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Fermat-Pell equation and
the numbers of the form w2 + (w + 1)2

By P. G. TSANGARIS (Athens)

1. Introduction

In the present paper we obtain recursive formulae for the determi-
nation of all non-negative (that is X ≥ 0 and Y ≥ 0) integral solutions
of

(F ) X2 − dY 2 = C (d 6= ¤, C 6= 0),

where d 6= ¤ (non-square) is a natural number and C is an integer 6= 0
(Theorem 2.3 for C > 0 and Theorem 2.4 for C < 0 below). Also, we
obtain same recursive formulae (Theorem 2.6 below).

The special case d = 2 and C = 2k2 − 1, k = 0, 1, 2, . . . , of (F )
constitute the connecting link with the numbers of the form

N(w) ≡ w2 + (w + 1)2

(for w = (X − 1)/2, we have N(w) = Y 2 + k2).
In a fortcoming paper these recursive formulae will be used in the

special case d = 2 and C = 2k2 − 1 for the complete determination of all
composite numbers of the form w2 + (w + 1)2.

The expression x1+y1

√
d will always denote the fundamental solution

of

(P ) x2 − dy2 = 1 (d 6= ¤).

Also, xn + yn

√
d n = 0, 1, . . . , will denote the sequece of all non-negative

integral solutions of (P ). These solutions are given in [3, p. 439] by the
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following recursive formulae:

xn+1 = 2x1xn − xn−1, where x0 = 1 and x1 = x1,(1.1)

yn+1 = 2x1yn − yn−1, where y0 = 0 and y1 = y1,(1.2)

Let G be the group of all integral solutions of (P ). Let Z ≡ X + Y
√

d be
an integral solution of (F ). Consider the class

A ≡ {Zz | z ∈ G}
of solutions of (F ) represented by Z. Define

Ā ≡ {−Z̄z | z ∈ G}.
Then Ā constitutes a class of solutions of (F ) represented by −Z̄. This
class Ā is called conjugate class of A. lf A 6= Ā then A is called genuine or
not ambiguous class. If A = Ā, then A is called ambiguous [cf. 2, p. 205].

Let Z∗ = X∗ + Y ∗√d be the fundamental solution (as defined in
Nagell in [2, p. 205]) of (F ) belonging to the class A, then

A = {Z∗z | z ∈ G} and Ā = {−Z̄∗z | z ∈ G}.
Theorem 1.1. The Diophantine equation (F ) has a finite number of

classes of solutions. The fundamental solutions of all such classes are
determined by the following (equivalent) inequalities in case C > 0

0 < |X∗| ≤
√

(x1 + 1)C/2,(1.3)

0 ≤ Y ∗ ≤ (y1/
√

2(x1 + 1) )
√

C(1.4)

and by the followinq (equivalent) inequalities in case C < 0

0 ≤ |X∗| ≤
√

(x1 − 1)(−C)/2,(1.5)

0 < Y ∗ ≤ (y1/
√

2(x1 − 1) )
√

(−C).(1.6)

Moreover, A consists of all elements of the form

X + Y
√

d = (X∗ + Y ∗√d)(x + y
√

d),

where x + y
√

d ranges over the set of all integral solutions of (P ).
The Diophantine equation (F ) has no solution at all when it has

no solution satisfying the inequalities (1.3) and (1.4) or (1.5) and (1.6)
respectively.

Proof. See Theorem 109, in [2] (cf. also [1], [4] and [5]).
In case C > 0 the recursive description of all non-negative integral

solutions of (F ) belonging to a class of solutions A, is given by Theorem 2.1.
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Its proof is based on Proposition 1.2. In the sequel A will always denote
an arbitrarily chosen fixious class of solutions of (F ) and X∗ + Y ∗√d its
fundamental solution.

Proposition 1.2. Consider the Diophantine equation (F ), C > 0. Let
A be a class of solutions with X∗ > 0. Let

Xn + Yn

√
d ≡ (X∗ + Y ∗√d)(xn + yn

√
d) for all n = 0, 1, . . . ,

X ′
n + Y ′

n

√
d ≡ (X∗ − Y ∗√d)(xn + yn

√
d) for all n = 1, 2, . . . .

