = min{ψa : a ∈ K ′} and Φ : Y → [0, 1] such that Φ(y) = 0 if 0 ≤
ψ(y) < ε and Φ(y) = (ψ(y) − ε)/(1 − ε) otherwise. It is easy to see that
Φ ∈ B[0, 1]Y and that Φ(f(a)) = 0 for all a ∈ K and Φ(Y \G) = 1. Now
define ϕ : Y X → [0, 1] by

ϕ(h) = sup{Φ(h(a)) : a ∈ K}.
Then ϕ is a bicontinuous function from (Y X , T 1

k , T 2
k ) into ([0, 1], u, l). In

fact, if 0 < δ ≤ 1 and h ∈ ϕ−1[0, δ[, there is µ > 0, µ < δ, with h(K) ⊆ U
where U = Φ−1[0, µ[. So, h ∈ [K, U ] ∈ T 1

k and, clearly, [K,U ] ⊆ ϕ−1[0, δ[.
Now, let 0 ≤ δ < 1 and h ∈ ϕ−1]δ, 1]. In this case there exists a0 ∈ K with
Φ(h(a0)) > δ. Thus, h ∈ [a0, U ] ∈ T 2

k where U = Φ−1]δ, 1]. If g ∈ [a0, U ]
it follows ϕ(g) > δ and, hence, [a0, U ] ⊆ ϕ−1]δ, 1]. Furthermore, ϕ(f) = 0
and ϕ(Y X \ [K, G]) = 1. When G ∈ τ ′2, a similar argument permits
us to conclude that (Y X , T 1

k , T 2
k ) is a pairwise completely regular space.

Consequently, it is quasi-uniformizable.
(2) → (3). Obvious.
(3) → (1). Let U be a quasi-uniformity on BY X compatible with

(T 1
k , T 2

k ). For each y ∈ Y define fy : X → Y by fy(x) = y for all x ∈ X.
Now put for each U ∈ U , Û = {(y, z) ∈ Y × Y : (fy, fz) ∈ U}. Then
{Û : U ∈ U} is a base for a quasi-uniformity on Y compatible with (τ ′1, τ

′
2)

(we omit the details).

Remark 3. It follows from the preceding theorem that for every space
(X, τ1, τ2), (BY X , T 1

k , T 2
k ) is quasi-uniformizable whenever Y = R, τ ′1 = u

and τ ′2 = l. Similarly, for Y any set, τ ′1 any T1 topology on Y and τ ′2 the
discrete topology on Y .
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3. The bitopology of quasi-uniform convergence
(on 2compacta)

Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces such that

(Y, τ ′1, τ
′
2) is quasi-uniformizable and let U be a quasi-uniformity on Y

compatible with (τ ′1, τ
′
2). Then, for each K ∈ K and each U ∈ U we should

consider the set

(K, U) = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U for all x ∈ K}
It is easy to show that {(K, U) : K ∈ K and U ∈ U} is a base for a
quasi-uniformity Uk on Y X called the quasi-uniformity of quasi-uniform
convergence (of U) on 2compacta. The bitopology (T (Uk), T (U−1

k )), gen-
erated by Uk is said to be the bitopology of quasi-uniform convergence (of
U) on 2compacta.

Similarly, for each U ∈ U we should consider the set

(X, U) = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U for all x ∈ X}.
Then, {(X, U) : U ∈ U} is a base for a quasi-uniformity UX on Y X called
the quasi-uniformity of quasi-uniform convergence (of U). The bitopology
(T (UX), T (U−1

X )) generated by UX is said to be the bitopology of quasi-
uniform convergence (of U).

If U is a quasi-uniformity on Y compatible with (τ ′1, τ
′
2) and (U ∨

U−1)X((U ∨ U−1)k) denotes the uniformity of uniform convergence (on
compacta) of U ∨U−1 relative to (X, τ1∨τ2) and (Y, τ ′1∨τ ′2), then we have:

Lemma 1. (U ∨ U−1)k = Uk ∨ U−1
k and (U ∨ U−1)X = UX ∨ U−1

X .

