Fermat-Pell equation and the numbers of the form $w^{2}+(w+1)^{2}$

By P. G. TSANGARIS (Athens)

1. Introduction

In the present paper we obtain recursive formulae for the determination of all non-negative (that is $X \geq 0$ and $Y \geq 0$) integral solutions of
(F)

$$
X^{2}-d Y^{2}=C \quad(d \neq \square, C \neq 0)
$$

where $d \neq \square$ (non-square) is a natural number and C is an integer $\neq 0$ (Theorem 2.3 for $C>0$ and Theorem 2.4 for $C<0$ below). Also, we obtain same recursive formulae (Theorem 2.6 below).

The special case $d=2$ and $C=2 k^{2}-1, k=0,1,2, \ldots$, of (F) constitute the connecting link with the numbers of the form

$$
N(w) \equiv w^{2}+(w+1)^{2}
$$

(for $w=(X-1) / 2$, we have $N(w)=Y^{2}+k^{2}$).
In a fortcoming paper these recursive formulae will be used in the special case $d=2$ and $C=2 k^{2}-1$ for the complete determination of all composite numbers of the form $w^{2}+(w+1)^{2}$.

The expression $x_{1}+y_{1} \sqrt{d}$ will always denote the fundamental solution of

$$
\begin{equation*}
x^{2}-d y^{2}=1 \quad(d \neq \square) . \tag{P}
\end{equation*}
$$

Also, $x_{n}+y_{n} \sqrt{d} n=0,1, \ldots$, will denote the sequece of all non-negative integral solutions of (P). These solutions are given in [3, p. 439] by the
following recursive formulae:

$$
\begin{align*}
x_{n+1}=2 x_{1} x_{n}-x_{n-1}, & \text { where } \quad x_{0}=1 \quad \text { and } \quad x_{1}=x_{1}, \tag{1.1}\\
y_{n+1}=2 x_{1} y_{n}-y_{n-1}, & \text { where } \quad y_{0}=0 \quad \text { and } \quad y_{1}=y_{1}, \tag{1.2}
\end{align*}
$$

Let G be the group of all integral solutions of (P). Let $Z \equiv X+Y \sqrt{d}$ be an integral solution of (F). Consider the class

$$
A \equiv\{Z z \mid z \in G\}
$$

of solutions of (F) represented by Z. Define

$$
\bar{A} \equiv\{-\bar{Z} z \mid z \in G\}
$$

Then \bar{A} constitutes a class of solutions of (F) represented by $-\bar{Z}$. This class \bar{A} is called conjugate class of A. If $A \neq \bar{A}$ then A is called genuine or not ambiguous class. If $A=\bar{A}$, then A is called ambiguous [cf. 2, p. 205].

Let $Z^{*}=X^{*}+Y^{*} \sqrt{d}$ be the fundamental solution (as defined in Nagell in [2, p. 205]) of (F) belonging to the class A, then

$$
A=\left\{Z^{*} z \mid z \in G\right\} \quad \text { and } \quad \bar{A}=\left\{-\bar{Z}^{*} z \mid z \in G\right\} .
$$

Theorem 1.1. The Diophantine equation (F) has a finite number of classes of solutions. The fundamental solutions of all such classes are determined by the following (equivalent) inequalities in case $C>0$

$$
\begin{align*}
& 0<\left|X^{*}\right| \leq \sqrt{\left(x_{1}+1\right) C / 2}, \tag{1.3}\\
& 0 \leq Y^{*} \leq\left(y_{1} / \sqrt{2\left(x_{1}+1\right)}\right) \sqrt{C} \tag{1.4}
\end{align*}
$$

and by the followinq (equivalent) inequalities in case $C<0$

$$
\begin{align*}
& 0 \leq\left|X^{*}\right| \leq \sqrt{\left(x_{1}-1\right)(-C) / 2} \tag{1.5}\\
& 0<Y^{*} \leq\left(y_{1} / \sqrt{2\left(x_{1}-1\right)}\right) \sqrt{(-C)} \tag{1.6}
\end{align*}
$$

Moreover, A consists of all elements of the form

$$
X+Y \sqrt{d}=\left(X^{*}+Y^{*} \sqrt{d}\right)(x+y \sqrt{d})
$$

where $x+y \sqrt{d}$ ranges over the set of all integral solutions of (P).
The Diophantine equation (F) has no solution at all when it has no solution satisfying the inequalities (1.3) and (1.4) or (1.5) and (1.6) respectively.

Proof. See Theorem 109, in [2] (cf. also [1], [4] and [5]).
In case $C>0$ the recursive description of all non-negative integral solutions of (F) belonging to a class of solutions A, is given by Theorem 2.1.