Then the set of all non-negative integral solutions of (F ) belonging to A
consists of all pairs (Xn, Yn), while the set of all non-negative (positive)
integral solutions of (F ) belonging to Ā consists of all pairs (X ′

n, Y ′
n).

Proof. By Theorem 1.1 the class A consists of all elements having
one of the following typical forms:

(X∗ + Y ∗√d)(xn + yn

√
d) = (xnX∗ + dynY ∗) + (ynX∗ + xnY ∗)

√
d

≡ Xn + Yn

√
d,

(X∗ + Y ∗√d)(−xn − yn

√
d) = −Xn − Yn

√
d,

(X∗ + Y ∗√d)(−xn + yn

√
d) = −(xnX∗ − dynY ∗) + (ynX∗ − xnY ∗)

√
d

≡ −X
′
n + Y

′
n

√
d,

(X∗ + Y ∗√d)(xn − yn

√
d) = X ′

n − Y ′
n

√
d.

Also, Ā consists of all elements having one of the following typical forms:

(−X∗ + Y ∗√d)(xn + yn

√
d) = −X ′

n − Y ′
n

√
d,

(−X∗ + Y ∗√d)(−xn − yn

√
d) = X ′

n + Y ′
n

√
d,

(−X∗ + Y ∗√d)(−xn + yn

√
d) = Xn − Yn

√
d,

(−X∗ + Y ∗√d)(xn − yn

√
d) = −Xn + Yn

√
d.

The following hold true:

Xn = xnX∗ + dynY ∗ > 0,(1.7)

Yn = ynX∗ + xnY ∗ ≥ 0,(1.8)

X ′
n = xnX∗ − dynY ∗ > 0.(1.9)

The last equality holds true because xn > yn

√
d and X∗ > Y ∗√d.

It will be proved that:

(1.10) Y ′
n = ynX∗ − xnY ∗ > 0 for every n = 1, 2, . . . .
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In fact, by (1.4) we deduce that

Y ∗2 ≤ (y2
1C)/(2(x1 + 1)) < y2

1C ≤ y2
n(X∗2 − dY ∗2) for every n ≥ 1,

that is
(ynX∗)2 − (xnY ∗)2 > 0.

Hence
ynX∗ − xnY ∗ > 0, that is Y ′

n > 0.

From (1.7), (1.8), (1.9) and (1.10) follows the desired conclusion.
In the sequel Xn, X ′

n, Yn, Y ′
n will have the same meaning as in Propo-

sition 1.2.

2. Study of the generalized Fermat equation

Theorem 2.1. Consider the Diophantine equation (F ), C > 0. Let A
be a class of solutions with X∗ > 0. Then the sequence of all non-negative
integral solutions of (F ) belonging to A is determined by the following
recursive formulae:

Xn+1 =2x1Xn−Xn−1, where X0 =X∗ and X1 =x1X
∗+dy1Y

∗,(2.1)

Yn+1 =2x1Yn−Yn−1, where Y0 =Y ∗ and Y1 =y1X
∗+x1Y

∗.(2.2)

Also, the sequence of all non-negative (positive) integral solutions of (F )
belonging to Ā is determined by the following recursive formulae:

X ′
n+1 =2x1X

′
n −X ′

n−1, where X ′
0 =X∗ and X ′

1 =x1X
∗ − dy1Y

∗,(2.3)

Y ′
n+1 =2x1Y

′
n − Y ′

n−1, where Y ′
0 =−Y ∗ and Y ′

1 =y1X
∗ − x1Y

∗.(2.4)

Proof. It is easily seen, because of Proposition 1.2, that the non-
negative solutions of A and A satisfy the recursive formulae (2.1), (2.2)
and (2.3), (2.4) respectively. We now use Proposition 1.2 to prove the
reverse side of the theorem. It will be proved that

Xn + Yn

√
d = (X∗ + Y ∗√d)(xn + yn

√
d)(2.5)

= (xnX∗ + dynY ∗) + (ynX∗ + xnY ∗)
√

d

for all n = 0, 1, . . . .
Clearly (2.5) is true for n = 0, 1. Suppose that (2.5) holds true for

every index less than n+1. (Induction hypothesis). It will be proved that
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(2.5) holds true for n + 1. In fact;

Xn+1 + Yn+1

√
d = 2x1Xn −Xn−1 + (2x1Yn − Yn−1)

√
d

= (X∗ + Y ∗√d)(xn + yn

√
d)(2x1 − (x1 − y1

√
d))

= (X∗ + Y ∗√d)(xn+1 + yn+1

√
d).