Proof. Note that if K ∈ K and U ∈ U then (K,U ∩U−1) = (K, U)∩
(K,U−1) = (K,U) ∩ (K, U)−1. Hence, (U ∨ U−1)k ⊆ (Uk ∨ U−1

k ). On the
other hand, given K,L ∈ K and U, V ∈ U we have (K ∪ L,U ∩ V −1) ⊆
(K,U)∩(L, V −1) and, thus, (Uk∨U−1

k ) ⊆ (U∨U−1)k. The second equality
follows similarly.

A quasi-uniformity U on a set X is called bicomplete [3] if the unifor-
mity U ∨ U−1 is complete (see also [6], [13]).

Corollary. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces.

If (τ ′1, τ
′
2) has a compatible bicomplete quasi-uniformity U then UX is a

bicomplete quasi-uniformity.

Proof. Since U ∨ U−1 is a complete uniformity, it follows from [4,
Chapter 7, Theorem 9] that (U ∨ U−1)X is a complete uniformity on Y X .
By Lemma 1, UX is bicomplete.
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In [1], Arens proved the following crucial result. Let F be a family of
continuous functions on a topological space X to a uniform space (Y,U).
Then the topology of uniform convergence on compacta is the compact
open topology. The next result, which plays an important role in our
study, provides an approprite extension of Arens’ theorem.

Lemma 2. Let (X, τ1, τ2) be a space and (Y, τ ′1, τ
′
2) a quasi-uniformi-

zable space. Then, for each quasi-uniformity on Y compatible with (τ ′1, τ
′
2)

the bitopology of quasi-uniform convergence on 2compacta coincides with
the 2compact open bitopology.

Proof. Let U be a quasi-uniformity on Y compatible with (τ ′1, τ
′
2).

We will show that T (Uk) = T 1
k and T (U−1

k ) = T 2
k . Let f ∈ Y X , K ∈ K

and G ∈ τ ′1 such that f ∈ [K, G]. For each a ∈ K there is Ua ∈ U with
Ua(f(a)) ⊆ G. Take Va ∈ U such that V 2

a ⊆ Ua. Then there exists a
finite subset K ′ ⊆ K such that f(K) ⊆ ⋃{Va(f(a)) : a ∈ K ′}. Put V =⋂{Va : a ∈ K ′}. Thus, V ∈ U . Now we prove that (K,V )(f) ⊆ [K, G].
In fact, given g ∈ (K,V )(f) we have (f(x), g(x)) ∈ V for all x ∈ K.
Since for each x ∈ K there is a ∈ K ′ with f(x) ∈ Va(f(a)) it follows
(f(a), g(x)) ∈ V 2

a ⊆ Ua. So, g(x) ∈ Ua(f(a)) ⊆ G for all x ∈ K. This
proves that T 1

k ⊆ T (Uk). Similarly, T 2
k ⊆ T (U−1

k ). In order to prove
the opposite inclusions let f ∈ Y X , K ∈ K and U ∈ U . Take V ∈ U
such that V 3 ⊆ U . Put V ∗ = V ∩ V −1. Then there is a closed entourage
W ∈ (U∨U−1) with W ⊆ V ∗. Now there also exists a finite subset K ′ ⊆ K
such that f(K) ⊆ ⋃{W (f(a)) : a ∈ K ′}. For each a ∈ K ′ consider the
τ1 ∨ τ2-compact set Ka = K ∩ f−1(W (f(a))). If for each a ∈ K ′ we write
Ga = τ ′1 intV 2(f(a)) and A =

⋂{[Ka, Ga] : a ∈ K ′}, then f ∈ A ∈ T 1
k .

Furthermore, given g ∈ A and x ∈ K there is a ∈ K ′ with f(x) ∈ W (f(a)).
Thus, (f(a), f(x)) ∈ V ∗. Therefore (f(x), g(x)) ∈ V 3 ⊆ U . Consequently,
g ∈ (K, U)(f). This proves that T (Uk) ⊆ T 1

k . Similarly we show that
T (U−1

k ) ⊆ T 2
k . The proof is complete.

As a first application of Lemma 2 we obtain the following characteri-
zation of 2compact spaces.