Its proof is based on Proposition 1.2. In the sequel A will always denote an arbitrarily chosen fixious class of solutions of (F) and $X^{*}+Y^{*} \sqrt{d}$ its fundamental solution.

Proposition 1.2. Consider the Diophantine equation $(F), C>0$. Let A be a class of solutions with $X^{*}>0$. Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{d} \equiv\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=0,1, \ldots, \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \equiv\left(X^{*}-Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=1,2, \ldots
\end{aligned}
$$

Then the set of all non-negative integral solutions of (F) belonging to A consists of all pairs (X_{n}, Y_{n}), while the set of all non-negative (positive) integral solutions of (F) belonging to \bar{A} consists of all pairs $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$.

Proof. By Theorem 1.1 the class A consists of all elements having one of the following typical forms:

$$
\begin{aligned}
\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) & =\left(x_{n} X^{*}+d y_{n} Y^{*}\right)+\left(y_{n} X^{*}+x_{n} Y^{*}\right) \sqrt{d} \\
& \equiv X_{n}+Y_{n} \sqrt{d} \\
\left(X^{*}+Y^{*} \sqrt{d}\right)\left(-x_{n}-y_{n} \sqrt{d}\right) & =-X_{n}-Y_{n} \sqrt{d} \\
\left(X^{*}+Y^{*} \sqrt{d}\right)\left(-x_{n}+y_{n} \sqrt{d}\right) & =-\left(x_{n} X^{*}-d y_{n} Y^{*}\right)+\left(y_{n} X^{*}-x_{n} Y^{*}\right) \sqrt{d} \\
& \equiv-X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \\
\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}-y_{n} \sqrt{d}\right) & =X_{n}^{\prime}-Y_{n}^{\prime} \sqrt{d}
\end{aligned}
$$

Also, \bar{A} consists of all elements having one of the following typical forms:

$$
\begin{aligned}
\left(-X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) & =-X_{n}^{\prime}-Y_{n}^{\prime} \sqrt{d} \\
\left(-X^{*}+Y^{*} \sqrt{d}\right)\left(-x_{n}-y_{n} \sqrt{d}\right) & =X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \\
\left(-X^{*}+Y^{*} \sqrt{d}\right)\left(-x_{n}+y_{n} \sqrt{d}\right) & =X_{n}-Y_{n} \sqrt{d} \\
\left(-X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}-y_{n} \sqrt{d}\right) & =-X_{n}+Y_{n} \sqrt{d}
\end{aligned}
$$

The following hold true:

$$
\begin{align*}
X_{n} & =x_{n} X^{*}+d y_{n} Y^{*}>0 \tag{1.7}\\
Y_{n} & =y_{n} X^{*}+x_{n} Y^{*} \geq 0 \tag{1.8}\\
X_{n}^{\prime} & =x_{n} X^{*}-d y_{n} Y^{*}>0 \tag{1.9}
\end{align*}
$$

The last equality holds true because $x_{n}>y_{n} \sqrt{d}$ and $X^{*}>Y^{*} \sqrt{d}$.
It will be proved that:

$$
\begin{equation*}
Y_{n}^{\prime}=y_{n} X^{*}-x_{n} Y^{*}>0 \quad \text { for every } \quad n=1,2, \ldots \tag{1.10}
\end{equation*}
$$

In fact, by (1.4) we deduce that

$$
Y^{*^{2}} \leq\left(y_{1}^{2} C\right) /\left(2\left(x_{1}+1\right)\right)<y_{1}^{2} C \leq y_{n}^{2}\left(X^{*^{2}}-d Y^{*^{2}}\right) \quad \text { for every } \quad n \geq 1
$$

that is

$$
\left(y_{n} X^{*}\right)^{2}-\left(x_{n} Y^{*}\right)^{2}>0
$$

Hence

$$
y_{n} X^{*}-x_{n} Y^{*}>0, \quad \text { that is } \quad Y_{n}^{\prime}>0
$$

From (1.7), (1.8), (1.9) and (1.10) follows the desired conclusion.
In the sequel $X_{n}, X_{n}^{\prime}, Y_{n}, Y_{n}^{\prime}$ will have the same meaning as in Proposition 1.2.

