Publ. Math. Debrecen 47 / 1-2 (1995), 167–172

Nonflat pseudo-Riemannian space forms and homogeneous pseudo-Riemannian structures of class S_1

By P. M. GADEA (Madrid) and J. MUÑOZ MASQUÉ (Madrid)

1. Introduction

The well-known characterization by AMBROSE and SINGER [1] of connected, simply connected and complete homogeneous Riemannian manifolds in terms of a (1,2) tensor field S on the manifold, which in turn generalizes Cartan's characterization of Riemannian symmetric spaces [3], has been extended in [5] to the pseudo-Riemannian case of any signature.

This extended characterization allows us to obtain (§2) a classification of homogeneous pseudo-Riemannian structures into eight classes in the pseudo-Riemannian case, according as the structure S belongs to an invariant subspace of certain space $S_1 \oplus S_2 \oplus S_3$, thus generalizing the Riemannian case studied in [7].

The main purpose of the present paper is to prove that if a connected, simply connected and complete pseudo-Riemannian manifold (M,g) is a nonflat pseudo-Riemannian space form, then (M,g) is locally isometric to a manifold which admits a nondegenerate homogeneous structure of class S_1 . The result follows by means of a Cayley transformation which we define here in terms of paracomplex numbers (for these numbers see [4,6]). The proof provides the pseudo-Riemannian models for any signature similar to the Riemannian Poincaré models.

We also prove, by using Cartan's moving frame method as in [8], that if a connected pseudo-Riemannian manifold (M, g) of any signature admits a nondegenerate homogeneous structure of class S_1 , then (M, g) is a nonflat pseudo-Riemannian space form. P. M. Gadea and J. Muñoz Masqué

2. Definitions and results

Let M be a connected C^{∞} manifold of dimension m + n endowed with a pseudo-Riemannian metric g of signature (m, n). Let ∇ denote the Levi-Civita connection of g and R the curvature tensor.

A homogeneous pseudo-Riemannian structure on (M, g) is [5] a tensor field S of type (1,2) on M such that the connection $\tilde{\nabla} = \nabla - S$ satisfies

$$\tilde{\nabla}g = 0, \quad \tilde{\nabla}R = 0, \quad \tilde{\nabla}S = 0.$$

The following result is proved in [5]: if (M, g) is connected, simply connected and complete, then it admits a homogeneous pseudo-Riemannian structure if and only if it is a reductive homogeneous pseudo-Riemannian manifold. Notice that a homogeneous Riemannian manifold is always complete and reductive.

Let V be a finite dimensional real vector space endowed with an inner product \langle , \rangle of signature (m, n), with the convention that (m, n) means m pluses and n minuses. (V, \langle , \rangle) is the model for each tangent space $T_x M, x \in M$, of a reductive homogeneous pseudo-Riemannian manifold of signature (m, n). Consider the vector space $\mathcal{S}(V)$ of (0,3) tensors on (V, \langle , \rangle) satisfying the same symmetries as a homogeneous pseudo-Riemannian structure S, that is,

$$\mathcal{S}(V) = \{ S \in \overset{3}{\otimes} V^* : S_{XYZ} = -S_{XZY}, \ X, Y, Z \in V \},\$$

where $S_{XYZ} = \langle S_X Y, Z \rangle$. By using arguments similar to those in [7, §3] we can determine the decomposition of $\mathcal{S}(V)$ into subspaces which are invariant and irreducible under the action of the pseudo-orthogonal group O(m, n) given by

$$(aS)_{XYZ} = S_{a^{-1}Xa^{-1}Ya^{-1}Z}, \quad a \in O(m, n)$$

Specifically, being $c_{12}(S)(X) = \sum_i \varepsilon_i S_{e_i e_i X}$, where $\{e_i\}$ is an orthonormal basis of V, $\langle e_i, e_i \rangle = \varepsilon_i$, $\varepsilon_i = 1$ for $1 \leq i \leq m$, $\varepsilon_i = -1$ for $m+1 \leq i \leq m+n$, we have:

Theorem 2.1. If dim $V \geq 3$, then $\mathcal{S}(V)$ decomposes into the direct sum of subspaces which are invariant and irreducible under the action of O(m, n):

$$\mathcal{S}(V) = \mathcal{S}_1(V) \oplus \mathcal{S}_2(V) \oplus \mathcal{S}_3(V),$$

where

$$\mathcal{S}_1(V) = \{ S \in \mathcal{S}(V) : S_{XYZ} = \langle X, Y \rangle \omega(Z) - \langle X, Z \rangle \omega(Y), \ \omega \in V^* \}, \\ \mathcal{S}_2(V) = \{ S \in \mathcal{S}(V) : \underset{XYZ}{\mathfrak{S}} S_{XYZ} = 0, \ c_{12}(S) = 0 \}, \\ \mathcal{S}_3(V) = \{ S \in \mathcal{S}(V) : S_{XYZ} + S_{YXZ} = 0 \}.$$

If dim V = 2 then $\mathcal{S}(V) = \mathcal{S}_1(V)$.

