
Publ. Math. Debrecen

47 / 1-2 (1995), 161–166

Families of mappings and fixed points

By ZEQING LIU (Liaoning)

Abstract. In this paper, some necessary and sufficient conditions for the exis-
tence of fixed points of a family of self-mappings of a metric space are given and a fixed
point theorem for a compact mapping is established.

1. Introduction

Jungck [1] first gave a necessary and sufficient condition for the ex-
istence of fixed points of a continuous self-mapping of a complete metric
space. Afterwards, Park [2] and Khan and Fisher [3] established a few
theorems similar to that of Jungck. Janos [4] and Park [5] proved fixed
point theorems for compact self-mappings of a metric space.

The purpose of this paper is to offer some characterizations for the
existence of fixed points of a family of self-mapings of metric spaces. We
also obtain a fixed point theorem for a compact mapping, which extends
properly the results of Janos [4] and Park [5].

ω and N denote the sets of nonnegative and positive integers, respec-
tively. Let f be a self-mapping of a metric space (X, d). Following Furi
and Vignoli [6], f is said to be condensing if for every bounded subset A of
X with α(A) > 0, we have α(fA) < α(A), where α(A) denotes the measure
of noncompactness in the sense of Kuratowski. Define Cf = {g | g:X−→X
and fg = gf}, Hf = {g | g : X −→ X and g

⋂
n∈ω fnX ⊂ ⋂

n∈ω fnX},
O(x, f) = {fnx | n ∈ ω} and O(x, y, f) = O(x, f) ∪ O(y, f) for x, y ∈ X.
Let F be a family of self-mappings of X. A point x ∈ X is said to be a
fixed point of F if fx = x for all f ∈ F . Set F = {F | F is a real-valued
lower semi-continuous function of X×X into [0,∞) such that F (x, y) = 0
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if and only if x = y}. For A ⊂ X, δ(A) and A denote the diameter and
closure of A, respectively. Let M(X) denote the set of all metrics on X
that are topologically equivalent to d for a given metric space (X, d).

Remark. Clearly, Hf ⊃ Cf ⊃ {fn | n ∈ ω}.

2. Fixed point theorems

Theorem 1. Let F be a family of self-mappings of a bounded met-
ric space (X,d). Then F has a fixed point if and only if there exists a
continuous compact self-mapping f of X such that f ∈ ⋂

g∈F Cg and

(∗) d(fx, fy) < δ


 ⋃

h∈Hf

O(x, y, h)


 for all x, y ∈ X with x 6= y.

Proof. To see that the stated condition is necessary, suppose that
F has a fixed point w ∈ X. Define a mapping f : X −→ X by fx = w for
all x ∈ X. Then fgx = w = gw = gfx for all g ∈ F and all x ∈ X; i.e.,
f ∈ ⋂

g∈F Cg. Clearly, (∗) holds.

On the other hand, suppose there exists a continuous compact self-
mapping f of X such that f ∈ ⋂

g∈F Cg and (∗) hold. Since f is compact,

there exists a compact set Y with fX ⊂ Y ⊂ X. Consequently, X ⊃
Y ⊃ . . . ⊃ fnX ⊃ fnY ⊃ fn+1X ⊃ fn+1Y ⊃ . . . for n ∈ ω. Set
A =

⋂
n∈ω fnX and B =

⋂
n∈ω fnY . Note that A =

⋂
n∈N fnX ⊂ B ⊂

A. It follows that A = B. Since f is continuous and Y is compact
and fn+1Y ⊂ fnY for n ∈ ω, it follows that B is a nonempty compact
set and fB ⊂ ⋂

n∈ω fn+1Y ⊂ B. We now show that fB ⊃ B. Given
b ∈ B =

⋂
n∈ω fnY , there exists xn ∈ fnY with b = fxn for n ∈ N.

Note that {xn}n∈N ⊂ Y . Hence we can extract a subsequence {xni}i∈N
converging to p ∈ Y . For every m ∈ N, there exists i > m such that
{xni , xni+1 , xni+2 , . . .} ⊂ fmY . Compactness of fmY implies xni −→ p ∈
fmY as i −→ ∞. Therefore p ∈ ⋂

n∈N fnY = B. By the continuity of
f , we have b = fxni −→ fp as i −→ ∞; i.e., b = fp ∈ fB. This proves
fB ⊃ B. Hence fB = B. Thus A is a nonempty compact set and fA = A.
Consequently, we can find x, y, u, v ∈ A with δ(A) = d(u, v), u = fx and
v = fy. We next show that A is a singleton. If not, then δ(A) > 0, which
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implies x 6= y. Using (∗) we obtain

δ(A) = d(fx, fy) < δ


 ⋃

h∈Hf

O(x, y, h)


 ≤ δ(A),

a contradiction, and hence A = {w} for some w ∈ X. Obviously, w is a
fixed point of f . If z is another fixed point of f , then z ∈ ⋂

n∈ω fnX =
A = {w}; i.e., z = w. Hence w is the only fixed point of f .

Note that f ∈ ⋂
g∈F Cg. Thus we have fgw = gfw = gw for g ∈ F .

Since f has a unique fixed point w, gw = w for g ∈ F ; i.e., w is a fixed
point of F . This completes the proof.