2. Study of the generalized Fermat equation

Theorem 2.1. Consider the Diophantine equation $(F), C>0$. Let A be a class of solutions with $X^{*}>0$. Then the sequence of all non-negative integral solutions of (F) belonging to A is determined by the following recursive formulae:

$$
\begin{align*}
X_{n+1} & =2 x_{1} X_{n}-X_{n-1}, \text { where } X_{0}=X^{*} \text { and } X_{1}=x_{1} X^{*}+d y_{1} Y^{*}, \tag{2.1}\\
Y_{n+1} & =2 x_{1} Y_{n}-Y_{n-1}, \quad \text { where } Y_{0}=Y^{*} \text { and } Y_{1}=y_{1} X^{*}+x_{1} Y^{*} . \tag{2.2}
\end{align*}
$$

Also, the sequence of all non-negative (positive) integral solutions of (F) belonging to \bar{A} is determined by the following recursive formulae:

$$
\begin{align*}
X_{n+1}^{\prime} & =2 x_{1} X_{n}^{\prime}-X_{n-1}^{\prime}, \text { where } X_{0}^{\prime}=X^{*} \text { and } X_{1}^{\prime}=x_{1} X^{*}-d y_{1} Y^{*} \tag{2.3}\\
Y_{n+1}^{\prime} & =2 x_{1} Y_{n}^{\prime}-Y_{n-1}^{\prime}, \quad \text { where } Y_{0}^{\prime}=-Y^{*} \text { and } Y_{1}^{\prime}=y_{1} X^{*}-x_{1} Y^{*} \tag{2.4}
\end{align*}
$$

Proof. It is easily seen, because of Proposition 1.2 , that the nonnegative solutions of A and \bar{A} satisfy the recursive formulae (2.1), (2.2) and (2.3), (2.4) respectively. We now use Proposition 1.2 to prove the reverse side of the theorem. It will be proved that

$$
\begin{align*}
X_{n}+Y_{n} \sqrt{d} & =\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \tag{2.5}\\
& =\left(x_{n} X^{*}+d y_{n} Y^{*}\right)+\left(y_{n} X^{*}+x_{n} Y^{*}\right) \sqrt{d}
\end{align*}
$$

for all $n=0,1, \ldots$.
Clearly (2.5) is true for $n=0,1$. Suppose that (2.5) holds true for every index less than $n+1$. (Induction hypothesis). It will be proved that
(2.5) holds true for $n+1$. In fact;

$$
\begin{aligned}
X_{n+1}+Y_{n+1} \sqrt{d} & =2 x_{1} X_{n}-X_{n-1}+\left(2 x_{1} Y_{n}-Y_{n-1}\right) \sqrt{d} \\
& =\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right)\left(2 x_{1}-\left(x_{1}-y_{1} \sqrt{d}\right)\right) \\
& =\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{n+1}+y_{n+1} \sqrt{d}\right)
\end{aligned}
$$

Evidently $X_{n}>0$ and $Y_{n} \geq 0$. Hence, every pair $\left(X_{n}, Y_{n}\right)$ is a nonnegative integral solution of (F) belonging to A.

In a similar way to the proof of (2.5) it can be proved that

$$
X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d}=\left(X^{*}-Y^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=1,2, \ldots
$$

Furthermore, by (1.9) and (1.10), we deduce that $X_{n}^{\prime}>0$ and $Y_{n}^{\prime}>0$ for all $n=1,2, \ldots$ Hence, every pair $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ is a non-negative (positive) integral solution of (F) belonging to \bar{A}.

The set of all non-negative integral solutions of (F), for $C>0$, is determined in Theorem 2.3 whose proof is based (inter alia) on Proposition 2.2. A similar determination for $C<0$ is described in Theorem 2.4.

Proposition 2.2. Consider the Diophantine equation $(F), C>0$. Let A be a class of solutions with $X^{*}>0$. Then the following hold true:
(i) $Y_{n+1}>Y_{n} \geq 0$ for every $n=0,1, \ldots$.
(ii) Let $Y^{*}>0$. Then $Y_{n+1}^{\prime} \geq Y_{n}>Y_{n}^{\prime}>0$ for every $n=1,2, \ldots$.
(iii) Let $Y^{*}=0$. Then $Y_{n}=Y_{n}^{\prime}$ for every $n=0,1, \ldots$.
(iv) Let A be genuine. Then

$$
Y_{n+1}^{\prime}>Y_{n}>Y_{n}^{\prime}>0 \quad \text { for all } \quad n=1,2, \ldots
$$