Evidently Xn > 0 and Yn ≥ 0. Hence, every pair (Xn, Yn) is a non-
negative integral solution of (F ) belonging to A.

In a similar way to the proof of (2.5) it can be proved that

X ′
n + Y ′

n

√
d = (X∗ − Y ∗√d)(xn + yn

√
d) for all n = 1, 2, . . . .

Furthermore, by (1.9) and (1.10), we deduce that X ′
n > 0 and Y ′

n > 0 for
all n = 1, 2, . . . . Hence, every pair (X ′

n, Y ′
n) is a non-negative (positive)

integral solution of (F ) belonging to Ā.
The set of all non-negative integral solutions of (F ), for C > 0, is

determined in Theorem 2.3 whose proof is based (inter alia) on Proposi-
tion 2.2. A similar determination for C < 0 is described in Theorem 2.4.

Proposition 2.2. Consider the Diophantine equation (F ), C > 0. Let
A be a class of solutions with X∗ > 0. Then the following hold true:

(i) Yn+1 > Yn ≥ 0 for every n = 0, 1, . . . .

(ii) Let Y ∗ > 0. Then Y ′
n+1 ≥ Yn > Y ′

n > 0 for every n = 1, 2, . . . .

(iii) Let Y ∗ = 0. Then Yn = Y ′
n for every n = 0, 1, . . . .

(iv) Let A be genuine. Then

Y ′
n+1 > Yn > Y ′

n > 0 for all n = 1, 2, . . . .

(v) Let A be ambiguous. Then for every m there exists n such that:

X ′
m = Xn and Y ′

m = Yn.

Proof. i)

Yn+1 = yn+1X
∗ + xn+1Y

∗ = (x1yn + xny1)X∗ + (x1xn + dy1yn)Y ∗

= yn(x1X
∗ + dy1Y

∗) + xn(y1X
∗ + x1Y

∗) > ynX∗ + xnY ∗ = Yn ≥ 0,

that is Yn+1 > Yn ≥ 0 for every n = 0, 1, . . . .

ii)

(2.6) Y ′
n+1 = yn(x1X

∗ − dy1Y
∗) + xn(y1X

∗ − x1Y
∗).

Also, −X∗ + Y ∗√d is the fundamental solution of Ā, while,

x1X
∗ − dy1Y

∗ + (y1X
∗ − x1Y

∗)
√

d = (−X∗ + Y ∗√d)(−x1 − y1

√
d)
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is (by (1.9) and (1.10)) a positive integral solution of (F ) belonging to Ā.
Hence, by Definition of fundamental solution, we obtain:

(2.7) y1X
∗ − x1Y

∗ ≥ Y ∗ (and equivalently x1X
∗ − dy1Y

∗ ≥ X∗).

From (2.6) and (2.7) we deduce:

Y ′
n+1 ≥ Yn > Y ′

n > 0 for every n = 1, 2, . . . .

iii) By the definition of Yn and Y ′
n.

iv) It will be proved that

(2.8) x1X
∗ − dy1Y

∗ > X∗ and y1X
∗ − x1Y

∗ > Y ∗.

In fact; by (2.7) we have:

x1X
∗ − dy1Y

∗ ≥ X∗ > 0 and y1X
∗ − x1Y

∗ ≥ Y ∗ ≥ 0.

Assume that (2.8) is not true. Then

x1X
∗ − dy1Y

∗ = X∗ and y1X
∗ − x1Y

∗ = Y ∗,

(X∗ − Y ∗√d)(x1 + y1

√
d) = X∗ + Y ∗√d,i.e.

which condradicts the assumption, because A is genuine. Hence (2.8) holds
true. Thus by (2.6) we obtain:

Y ′
n+1 > Yn > Y ′

n > 0.

v) Evident by the assumption A = Ā.

Theorem 2.3. Consider the Diophantine equation (F ), C > 0. Let

X∗
r + Y ∗

r

√
d, where r = 1, 2, . . . , m, be the only integral solutions of (F )

such that:

0 < X∗
r ≤

√
(x1 + 1)C/2 and 0 ≤ Y ∗

r ≤ y1

√
C/

√
2(x1 + 1).