Theorem 2. A 2Hausdorff quasi-uniformizable space (X, τ1, τ2) is 2-
compact if and only if for each quasi-uniformizable space (Y, τ ′1, τ

′
2) con-

taining a pairwise path and each quasi-uniformity on Y compatible with
(τ ′1, τ

′
2), the bitopology of quasi-uniform convergence coincides with the

2compact open bitopology.

Proof. Let (X, τ1, τ2) be a 2Hausdorff 2compact space and U a
quasi-uniformity on Y compatible with (τ ′1, τ

′
2). Since (X, τ1, τ2) is 2com-

pact, the bitopology of quasi-uniform convergence (of U) coincides with
the bitopology of quasi-uniform convergence (of U) on 2compacta. By
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Lemma 2 the bitopology of quasi-uniform convergence (of U) coincides
with the 2compact open bitopology.

Conversely, let F be a proper τ1∨τ2-closed subset of X and (Y, τ ′1, τ
′
2)

a quasi-uniformizable space. Let U be a quasi-uniformity on Y com-
patible with (τ ′1, τ

′
2) and let p be a pairwise path for (Y, τ ′1, τ

′
2). Put

G = Y \ τ ′1 cl p(1). Then there is U ∈ U such that U(p(0)) ⊆ G. Now
define f : X → Y by f(x) = p(0) for all x ∈ X. So (X, U)(f) is a
T (UX)-neighborhood of f . By hypothesis there exist τ1 ∨ τ2-compact sets
K1, . . . , Kn, and τ ′1-open sets G1, . . . , Gn, such that f ∈ ⋂{[Kj , Gj ] : j =
1, . . . , n} ⊆ (X, U)(f). We will show that F ⊆ K where K =

⋃{Kj : j =
1, . . . , n}. To this end suppose that there is x0 ∈ F \K. Then there also ex-
ists Φ ∈ [0, 1]X satisfying Φ(x0) = 1 and Φ(K) = 0. Hence, (p ◦ Φ) ∈ Y X .
Furthermore, (p ◦ Φ)(K) = p(0) and thus, (p ◦ Φ) ∈ (X,U)(f). Conse-
quently, (f(x0), (p ◦ Φ)(x0)) ∈ U . Therefore, (p(0), p(1)) ∈ U and, then,
p(1) ∈ G, a contradiction. So, F ⊆ K and thus, F is τ1∨ τ2-compact. The
proof is complete.

Another consequence of Lemmas 1 and 2 is the following surprising
fact which is used later on.

Lemma 3. Let (X, τ1, τ2) be a space and (Y, τ ′1, τ
′
2) a quasi-unifor-

mizable space. If the compact open topology relative to (X, τ1 ∨ τ2) and
(Y, τ ′1 ∨ τ ′2) is denoted by T ∗k , then T ∗k = T 1

k ∨ T 2
k .

Proof. Let U be a quasi-uniformity on Y compatible with (τ ′1, τ
′
2).

By Arens’ theorem, cited above, T ∗k = T ((U ∨ U−1)k) and, by Lemma 1,
T ∗k = T (Uk ∨ U−1

k ). Since T (Uk ∨ U−1
k ) = T (Uk) ∨ T (U−1

k ), it follows from
Lemma 2 that T ∗k = T 1

k ∨ T 2
k .

We conclude this section by studying the notion of supremum (sepa-
rated) quasi-(pseudo)metric bitopology.

Suppose that the space (Y, τ ′1, τ
′
2) is (separated) quasi-(pseudo)-met-

rizable. Then, every bounded (separating) quasi-(pseudo)metric d on Y

compatible with (τ ′1, τ
′
2) induces a (separating) quasi-(pseudo)metric d̂ on

Y X defined by

d̂(f, g) = sup{d(f(x), g(x)) : x ∈ X}.
We will say that d̂ is the supremum (separating) quasi-(pseudo)metric in-
duced by d. So, (T (d̂), T (d̂−1)) is a bitopology on Y X called the supremum
(separated) quasi-(pseudo)metric bitopology on Y X .