(v) Let A be ambiguous. Then for every m there exists n such that:

$$
X_{m}^{\prime}=X_{n} \quad \text { and } \quad Y_{m}^{\prime}=Y_{n}
$$

Proof. i)

$$
\begin{aligned}
& Y_{n+1}=y_{n+1} X^{*}+x_{n+1} Y^{*}=\left(x_{1} y_{n}+x_{n} y_{1}\right) X^{*}+\left(x_{1} x_{n}+d y_{1} y_{n}\right) Y^{*} \\
& =y_{n}\left(x_{1} X^{*}+d y_{1} Y^{*}\right)+x_{n}\left(y_{1} X^{*}+x_{1} Y^{*}\right)>y_{n} X^{*}+x_{n} Y^{*}=Y_{n} \geq 0 \\
& \quad \text { that is } Y_{n+1}>Y_{n} \geq 0 \quad \text { for every } n=0,1, \ldots
\end{aligned} \quad \begin{aligned}
& \text { ii) }
\end{aligned}
$$

$$
\begin{equation*}
Y_{n+1}^{\prime}=y_{n}\left(x_{1} X^{*}-d y_{1} Y^{*}\right)+x_{n}\left(y_{1} X^{*}-x_{1} Y^{*}\right) \tag{2.6}
\end{equation*}
$$

Also, $-X^{*}+Y^{*} \sqrt{d}$ is the fundamental solution of \bar{A}, while,

$$
x_{1} X^{*}-d y_{1} Y^{*}+\left(y_{1} X^{*}-x_{1} Y^{*}\right) \sqrt{d}=\left(-X^{*}+Y^{*} \sqrt{d}\right)\left(-x_{1}-y_{1} \sqrt{d}\right)
$$

is (by (1.9) and (1.10)) a positive integral solution of (F) belonging to \bar{A}. Hence, by Definition of fundamental solution, we obtain:

$$
\begin{equation*}
\left.y_{1} X^{*}-x_{1} Y^{*} \geq Y^{*} \quad \text { (and equivalently } \quad x_{1} X^{*}-d y_{1} Y^{*} \geq X^{*}\right) \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7) we deduce:

$$
Y_{n+1}^{\prime} \geq Y_{n}>Y_{n}^{\prime}>0 \quad \text { for every } \quad n=1,2, \ldots
$$

iii) By the definition of Y_{n} and Y_{n}^{\prime}.
iv) It will be proved that

$$
\begin{equation*}
x_{1} X^{*}-d y_{1} Y^{*}>X^{*} \quad \text { and } \quad y_{1} X^{*}-x_{1} Y^{*}>Y^{*} \tag{2.8}
\end{equation*}
$$

In fact; by (2.7) we have:

$$
x_{1} X^{*}-d y_{1} Y^{*} \geq X^{*}>0 \quad \text { and } \quad y_{1} X^{*}-x_{1} Y^{*} \geq Y^{*} \geq 0
$$

Assume that (2.8) is not true. Then
i.e.

$$
x_{1} X^{*}-d y_{1} Y^{*}=X^{*} \quad \text { and } \quad y_{1} X^{*}-x_{1} Y^{*}=Y^{*}
$$

$$
\left(X^{*}-Y^{*} \sqrt{d}\right)\left(x_{1}+y_{1} \sqrt{d}\right)=X^{*}+Y^{*} \sqrt{d}
$$

which condradicts the assumption, because A is genuine. Hence (2.8) holds true. Thus by (2.6) we obtain:

$$
Y_{n+1}^{\prime}>Y_{n}>Y_{n}^{\prime}>0
$$

v) Evident by the assumption $A=\bar{A}$.

Theorem 2.3. Consider the Diophantine equation $(F), C>0$. Let $X_{r}^{*}+Y_{r}^{*} \sqrt{d}$, where $r=1,2, \ldots, m$, be the only integral solutions of (F) such that:

$$
0<X_{r}^{*} \leq \sqrt{\left(x_{1}+1\right) C / 2} \quad \text { and } \quad 0 \leq Y_{r}^{*} \leq y_{1} \sqrt{C} / \sqrt{2\left(x_{1}+1\right)}
$$

Let

$$
\begin{array}{ll}
X_{n}+Y_{n} \sqrt{d} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=0,1, \ldots, \\
X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \equiv\left(X_{r}^{*}-Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=1,2, \ldots
\end{array}
$$

(For a typical r).
Then the set of all non-negative integral solutions of (F) consists of all pairs $\left(X_{n}, Y_{n}\right)$ together with all pairs $\left(X_{n}^{\prime}, Y_{n}^{\prime}\right)$ for all respective genuine classes A_{r} in addition to all pairs $\left(X_{n}, Y_{n}\right)$ for all respective ambiguous
classes B_{r}. Moreover, $X_{n}, Y_{n}, X_{n}^{\prime}$ and Y_{n}^{\prime} are determined by the following recursive formulae:

$$
\begin{aligned}
X_{n+1}= & 2 x_{1} X_{n}-X_{n-1} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& X_{0}=X_{r}^{*}, X_{1}=x_{1} X_{r}^{*}+d y_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m \\
Y_{n+1}= & 2 x_{1} Y_{n}-Y_{n-1} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& Y_{0}=Y_{r}^{*}, Y_{1}=y_{1} X_{r}^{*}+x_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m \\
X_{n+1}^{\prime}= & 2 x_{1} X_{n}^{\prime}-X_{n-1}^{\prime} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& X_{0}^{\prime}=X_{r}^{*}, X_{1}^{\prime}=x_{1} X_{r}^{*}-d y_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m \\
Y_{n+1}^{\prime}= & 2 x_{1} Y_{n}^{\prime}-Y_{n-1}^{\prime} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& Y_{0}^{\prime}=-Y_{r}^{*}, Y_{1}^{\prime}=y_{1} X_{r}^{*}-x_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m
\end{aligned}
$$