Let

Xn + Yn

√
d ≡ (X∗

r + Y ∗
r

√
d)(xn + yn

√
d) for all n = 0, 1, . . . ,

X ′
n + Y ′

n

√
d ≡ (X∗

r − Y ∗
r

√
d)(xn + yn

√
d) for all n = 1, 2, . . . .

(For a typical r).

Then the set of all non-negative integral solutions of (F ) consists of all
pairs (Xn, Yn) together with all pairs (X ′

n, Y ′
n) for all respective genuine

classes Ar in addition to all pairs (Xn, Yn) for all respective ambiguous
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classes Br. Moreover, Xn, Yn, X ′
n and Y ′

n are determined by the following
recursive formulae:

Xn+1 = 2x1Xn −Xn−1 for n = 1, 2, . . . with

X0 = X∗
r , X1 = x1X

∗
r + dy1Y

∗
r and r = 1, 2, . . . , m.

Yn+1 = 2x1Yn − Yn−1 for n = 1, 2, . . . with

Y0 = Y ∗
r , Y1 = y1X

∗
r + x1Y

∗
r and r = 1, 2, . . . ,m.

X ′
n+1 = 2x1X

′
n −X ′

n−1 for n = 1, 2, . . . with

X ′
0 = X∗

r , X ′
1 = x1X

∗
r − dy1Y

∗
r and r = 1, 2, . . . ,m.

Y ′
n+1 = 2x1Y

′
n − Y ′

n−1 for n = 1, 2, . . . with

Y ′
0 = −Y ∗

r , Y ′
1 = y1X

∗
r − x1Y

∗
r and r = 1, 2, . . . , m.

Proof. By using Proposition 2.2 and Theorems 1.1 and 2.1.

Theorem 2.4. Consider the Diophantine equation (F ), C < 0. Let

X∗
r + Y ∗

r

√
d, where r = 1, 2, . . . , m, be the only integral solutions of (F )

such that:

0 ≤ X∗
r ≤

√
(x1 − 1)(−C)/2 and 0 < Y ∗

r ≤ y1

√
(−C)/

√
2(x1 − 1).

Let

Xn + Yn

√
d ≡ (X∗

r + Y ∗
r

√
d)(xn + yn

√
d) for all n = 0, 1, . . . ,

X ′′
n + Y ′′

n

√
d ≡ (−X∗

r + Y ∗
r

√
d)(xn + yn

√
d)

for all n = 1, 2, . . . . (For a typical r)

Then the set of all non-negative integral solutions of (F ) consists of all
pairs (Xn, Yn) together with all pairs (X ′′

n , Y ′′
n ) for all respective genuine

classes Ar in addition to all pairs (Xn, Yn) for all respective ambiguous
classes Br. Moreover, Xn, Yn, X ′′

n and Y ′′
n are determined by the following

recursive formulae:

Xn+1 = 2x1Xn −Xn−1 for n = 1, 2, . . . with

X0 = X∗
r , X1 = x1X

∗
r + dy1Y

∗
r and r = 1, 2, . . . , m.

Yn+1 = 2x1Yn − Yn−1 for n = 1, 2, . . . with

Y0 = Y ∗
r , Y1 = y1X

∗
r + x1Y

∗
r and r = 1, 2, . . . , m.

X ′′
n+1 = 2x1X

′′
n −X ′′

n−1 for n = 1, 2, . . . with

X ′′
0 = −X∗

r , X ′′
1 = −x1X

∗
r + dy1Y

∗
r and r = 1, 2, . . . ,m.
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Y ′′
n+1 = 2x1Y

′′
n − Y ′′

n−1 for n = 1, 2, . . . with

Y ′′
0 = Y ∗

r , Y ′′
1 = −y1X

∗
r + x1Y

∗
r and r = 1, 2, . . . , m.

Proof. Similar to the proof of Theorem 2.3.

Our next Theorem 2.5 provides a recursive determination of all Y 2

for the elements X + Y
√

d comprising the set of all absolutely distinct
solutions of a class of (F ). [Any two solutions X + Y

√
d and X ′ + Y ′√d

of (F ) are considered as absolutely the same whenever |X| = |X ′| and
|Y | = |Y ′| ]. A similar recursive determination of all Y 2 + k2, for a fixed
integer k (and Y etc. as above) is provided by Theorem 2.6 whose proof is
a direct consequence of that of Theorem 2.5.