In order to extend Janos’ and Park’s results to a mapping satisfying
(∗), we need the following

Theorem (Meyers [7]). Let f be a continuous self-mapping of a
metric (X, d) with the following properties:

(i) f has a unique fixed point w ∈ X;
(ii) For any x ∈ X, fnx −→ w as n −→∞,
(iii) There exists an open neighborhood U of w with the property

that given any open set V containing w there exists k ∈ N with
fnU ⊂ V for n > k.

Then for any α ∈ (0, 1) there exists a metric d′ ∈ M(X) relative to
which f satisfies d′(fx, fy) ≤ αd′(x, y) for x, y ∈ X.

Theorem 2. Let f be a continuos compact self-mapping of a bounded
metric space (X, d) satisfying (∗). Then f has a unique fixed point, and
furthermore, for any α ∈ (0, 1) there exists a metric d′ ∈ M(X) relative to
which f satisfies d′(fx, fy) ≤ αd′(x, y) for all x, y ∈ X.

Proof. Let A =
⋂

n∈ω fnX. As in the proof of Theorem 1, we have
A = {w}, which implies that (i) and (ii) of Meyers’ theorem hold. To
prove that (iii) holds we take U = Xand observe that fn+1X ⊂ fnX, the
diameter of which diminishes to zero as n −→∞. Thus fnX squeezes into
any neighborhood of w and the proof is complete.

The following simple example reveals that our Theorem 2 extends
properly Theorem 1.1 of Janos [4] and Theorem 1 of Park [5].

Example. Let X = {1, 2, 4, 5, 8} with the usual metric. Define a map-
ping f : X −→ X by f1 = f4 = f5 = 5, f2 = 1 and f8 = 2. Then f is a
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continuous compact self-mapping of X. It is easy to check that

d(fx, fy) ≤ 4 < 7 = δ


 ⋃

h∈Hf

O(x, y, h)




for all x, y ∈ X with x 6= y. Hence the conditions of Theorem 2 are
satisfied. But Theorem 1.1 of Janos [4] and Theorem 1 of Park [5] are
not applicable because

d(f2, f4) = 4 ≮ 1 =
1
2
[d(2, f2) + d(4, f4)]

and

d(f2, f4) = 4 ≮ 4 = δ(O(2, 4, f)).

Theorem 3. Let F be a family of self-mappings of a complete metric
space (X, d). Then the following statements are equivalent:

(1) F has a fixed point;
(2) There exists x0 ∈ X and a continuous condensing mapping f ∈⋂

g∈F Cg such that O(x0, f) is bounded and

d(fx, fy) < δ(O(x, y, f)) for all x, y ∈ X with x 6= y;

(3) There exists x0 ∈ X and F ∈ F and a continuous condensing
mapping f ∈ ⋂

g∈F Cg such that O(x0, f) is bounded and

F (fx, fy) < max
{

F (x, y), F (x, fx), F (y, fy),
F (x, fx)F (y, fy)

F (x, y)

}

for all x, y ∈ X with x 6= y.

Proof. Let (1) hold and let w be a fixed point of F . Define f :X−→X
by fx = w for x ∈ X. Let x0 = w and F ∈ F . It is easy to show that (2)
and (3) hold.

Assume that (2) holds. Set B = O(x0, f) and A =
⋂

n∈ω fnB. Since
f is condensing and α(B) = max{α({x0}), α(fB)} = α(fB), we have
α(B) = 0, which implies that B is precompact. Since X is complete, B
is compact. By the continuity of f we get fB ⊂ fB ⊂ B. As in the
proof of Theorem 1, we conclude that A is a nonempty compact subset
and fA = A. We assert that A is a singleton. Otherwise δ(A) > 0. Since
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A is compact and f maps A into itself, there exist a, b, x, y ∈ A with
d(a, b) = δ(A), a = fx, b = fy and x 6= y. From (2) we have

δ(A) = d(fx, fy) < δ(O(x, y, f) ≤ δ(A),

a contradiction, and hence A = {w} for some w ∈ X. Clearly, w is a fixed
point of f . Suppose that f has another fixed point v( 6= w), then by (2)
we have

d(w, v) = d(fw, fv) < δ(O(w, v, f)) = d(w, v)

which is impossible. Consequently w is a unique fixed point of f . It is
easy to check that w is a fixed point of F . Hence (1) holds.

Assume that (3) holds. Set B = O(x0, f). As above we may show
that B is compact and f -invariant. Since the function F is lower semi-
continuous, the function h defined by hx = F (x, fx) for x ∈ B is lower
semi-continuous and so assumes its minimum value at some w ∈ B. Thus
if fw 6= w, then fw ∈ B and

hfw = F (fw, f2w)

< max
{

F (w, fw), F (w, fw), F (fw, f2w),
F (w, fw)F (fw, f2w)

F (w, fw)

}

= max{hw, hfw}
which implies that hfw < hw, contradicting the definition of w. It follows
that w is a fixed point of f . If f has a second distinct fixed point u, then
by (3) we have

F (w, u) = F (fw, fu)

< max
{

F (w, u), F (w,w), F (u, u),
F (w,w)F (u, u)

F (w, u)

}
= F (w, u),

a contradiction. Therefore w is the only fixed point of f . It is a simple
matter to show that w is a fixed point of F . Hence (1) holds. This
completes the proof.
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