Proof. By using Proposition 2.2 and Theorems 1.1 and 2.1.
Theorem 2.4. Consider the Diophantine equation $(F), C<0$. Let $X_{r}^{*}+Y_{r}^{*} \sqrt{d}$, where $r=1,2, \ldots, m$, be the only integral solutions of (F) such that:

$$
0 \leq X_{r}^{*} \leq \sqrt{\left(x_{1}-1\right)(-C) / 2} \quad \text { and } \quad 0<Y_{r}^{*} \leq y_{1} \sqrt{(-C)} / \sqrt{2\left(x_{1}-1\right)}
$$

Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{d} \equiv\left(X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right) \quad \text { for all } \quad n=0,1, \ldots, \\
& X_{n}^{\prime \prime}+Y_{n}^{\prime \prime} \sqrt{d} \equiv\left(-X_{r}^{*}+Y_{r}^{*} \sqrt{d}\right)\left(x_{n}+y_{n} \sqrt{d}\right)
\end{aligned}
$$

$$
\text { for all } n=1,2, \ldots . \quad(\text { For a typical } r)
$$

Then the set of all non-negative integral solutions of (F) consists of all pairs $\left(X_{n}, Y_{n}\right)$ together with all pairs $\left(X_{n}^{\prime \prime}, Y_{n}^{\prime \prime}\right)$ for all respective genuine classes A_{r} in addition to all pairs $\left(X_{n}, Y_{n}\right)$ for all respective ambiguous classes B_{r}. Moreover, $X_{n}, Y_{n}, X_{n}^{\prime \prime}$ and $Y_{n}^{\prime \prime}$ are determined by the following recursive formulae:

$$
\begin{aligned}
X_{n+1}= & 2 x_{1} X_{n}-X_{n-1} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& X_{0}=X_{r}^{*}, X_{1}=x_{1} X_{r}^{*}+d y_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m \\
Y_{n+1}= & 2 x_{1} Y_{n}-Y_{n-1} \quad \text { for } n=1,2, \ldots \quad \text { with } \\
& Y_{0}=Y_{r}^{*}, Y_{1}=y_{1} X_{r}^{*}+x_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m \\
X_{n+1}^{\prime \prime}= & 2 x_{1} X_{n}^{\prime \prime}-X_{n-1}^{\prime \prime} \quad \text { for } n=1,2, \ldots \quad \text { with } \\
& X_{0}^{\prime \prime}=-X_{r}^{*}, X_{1}^{\prime \prime}=-x_{1} X_{r}^{*}+d y_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m .
\end{aligned}
$$

$$
\begin{aligned}
Y_{n+1}^{\prime \prime}= & 2 x_{1} Y_{n}^{\prime \prime}-Y_{n-1}^{\prime \prime} \quad \text { for } \quad n=1,2, \ldots \quad \text { with } \\
& Y_{0}^{\prime \prime}=Y_{r}^{*}, \quad Y_{1}^{\prime \prime}=-y_{1} X_{r}^{*}+x_{1} Y_{r}^{*} \quad \text { and } \quad r=1,2, \ldots, m .
\end{aligned}
$$

Proof. Similar to the proof of Theorem 2.3.
Our next Theorem 2.5 provides a recursive determination of all Y^{2} for the elements $X+Y \sqrt{d}$ comprising the set of all absolutely distinct solutions of a class of (F). [Any two solutions $X+Y \sqrt{d}$ and $X^{\prime}+Y^{\prime} \sqrt{d}$ of (F) are considered as absolutely the same whenever $|X|=\left|X^{\prime}\right|$ and $\left.|Y|=\left|Y^{\prime}\right|\right]$. A similar recursive determination of all $Y^{2}+k^{2}$, for a fixed integer k (and Y etc. as above) is provided by Theorem 2.6 whose proof is a direct consequence of that of Theorem 2.5.