On the other hand, it is well-known that every quasi-pseudometric d
on Y induces a quasi-uniformity U(d) on Y such that a base of it consists
of all sets of the form {(y, z) ∈ Y × Y : d(y, z) < 2−n} for n ∈ N.
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Theorem 3. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces

such that (Y, τ ′1, τ
′
2) is (separated) quasi-(pseudo)metrizable. If d is a

bounded (separating) quasi-(pseudo)metric on Y compatible with (τ ′1, τ
′
2)

and U(d) is the quasi-uniformity on Y induced by d, then the supremum
(separated) quasi-(pseudo)metric bitopology coincides with the bitopology
of quasi-uniform convergence of U(d).

Proof. Given ε > 0 let (X, Uε) = {(f, g) ∈ Y X × Y X : d(f(x), g(x))
< ε for all x ∈ X}. Then, (X,Uε) ∈ (U(d))X . If f ∈ Y X we have
(X,Uε/2)(f)⊆Bd̂(f, ε)⊆ (X,Uε)(f). This proves that T (d̂)=T ((U(d))X).
Similarly, T (d̂−1) = T ((U(d)−1)X).

With respect to the above theorem it is interesting to consider the
case that the range space is ([0, 1], u, l). If d is the separating quasi-
pseudometric on [0, 1] defined by d(x, y) = max{y − x, 0}, then the supre-
mum separating quasi-pseudometric on [0, 1]X is given by

d̂(f, g) = sup{max(g(x)− f(x), 0) : x ∈ X}.
Since every 2compact space has a unique compatible quasi-uniformity [13,
Theorem 4.5], it follows from the above theorem that (T (d̂), T (d̂−1)) is the
bitopology of quasi-uniform convergence for all bounded separating quasi-
pseudometrics on [0, 1] compatible with (u, l). If, in addition, (X, τ1, τ2) is
2compact, Theorems 2 and 3 show that the supremum separating quasi-
pseudometric bitopology (T (d̂), T (d̂−1)) is the 2compact open bitopology.

4. Quasi-pseudometrizability of the 2compact
open bitopology

It is well-known (see [9]) that if (X, τ) is a Tychonoff space and (Y, τ ′)
is a space containing a nontrivial path, the compact open topology is (com-
pletely) metrizable if and only if (X, τ) is a hemicompact space (and a
k-space) and (Y, τ ′) is (completely) metrizable. In this section we inves-
tigate the (bicomplete) quasi-pseudometrizability of the 2compact open
bitopology.

Recall that a topological space (X, τ) is said to be hemicompact if it
has a sequence (Kn) of compact subsets such that for each compact K
there is some n ∈ N satisfying K ⊆ Kn.

Theorem 4. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
and (Y, τ ′1, τ

′
2) a bitopological space containing a pairwise path. Then the

2compact open bitopology is separated quasi-pseudometrizable if and only
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if (X, τ1∨τ2) is hemicompact and (Y, τ ′1, τ
′
2) is separated quasi-pseudomet-

rizable.

Proof. Necessary condition. Suppose that there is a separating
quasi-pseudometric d on Y X compatible with (T 1

k , T 2
k ). For each y ∈ Y

let fy : X → Y defined by fy(x) = y for all x ∈ X. Then, fy ∈ Y X . Now
define, for all y, z ∈ Y , ρ(y, z) = d(fy, fz). It is easy to see that ρ is a
separating quasi-pseudometric on Y compatible with (τ ′1, τ

′
2). Since d∨d−1

is a metric on Y X compatible with T 1
k ∨T 2

k , it follows from Lemma 3 that
the compact open topology T ∗k (relative to (X, τ1 ∨ τ2) and (Y, τ ′1 ∨ τ ′2))
coincides with T (d ∨ d−1). Therefore, (X, τ1 ∨ τ2) is hemicompact.