PROOF. The representation theory of O(m, n) is similar to that of O(m + n) ([9], [2]), having only in mind that the trace maps are metric contractions and thus depend on the specific group O(m, n).

Definition 2.1. A homogeneous pseudo-Riemannian structure S on (M,g) is said to be of type S_1 , if, at each point of $x \in M$, $S(x) \in S(T_xM)$ belongs to $S_1(T_xM)$. Let S be a homogeneous structure of type S_1 on a connected pseudo-Riemannian manifold (M,g), that is, $S_{XYZ} = g(X,Y)\omega(Z) - g(X,Z)\omega(Y)$, where ω is a 1-form on M and let ξ be the dual vector field to ω , i.e. $g(X,\xi) = \omega(X)$. We say that S is nondegenerate if $g(\xi,\xi) \neq 0$.

Proposition 2.1. Let (M, g) be a connected pseudo-Riemannian manifold which admits a nondegenerate homogeneous structure of type S_1 defined by a vector field ξ . Then (M, g) is a nonflat pseudo-Riemannian space form with constant curvature $-g(\xi, \xi)$.

PROOF. Let S be a nondegenerate structure of type S_1 and ξ the corresponding vector field. Let $\{e_i : i = 1, \ldots, m+n\}$ be a local orthonormal frame on (M, g), where $g(e_i, e_j) = \varepsilon_j \delta_{ij}, \varepsilon_j = +1$ if $1 \leq j \leq m, \varepsilon_j = -1$ if $m+1 \leq j \leq m+n$, and let $\{\theta^i\}$ be the dual basis of $\{e_i\}$. If Ω^i_j and $\tilde{\Omega}^i_j$ are the curvature forms of ∇ and $\tilde{\nabla}$, respectively, where ∇ is the Levi-Civita connection of g and $\tilde{\nabla} = \nabla - S$, then, in a way similar to the one described in [8], we obtain $g(\xi,\xi)\tilde{\Omega}^i_j = 0$, where $g(\xi,\xi)$ is a nonzero constant, and $\Omega^i_j = \tilde{\Omega}^i_j + \varepsilon_j g(\xi,\xi)\theta^i \wedge \theta^j$. Since $g(\xi,\xi) \neq 0$ then $\Omega^i_j = \varepsilon_j g(\xi,\xi)\theta^i \wedge \theta^j$ and so (M,g) has constant curvature $-g(\xi,\xi)$.

Proposition 2.2. Let (M,g) be a connected, simply connected and complete pseudo-Riemannian manifold of signature (m,n). If (M,g) is a pseudo-Riemannian model of nonzero constant curvature then it is locally isometric to a manifold which admits a nondegenerate homogeneous structure of type S_1 .

PROOF. If (M, g) has constant curvature $K \neq 0$ then (M, g) is locally isometric to the open subset

$$D = \left\{ (x_1, \dots, x_{m+n}) \in \mathbb{R}^{m+n} : 1 + \frac{K}{4} \sum_{i=1}^{m+n} \varepsilon_i x_i^2 > 0 \right\} ,$$

where $\varepsilon_i = +1$ if $1 \leq i \leq m$, and $\varepsilon_i = -1$ if $m + 1 \leq i \leq m + n$, endowed with the pseudo-Riemannian metric

$$g_D = \frac{\sum_{i=1}^{m+n} \varepsilon_i dx_i^2}{\left(1 + \frac{K}{4} \sum_{i=1}^{m+n} \varepsilon_i x_i^2\right)^2}$$

(see [10, p. 69]). We shall construct a generalized Cayley transformation

$$c: D \to H^{m+n} = \{x \in \mathbb{R}^{m+n} : x_1 > 0\}$$

such that c is an isometry of (D, g_D) onto the half-space H^{m+n} endowed with the "Poincaré" metric

$$g_{H^{m+n}} = -\frac{1}{K} \frac{\sum_{i=1}^{m} du_i^2 - \sum_{i=1}^{n} dv_i^2}{u_1^2},$$

where we have denoted by (u_i, v_i) the coordinates in H^{m+n} .