Theorem 2.5. Consider the Diophantine equation (F ). Let

Xn + Yn

√
d ≡ (X∗ + Y ∗√d)(x1 + y1

√
d)n,

X ′
n + Y ′

n

√
d ≡ (X∗ − Y ∗√d)(x1 + y1

√
d)n for all n = 0, 1, . . . .

Let Pn ≡ Y 2
n and P ′n ≡ Y ′2

n for all n = 0, 1, . . . . Then the numbers Pn, P ′n
are determined by the following recursive formulae:

Pn+1 = 2x2Pn − Pn−1 + 2y2
1C, where P0 = Y ∗2 and(2.9)

P1 = (x1Y
∗ + y1X

∗)2,

P ′n+1 = 2x2P
′
n − P ′n−1 + 2y2

1C, where(2.10)

P ′0 = Y ∗2 and P ′1 = (y1X
∗ − x1Y

∗)2.

Proof. First we prove that the numbers Pn, P ′n satisfy the above
mentioned recursive formulae. Let Z∗ = X∗+Y ∗√d, zn = (x1+y1

√
d)n =

zn
1 = xn + yn

√
d, Zn = Z∗zn and Z ′n = Z̄∗zn.

The following hold true:

Z2
n = Z∗

2
z2n
1 = Z∗

2
z2n and Z∗

2
= X∗2 + dY ∗2 + 2X∗Y ∗√d.

Let X∗
2 ≡ X∗2 + dY ∗2 and Y ∗

2 ≡ 2X∗Y ∗. Then

(Xn + Yn

√
d)2 = (X∗

2 + Y ∗
2

√
d)(x2n + y2n

√
d).

Hence

(2.11) X2
n + dY 2

n = X∗
2x2n + dY ∗

2 y2n.
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Also,
X2

n − dY 2
n = C.

Therefore
2dY 2

n = X∗
2x2n + dY ∗

2 y2n − C.

Let

(2.12) Q2n ≡ X∗
2x2n + dY ∗

2 y2n.

But Pn = Y 2
n , then

(2.13) Q2n = 2dPn + C.

Also,
zm+2 = zmz2 and zm−2 = zmz̄2.

Hence we deduce:

(2.14) xm+2 = 2x2xm − xm−2 and ym+2 = 2x2ym − ym−2.

From (2.12) and (2.14) we obtain:

(2.15) Q2n+2 = 2x2Q2n −Q2n−2.

By (2.13) we have:

2x2Q2n −Q2(n−1) = 2dPn+1 + C,

that is
2x2(2dPn + C)− 2dPn−1 − C = 2dPn+1 + C,

and so
Pn+1 = 2x2Pn − Pn−1 + C(x2 − 1)/d.

Also x2 = x2
1 + dy2

1 , that is (x2 − 1)/d = 2y2
1 . Hence

Pn+1 = 2x2Pn − Pn−1 + 2Cy2
1 .

In a similar way as above we deduce:

P ′n+1 = 2x2P
′
n − P ′n−1 + 2Cy2

1 .

Also, the initial conditions P0 = Y ∗2 etc are proved directly by the
definitions of Pn and P ′n for n = 0, 1.

Consider now the sequences Pn, P ′n defined by (2.9) and (2.10). We
shall prove that Pn = Y 2

n and P ′n = Y ′2
n. Clearly

(2.16) Pn = Y 2
n
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is true for n = 0, 1. Suppose that (2.16) holds true for every index less
than n + 1. (Induction hypothesis). It will be proved that (2.16) holds
true for n + 1. In fact;

2y2
1 = (x2 − 1)/d,

hence
2dPn+1 = 2x22dPn − 2dPn−1 + 2(x2 − 1)C.

Hence, by the induction hypothesis, we have

(2.17) 2dPn+1 + C = 2x2(X2
n + dY 2

n )− (X2
n−1 + dY 2

n−1).

The following holds true:

(2.18) x2n+2 = 2x2x2n − x2n−2 and y2n+2 = 2x2y2n − y2n−2

From (2.11), (2.17) and (2.18) we obtain:

2dPn+1 + C = X2
n+1 + dY 2

n+1.