Theorem 2.5. Consider the Diophantine equation (F). Let

$$
\begin{aligned}
& X_{n}+Y_{n} \sqrt{d} \equiv\left(X^{*}+Y^{*} \sqrt{d}\right)\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \\
& X_{n}^{\prime}+Y_{n}^{\prime} \sqrt{d} \equiv\left(X^{*}-Y^{*} \sqrt{d}\right)\left(x_{1}+y_{1} \sqrt{d}\right)^{n} \quad \text { for all } \quad n=0,1, \ldots
\end{aligned}
$$

Let $P_{n} \equiv Y_{n}^{2}$ and $P_{n}^{\prime} \equiv Y_{n}^{\prime^{2}}$ for all $n=0,1, \ldots$ Then the numbers P_{n}, P_{n}^{\prime} are determined by the following recursive formulae:

$$
\begin{align*}
P_{n+1}= & 2 x_{2} P_{n}-P_{n-1}+2 y_{1}^{2} C, \text { where } P_{0}=Y^{*^{2}} \text { and } \tag{2.9}\\
& P_{1}=\left(x_{1} Y^{*}+y_{1} X^{*}\right)^{2}, \\
P_{n+1}^{\prime}= & 2 x_{2} P_{n}^{\prime}-P_{n-1}^{\prime}+2 y_{1}^{2} C, \text { where } \tag{2.10}\\
& P_{0}^{\prime}=Y^{*^{2}} \text { and } P_{1}^{\prime}=\left(y_{1} X^{*}-x_{1} Y^{*}\right)^{2} .
\end{align*}
$$

Proof. First we prove that the numbers P_{n}, P_{n}^{\prime} satisfy the above mentioned recursive formulae. Let $Z^{*}=X^{*}+Y^{*} \sqrt{d}, z_{n}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n}=$ $z_{1}^{n}=x_{n}+y_{n} \sqrt{d}, Z_{n}=Z^{*} z_{n}$ and $Z_{n}^{\prime}=\bar{Z}^{*} z_{n}$.

The following hold true:

$$
Z_{n}^{2}=Z^{*^{2}} z_{1}^{2 n}=Z^{*^{2}} z_{2 n} \quad \text { and } \quad Z^{*^{2}}=X^{*^{2}}+d Y^{*^{2}}+2 X^{*} Y^{*} \sqrt{d}
$$

Let $X_{2}^{*} \equiv X^{*^{2}}+d Y^{*^{2}}$ and $Y_{2}^{*} \equiv 2 X^{*} Y^{*}$. Then

$$
\left(X_{n}+Y_{n} \sqrt{d}\right)^{2}=\left(X_{2}^{*}+Y_{2}^{*} \sqrt{d}\right)\left(x_{2 n}+y_{2 n} \sqrt{d}\right)
$$

Hence

$$
\begin{equation*}
X_{n}^{2}+d Y_{n}^{2}=X_{2}^{*} x_{2 n}+d Y_{2}^{*} y_{2 n} \tag{2.11}
\end{equation*}
$$

Also,

$$
X_{n}^{2}-d Y_{n}^{2}=C
$$

Therefore

$$
2 d Y_{n}^{2}=X_{2}^{*} x_{2 n}+d Y_{2}^{*} y_{2 n}-C
$$

Let

$$
\begin{equation*}
Q_{2 n} \equiv X_{2}^{*} x_{2 n}+d Y_{2}^{*} y_{2 n} \tag{2.12}
\end{equation*}
$$

But $P_{n}=Y_{n}^{2}$, then

$$
\begin{equation*}
Q_{2 n}=2 d P_{n}+C \tag{2.13}
\end{equation*}
$$

Also,

$$
z_{m+2}=z_{m} z_{2} \quad \text { and } \quad z_{m-2}=z_{m} \bar{z}_{2}
$$

Hence we deduce:

$$
\begin{equation*}
x_{m+2}=2 x_{2} x_{m}-x_{m-2} \quad \text { and } \quad y_{m+2}=2 x_{2} y_{m}-y_{m-2} . \tag{2.14}
\end{equation*}
$$

From (2.12) and (2.14) we obtain:

$$
\begin{equation*}
Q_{2 n+2}=2 x_{2} Q_{2 n}-Q_{2 n-2} \tag{2.15}
\end{equation*}
$$

By (2.13) we have:

$$
2 x_{2} Q_{2 n}-Q_{2(n-1)}=2 d P_{n+1}+C,
$$

that is

$$
2 x_{2}\left(2 d P_{n}+C\right)-2 d P_{n-1}-C=2 d P_{n+1}+C,
$$

and so

$$
P_{n+1}=2 x_{2} P_{n}-P_{n-1}+C\left(x_{2}-1\right) / d
$$

Also $x_{2}=x_{1}^{2}+d y_{1}^{2}$, that is $\left(x_{2}-1\right) / d=2 y_{1}^{2}$. Hence

$$
P_{n+1}=2 x_{2} P_{n}-P_{n-1}+2 C y_{1}^{2}
$$

In a similar way as above we deduce:

$$
P_{n+1}^{\prime}=2 x_{2} P_{n}^{\prime}-P_{n-1}^{\prime}+2 C y_{1}^{2}
$$

Also, the initial conditions $P_{0}=Y^{*^{2}}$ etc are proved directly by the definitions of P_{n} and P_{n}^{\prime} for $n=0,1$.