For this, we can suppose m < n, by reversing if necessary the sign of the metric, and then embed \mathbb{R}^{m+n} into \mathbb{R}^{2n} , and D into

$$D_{\mathbb{R}^{2n}} = \{ x \in \mathbb{R}^{2n} : 1 + \frac{K}{4} \sum_{i=1}^{2n} \varepsilon_i x_i^2 > 0 \},\$$

where $\varepsilon_i = +1$ if $1 \le i \le n$, and $\varepsilon_i = -1$ if $n + 1 \le i \le 2n$, endowed with the metric

$$g_{D_{\mathbb{R}^{2n}}} = \frac{\sum_{i=1}^{2n} \varepsilon_i dx_i^2}{\left(1 + \frac{K}{4} \sum_{i=1}^{2n} \varepsilon_i x_i^2\right)^2} \,.$$

We can now consider paracomplex coordinates $z_k = a_k + jb_k$ on \mathbb{R}^{2n} (see LIBERMANN [6], CRUCEANU *et al.* [4]), and identifying $a_k = x_k$ for k = 1, ..., n; $b_k = x_k$ for k = n + 1, ..., 2n, we can express the above metric as

$$g_{D_{\mathbb{R}^{2n}}} = \frac{\sum_{k=1}^n dx_k \cdot d\bar{z}_k}{\left(1 + \frac{K}{4} \sum_{k=1}^n z_k \bar{z}_k\right)^2}.$$

We recall that $j^2 = 1$, the conjugate element \bar{z}_k of $z_k = a_k + jb_k$ is given by $\bar{z}_k = a_k - jb_k$, and $dz_k \cdot d\bar{z}_k = da_k^2 - db_k^2$. Let $w_k = u_k + jv_k$ denote the paracomplex coordinates in $H^{2n} \subset \mathbb{R}^{2n}$ viewed as image of the Cayley transformation

$$\tilde{c}: D_{\mathbb{R}^{2n}} \to H^{2n} = \{ w_k = u_k + jv_k \\ = (u_1, \dots, u_n, v_1, \dots, v_n) \in \mathbb{R}^{2n} : u_1 > 0 \},\$$

which we define by

$$w_1 = 2r \frac{(z_1 + 2r)(\bar{z}_1 - 2r) + \sum_{i=2}^n z_i \bar{z}_i}{(z_1 - 2r)(\bar{z}_1 - 2r) + \sum_{i=2}^n z_i \bar{z}_i}$$

and

$$w_k = \frac{8r^2 z_k}{(z_1 - 2r)(\bar{z}_1 - 2r) + \sum_{i=2}^n z_i \bar{z}_i}, \quad 2 \le k \le n,$$

where $K = -1/r^2$.

Consider on H^{2n} the metric

$$g_{H^{2n}} = -\frac{1}{K} \frac{\sum_{i=1}^{n} dw_k \cdot d\bar{w}_k}{u_1^2}$$

Then, as a long but straightforward computation shows, the transformation

$$\tilde{c}: (D_{\mathbb{R}^{2n}}, g_{D_{\mathbb{R}^{2n}}}) \to (H^{2n}, g_{H^{2n}})$$

is an isometry. From which it is immediate that the Cayley transformation

$$c: (D, g_D) \to (H^{m+n}, g_{H^{m+n}})$$

obtained by restricting \tilde{c} , is also an isometry.

Consequently, (M, g) is locally isometric to a pseudo-Riemannian "Poincaré" half-space, and then TRICERRI–VANHECKE's argument ([7, p. 55]) shows that $\xi = -Ku_1\partial/\partial u_1$ is the vector field associated to a nondegenerate pseudo-Riemannian structure on H^{m+n} , denoted S, defined by

$$S_X Y = g(X, Y)\xi - g(Y, \xi)X, \quad X, Y \in \mathfrak{X}(H^{m+n}),$$

which holds $g(\xi,\xi) = -K \neq 0$. \Box

172 P. M. Gadea and J. Muñoz Masqué : Nonflat pseudo-Riemannian ...

References

- W. AMBROSE and I. M. SINGER, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958), 647–669.
- [2] H. BACRY, Leçons sur la théorie des groupes et les symétries des particles élémentaires, Gordon and Breach, 1967.
- [3] É. CARTAN, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214–264.
- [4] V. CRUCEANU, P. FORTUNY and P. M. GADEA, A survey on Paracomplex Geometry, *Rocky Mountain J. Math. (to appear).*
- [5] P. M. GADEA and J. A. OUBIÑA, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, *Houston J. Math.* 18 (1992), 449–465.
- [6] P. LIBERMANN, Sur le problème d'équivalence de certaines structures infinitésimales, Ann. Mat. Pura Appl. 36 (1954), 27–120.
- [7] F. TRICERRI and L. VANHECKE, Homogeneous structures on Riemannian manifolds, London Math. Soc. Lect. Notes, vol. 83, *Cambridge Univ. Press*, 1983.
- [8] F. TRICERRI and L. VANHECKE, Two results about homogeneous structures, Boll. Un. Mat. Ital. (7) 2-A (1988), 261–267.
- [9] H. WEYL, The classical groups, Princeton Univ. Press, 1939.
- [10] J. A. WOLF, Spaces of constant curvature, Publish or Perish, 1977.

P. M. GADEA IMAFF, CSIC SERRANO 123, 28006-MADRID SPAIN

J. MUÑOZ MASQUÉ IEC, CSIC SERRANO 144, 28006–MADRID SPAIN

(Received August 1, 1994)