Sufficient condition. Let (Kn) be a sequence of τ1∨τ2-compact subsets
of X witnessing hemicompactness of (X, τ1 ∨ τ2) and let d be a separating
quasi-pseudometric on Y compatible with (τ ′1, τ

′
2). Put, for each m ∈ N,

Um = {(y, z) ∈ Y × Y : d(y, z) < 1/m}. Clearly, B = {(Kn, Um) :
n,m ∈ N} is a base for the quasi-uniformity of quasi-uniform convergence
(of U(d)) on 2compacta. Then there exists a quasi-pseudometric ρ on Y X

compatible with the bitopology of quasi-uniform convergence (of U(d)) on
2 compacta [2, Theorem 4], [11, 2.3, page 51]. By Lemma 2, ρ is compatible
with the 2compact open bitopology (T 1

k , T 2
k ). Finally, ρ is separating by

Remark 1 and Proposition 1(a).

Example 3. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
such that (X, τ1 ∨ τ2) is hemicompact. It follows from Theorem 4 that
the space BRX of all τ1-upper semicontinuous and τ2-lower semicontin-
uous functions with the 2compact open bitopology is separated quasi-
pseudometrizable. In particular, the results is true whenever: (i) X = R,
τ1 = u and τ2 = l; (ii) X = N, τ1 the cofinite topology on X and τ2 the
discrete topology on X.

A quasi-pseudometric d on a set X is called bicomplete if the pseu-
dometric d ∨ d−1 is complete. We will say that a bitopological space is
bicompletely quasi-(pseudo)metrizable if it has a compatible bicomplete
quasi-(pseudo)metric.

Theorem 5 [12]. A (separated) quasi-(pseudo)metrizable bitopologi-
cal space (X, τ1, τ2) is bicompletely (separated) quasi-(pseudo)-metrizable
if and only if the space (X, τ1 ∨ τ2) is completely metrizable.

Theorem 6. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
and (Y, τ ′1, τ

′
2) a bitopological space containing a pairwise path. Then the

2compact open bitopology is bicompletely separated quasi-pseudometri-
zable if and only if (X, τ1 ∨ τ2) is a hemicompact k-space and (Y, τ ′1, τ

′
2) is

bicompletely separated quasi-pseudometrizable.
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Proof. Necessary condition. Let d be a bicomplete separating quasi-
pseudometric on Y X compatible with (T 1

k , T 2
k ). By Theorem 4, (X, τ1∨τ2)

is hemicompact and (Y, τ ′1, τ
′
2) is separated quasi-pseudometrizable. On

the other hand, d ∨ d−1 is a complete metric on Y X compatible with the
compact open topology T ∗k by Lemma 3. So, (X, τ1 ∨ τ2) is a k-space and
(Y, τ ′1 ∨ τ ′2) is completely metrizable. Therefore, (Y, τ ′1, τ

′
2) is bicompletely

separated quasi-pseudometrizable by Theorem 5.
Sufficient condition. Since (Y, τ ′1 ∨ τ ′2) is completely metrizable it fol-

lows that the compact open topology T ∗k is completely metrizable. Thus,
T 1

k ∨ T 2
k is completely metrizable. On the other hand, Theorem 4 shows

that (Y X , T 1
k , T 2

k ) is separated quasi-pseudometrizable. Theorem 5 con-
cludes the proof.

Corollary. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
and (Y, τ ′1, τ

′
2) a separated quasi-pseudometrizable space containing a pair-

wise path. Then the compact open topology relative to (X, τ1 ∨ τ2) and
(Y, τ ′1 ∨ τ ′2) is (completely) metrizable if and only if the 2compact open
bitopology is (bicompletely) quasi-pseudometrizable.

Remark 4. Note that in Theorems 4 and 6 the hypothesis that the
range space contains a pairwise path, is only used in the proof of the
necessary condition.

In the following examples we will suppose that (X, τ1, τ2) is a 2Haus-
dorff quasi-uniformizable space such that (X, τ1 ∨ τ2) is a hemicompact
k-space. (For instance, X = R, τ1 = u, τ2 = l).

Example 4. Let Y = R and let d be the bicomplete quasi-metric on Y
defined by d(x, y) = y − x if x ≤ y and d(x, y) = 1 if x > y. Then T (d) is
the Sorgenfrey line on R (basic T (d)-open sets are of the form [x, y[ where
x < y) and T (d−1) is the Sorgenfrey comjugate line on R (basic T (d−1)-
open sets are of the form ]x, y] where x < y). It follows from Theorem 6
and Remark 4 that the 2compact open bitopology on Y X is bicompletely
quasi-metrizable.