Consider now the sequences P_{n}, P_{n}^{\prime} defined by (2.9) and (2.10). We shall prove that $P_{n}=Y_{n}^{2}$ and $P_{n}^{\prime}=Y_{n}^{\prime 2}$. Clearly

$$
\begin{equation*}
P_{n}=Y_{n}^{2} \tag{2.16}
\end{equation*}
$$

is true for $n=0,1$. Suppose that (2.16) holds true for every index less than $n+1$. (Induction hypothesis). It will be proved that (2.16) holds true for $n+1$. In fact;

$$
2 y_{1}^{2}=\left(x_{2}-1\right) / d
$$

hence

$$
2 d P_{n+1}=2 x_{2} 2 d P_{n}-2 d P_{n-1}+2\left(x_{2}-1\right) C .
$$

Hence, by the induction hypothesis, we have

$$
\begin{equation*}
2 d P_{n+1}+C=2 x_{2}\left(X_{n}^{2}+d Y_{n}^{2}\right)-\left(X_{n-1}^{2}+d Y_{n-1}^{2}\right) . \tag{2.17}
\end{equation*}
$$

The following holds true:

$$
\begin{equation*}
x_{2 n+2}=2 x_{2} x_{2 n}-x_{2 n-2} \quad \text { and } \quad y_{2 n+2}=2 x_{2} y_{2 n}-y_{2 n-2} \tag{2.18}
\end{equation*}
$$

From (2.11), (2.17) and (2.18) we obtain:

$$
2 d P_{n+1}+C=X_{n+1}^{2}+d Y_{n+1}^{2}
$$

Thus we deduce:

$$
P_{n+1}=Y_{n+1}^{2}
$$

In a similar way as above we deduce that:

$$
P_{n}^{\prime}=Y_{n}^{\prime 2} \quad \text { for every } n=0,1, \ldots
$$

Theorem 2.6. Consider the Diophantine equation (F). Let $R_{n} \equiv$ $Y_{n}^{2}+k^{2}$ and $R_{n}^{\prime} \equiv Y_{n}^{\prime 2}+k^{2}$, where k is a fixed integer. Then the numbers R_{n}, R_{n}^{\prime} are determined by the following recursive formulae:

$$
R_{n+1}=2 x_{2} R_{n}-R_{n-1}-2 k^{2}\left(x_{2}-1\right)+2 y_{1}^{2} C,
$$

where $R_{0}=Y^{*^{2}}+k^{2}$ and $R_{1}=\left(y_{1} X^{*}+x_{1} Y^{*}\right)^{2}+k^{2}$.

$$
R_{n+1}^{\prime}=2 x_{2} R_{n}^{\prime}-R_{n-1}^{\prime}-2 k^{2}\left(x_{2}-1\right)+2 y_{1}^{2} C,
$$

where $R_{0}^{\prime}=Y^{*^{2}}+k^{2}$ and $R_{1}^{\prime}=\left(y_{1} X^{*}-x_{1} Y^{*}\right)^{2}+k^{2}$.
Proof. It is actually a direct consequence of the proof of Theorem 2.5.

3. An application of Theorem 2.6

A special case of Theorem $2.6\left(d=2\right.$ and $\left.C=2 k^{2}-1, k=0,1,2, \ldots\right)$ is the following

Theorem 3.1. The Diophantine equation

$$
\begin{equation*}
X^{2}-2 Y^{2}=2 k^{2}-1, \quad \text { where } k=0,1, \ldots \tag{k}
\end{equation*}
$$

has at least one class of solutions A. Moreover, if $R_{n} \equiv Y_{n}^{2}+k^{2}$ and $R_{n}^{\prime} \equiv Y^{\prime 2}{ }_{n}+k^{2}$, then the numbers R_{n}, R_{n}^{\prime} are determined by the following recursive formulae:

$$
\begin{equation*}
R_{n+1}=34 R_{n}-R_{n-1}-8\left(2 k^{2}+1\right) \quad \text { for all } \quad n=1,2, \ldots \tag{3.1}
\end{equation*}
$$

with $R_{0}=Y^{*^{2}}+k^{2}$ and $R_{1}=\left(2 X^{*}+3 Y^{*}\right)^{2}+k^{2}$.