Thus we deduce:
Pn+1 = Y 2

n+1.

In a similar way as above we deduce that:

P ′n = Y ′2
n for every n = 0, 1, . . . .

Theorem 2.6. Consider the Diophantine equation (F ). Let Rn ≡
Y 2

n + k2 and R′n ≡ Y ′2
n + k2, where k is a fixed integer. Then the numbers

Rn, R′n are determined by the following recursive formulae:

Rn+1 = 2x2Rn −Rn−1 − 2k2(x2 − 1) + 2y2
1C,

where R0 = Y ∗2 + k2 and R1 = (y1X
∗ + x1Y

∗)2 + k2.

R′n+1 = 2x2R
′
n −R′n−1 − 2k2(x2 − 1) + 2y2

1C,

where R′0 = Y ∗2 + k2 and R′1 = (y1X
∗ − x1Y

∗)2 + k2.

Proof. It is actually a direct consequence of the proof of Theo-
rem 2.5.
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3. An application of Theorem 2.6

A special case of Theorem 2.6 (d = 2 and C = 2k2−1, k = 0, 1, 2, . . . )
is the following

Theorem 3.1. The Diophantine equation

(Fk) X2 − 2Y 2 = 2k2 − 1, where k = 0, 1, . . . .

has at least one class of solutions A. Moreover, if Rn ≡ Y 2
n + k2 and

R′n ≡ Y ′2
n + k2, then the numbers Rn, R′n are determined by the following

recursive formulae:

(3.1) Rn+1 = 34Rn −Rn−1 − 8(2k2 + 1) for all n = 1, 2, . . .

with R0 = Y ∗2 + k2 and R1 = (2X∗ + 3Y ∗)2 + k2.

(3.2) R′n+1 = 34R′n −R′n−1 − 8(2k2 + 1) for all n = 1, 2, . . .

with R′0 = Y ∗2 + k2 and R′1 = (2X∗ − 3Y ∗)2 + k2.

Proof. It suffices to prove the existence of the class A. The other
assertions are evident by Theorem 2.6, since 3 + 2

√
2 is the fundamental

solution of x2 − 2y2 = 1.
The fundamental solution of (F0) is 1 +

√
2. Also 2k − 1 + (k − 1)

√
2

is a solution of (Fk) for k = 1, 2, . . . . In fact it is the fundamental solution
of its class, since satisfies the inequalities (1.3) and (1.4). This proves the
Theorem.

Let X + Y
√

2 be a non-negative integral solution of (Fk) (see The-
orem 2.3 for k ≥ 1 or Theorem 2.4 for k = 0). Hence, we have X2 =
2(Y 2 + k2)− 1 ≥ 1 and so X is an old natural number. In case X + Y

√
2

is the fundamental solution of (F0) or (F1) we have X = 1. We set
N(w) ≡ w2 + (w + 1)2; If w = (X − 1)/2 [w is an integer > 0 if
X + Y

√
2 is not the fundamental solution of (F0) or (F1)] it follows that

N(w) = Y 2+k2. Hence, by Theorem 3.1 the numbers Rn, R′n, n = 1, 2, . . .
[see (3.1) and (3.2)] are of the form w2 + (w + 1)2.

Example. We consider the Diophantine equation

(F0) X2 − 2Y 2 = −1.

From Theorems 2.4 and 3.1 we obtain: X∗ + Y ∗√2 = 1 +
√

2 and

Rn+1 = 34Rn −Rn−1 − 8 = Y 2
n+1, n = 1, 2, . . . with

R0 = 1 and R1 = 25.
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[It follows that R1 = 25, R2 = 841, R3 = 28561, R4 = 970225, R5 =
32959081, R6 = 1119638521, R7 = 38034750625, R8 = 1292061882721,
R9 = 43892069261881, . . . ]

The numbers Rn = 1, 2, . . . , are square (composite) numbers of the
form w2 + (w + 1)2.

Remark. Let X∗ + Y ∗√2 be the fundamental solution of a class A
of integral solutions of (Fk), with X∗ > 0. If A is genuine, then (by
Proposition 2.2, (iv) and Theorem 3.1) R′n < Rn < R′n+1 for all n =
1, 2, . . . . But if A is ambiguous, then for every m there exists n such that
R′m = Rn.
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