Example 5. Let Y = R and let d be the quasi-metric on Y defined
by d(x, y) = min{1, |x − y|} if x is rational, d(x, y) = 1 if x 6= y and x is
irrational and d(x, x) = 0. Then, T (d) is the Michael line on R. It follows
from Theorem 4 and Remark 4 that the 2compact open bitopology on Y X

is quasi-metrizable.

It is clear that if (Y X , T 1
k , T 2

k ) is (separated) quasi-(pseudo)metrizable,
then (BY X , T 1

k , T 2
k ) is (separated) quasi-(pseudo)metrizable. We do not

know if the converse is also true. However, we have the following partial
solution to this question.
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Proposition 2. Let (X, τ1, τ2) be a quasi-uniformizable space such
that for all x, y ∈ X, with x 6= y, there is a τ1 ∨ τ2-neighborhood U of
x and a τi-neighborhood V of y, i = 1, 2, such that U ∩ V = ∅, and let
(Y, τ ′1, τ

′
2) be a bitopological space containing a pairwise path. Then the

following are equivalent.
(a) (X, τ1∨ τ2) is hemicompact and (Y, τ ′1, τ

′
2) is separated quasi-pse-

udometrizable.
(b) (Y X , T 1

k , T 2
k ) is separated quasi-pseudo-metrizable.

(c) (BY X , T 1
k , T 2

k ) is separated quasi-pseudo-metrizable.

Proof. (a) → (b). Theorem 4.
(b) → (c). Obvious.
(c) → (a). Let d be a separated quasi-pseudo metric on BY X compat-

ible with (T 1
k , T 2

k ). Similarly to the proof of Theorem 4 there is a separated
quasi-pseudo metric ρ on Y compatible with (τ ′1, τ

′
2).

It remains to show that (X, τ1∨ τ2) is hemicompact. To this end let p
be a pairwise path for (Y, τ ′1, τ

′
2). Define f : X → Y by f(x) = p(0) for all

x ∈ X. Then f ∈ BY X . Now let Un = {g ∈ BY X : d(f, g) < 1/n} for all
n ∈ N. Since each Un is a T 1

k -neighborhood of f , there is a sequence (Kn)
of τ1 ∨ τ2-compact subsets of X and a decreasing sequence (δn) of positive
real numbers such that δn → 0 and f ∈ [Kn, Bρ(p(0), δn)] ⊆ Un. Since
p(1) ∈ Y \τ ′2 cl p(0) there is δm such that ρ(p(0), p(1)) ≥ δm. Given K ∈ K
take A = [K, Bρ(p(0), δm)]. Then there is Un ⊆ A. We will show that
K ⊆ Kn. Assume the contrary. Then there exists an x ∈ K\Kn. From the
separation hypothesis it follows that every τ1∨τ2-compact subset is τ1 and
τ2 closed. Hence, there is Φ ∈ B[0, 1]X such that Φ(x) = 1 and Φ(Kn) = 0.
Therefore, (p ◦ Φ) ∈ BY X and (p ◦ Φ) ∈ [Kn, Bρ(p(0), δn)] ⊆ Un ⊆ A.
However, (p ◦ Φ)(x) = p(1) implies (p ◦ Φ) ∈ BY X \ A, a contradiction.
This completes the proof.

Example 6. Let X = Y = R, τ1 the Sorgenfrey line on R, τ2 the
Sorgenfrey conjugate line on R, τ ′1 = u and τ ′2 = l. Since (X, τ1 ∨ τ2) is
not hemicompact, it follows from Proposition 2 that the space BRX of all
τ1-upper semicontinuous and τ2-lower semicontinuous functions with the
2compact open bitopology is not quasi-pseudometrizable.

The same conclusion is obtained when τ1 is the Michael line on R and
τ2 is the topology T (d−1) of Example 5.
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UNIVERSIDAD POLITÉCNICA
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