$$
\begin{equation*}
R_{n+1}^{\prime}=34 R_{n}^{\prime}-R_{n-1}^{\prime}-8\left(2 k^{2}+1\right) \quad \text { for all } \quad n=1,2, \ldots \tag{3.2}
\end{equation*}
$$

with $R_{0}^{\prime}=Y^{*^{2}}+k^{2}$ and $R_{1}^{\prime}=\left(2 X^{*}-3 Y^{*}\right)^{2}+k^{2}$.
Proof. It suffices to prove the existence of the class A. The other assertions are evident by Theorem 2.6 , since $3+2 \sqrt{2}$ is the fundamental solution of $x^{2}-2 y^{2}=1$.

The fundamental solution of $\left(F_{0}\right)$ is $1+\sqrt{2}$. Also $2 k-1+(k-1) \sqrt{2}$ is a solution of $\left(F_{k}\right)$ for $k=1,2, \ldots$ In fact it is the fundamental solution of its class, since satisfies the inequalities (1.3) and (1.4). This proves the Theorem.

Let $X+Y \sqrt{2}$ be a non-negative integral solution of $\left(F_{k}\right)$ (see Theorem 2.3 for $k \geq 1$ or Theorem 2.4 for $k=0$). Hence, we have $X^{2}=$ $2\left(Y^{2}+k^{2}\right)-1 \geq 1$ and so X is an old natural number. In case $X+Y \sqrt{2}$ is the fundamental solution of $\left(F_{0}\right)$ or $\left(F_{1}\right)$ we have $X=1$. We set $N(w) \equiv w^{2}+(w+1)^{2}$; If $w=(X-1) / 2[w$ is an integer >0 if $X+Y \sqrt{2}$ is not the fundamental solution of $\left(F_{0}\right)$ or $\left.\left(F_{1}\right)\right]$ it follows that $N(w)=Y^{2}+k^{2}$. Hence, by Theorem 3.1 the numbers $R_{n}, R_{n}^{\prime}, n=1,2, \ldots$ [see (3.1) and (3.2)] are of the form $w^{2}+(w+1)^{2}$.

Example. We consider the Diophantine equation

$$
\begin{equation*}
X^{2}-2 Y^{2}=-1 \tag{0}
\end{equation*}
$$

From Theorems 2.4 and 3.1 we obtain: $X^{*}+Y^{*} \sqrt{2}=1+\sqrt{2}$ and

$$
\begin{aligned}
R_{n+1}= & 34 R_{n}-R_{n-1}-8=Y_{n+1}^{2}, \quad n=1,2, \ldots \quad \text { with } \\
& R_{0}=1 \text { and } R_{1}=25
\end{aligned}
$$

[It follows that $R_{1}=25, R_{2}=841, R_{3}=28561, R_{4}=970225, R_{5}=$ $32959081, R_{6}=1119638521, R_{7}=38034750625, R_{8}=1292061882721$, $\left.R_{9}=43892069261881, \ldots\right]$

The numbers $R_{n}=1,2, \ldots$, are square (composite) numbers of the form $w^{2}+(w+1)^{2}$.

Remark. Let $X^{*}+Y^{*} \sqrt{2}$ be the fundamental solution of a class A of integral solutions of $\left(F_{k}\right)$, with $X^{*}>0$. If A is genuine, then (by Proposition 2.2, (iv) and Theorem 3.1) $R_{n}^{\prime}<R_{n}<R_{n+1}^{\prime}$ for all $n=$ $1,2, \ldots$. But if A is ambiguous, then for every m there exists n such that $R_{m}^{\prime}=R_{n}$.

References

[1] M. J. DeLeon, A characterization of the fundamental solutions to Pell's equation $u^{2}-D v^{2}=C$, The Fibonacci Quart. 19 (1981), 4-6 and 92.
[2] T. Nagell, Introduction to Number Theory, Chelsea, New York, 1964.
[3] W. Sierpinski, Elementary Theory of Numbers, P.W.N., Warszawa, 1964.
[4] P. L. Tchebychef, Sur les formes quadratiques, Jour. de Math. 16 (1851), 257-265; Oeuvres I., 73-80.
[5] P. G. Tsangaris, Primes Numbers and Cyclotomy-Primes of the form $x^{2}+(x+1)^{2}$, Ph.D. Thesis, Athens University, Athens, 1984. (in Greek)

```
PANAYIOTIS G. TSANGARIS
DEPARTMENT OF MATHEMATICS
ATHENS UNIVERSITY
PANEPISTIMIOPOLIS, 15784 ATHENS
GREECE
```

(Received May 2, 1994; revised November 22, 1994)

