Publ. Math. Debrecen 47 / 1-2 (1995), 173–179

The "Two-Series Theorem" for symmetric random variables on nilpotent Lie groups

By D. NEUENSCHWANDER (Biel-Bienne) and H-P. SCHEFFLER (Dortmund)

Abstract. The classical "Three-Series Theorem" due to Kolmogorov is carried over to symmetric random variables on certain nilpotent Lie groups.

1. Introduction

The classical "Three-Series Theorem" for real valued random variables can be stated as follows: Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables and let $S_n = X_1 + \cdots + X_n$. For c > 0 let $X_{n,c} = X_n \mathbb{1}_{\{|X_n| < c\}}$ denote the truncated random variable. Then the almost sure (a.s.) convergence of $(S_n)_{n\geq 1}$ is equivalent to the convergence of the three series $\sum_{n\geq 1} P\{|X_n| \geq c\}, \sum_{n\geq 1} E(X_{n,c})$ and $\sum_{n\geq 1} V(X_{n,c})$, where E denotes the expectation and V the variance of a random variable. (See e.g. [6, Theorem IV.2.3].)

The aim of this note is to carry over this "Three-Series Theorem" to symmetric random variables with values in nilpotent Lie groups G: We show that for simply connected nilpotent Lie groups G the convergence of the series of tail probabilities and the truncated second moments of independent random variables X_n imply the almost sure convergence of the product $\prod_{n=1}^{\infty} X_n = X_1 \cdot X_2 \cdots$. If G is step 2-nilpotent it turns out that these conditions are also necessary for the almost sure convergence of the product.

Mathematics Subject Classification: 60B15, 60F15.

Key words and phrases: Three-Series Theorem, almost sure convergence, nilpotent Lie groups, Heisenberg groups, groups of type H.

Examples of simply connected (step 2-) nilpotent Lie groups are the Heisenberg groups \mathbb{H} given as $\mathbb{R}^{2d+1} \cong \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}$ with the product

$$x \cdot y = (x' + y', x'' + y'', x''' + y''' + \frac{1}{2}(\langle x', y'' \rangle - \langle x'', y' \rangle)) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$$

for $x = (x', x'', x'''), y = (y', y'', y''') \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}$. The so-called groups of type H (cf. [4]) are all simply connected step 2-nilpotent.

Using the Campbell–Hausdorff formula, a simply connected nilpotent Lie group G can be realized as $G = \mathbb{R}^d$ for some non-negative integer dequipped with the multiplication

(*)
$$x \cdot y = P(x, y) = x + y + \frac{1}{2}[x, y] + \frac{1}{12}([[x, y], y] + [[y, x], x]) + \cdots,$$

where $P : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is a polynomial mapping in the components of xand y. (See [1, (1.2) Proposition].) Clearly, the neutral element e of G is 0 and $x^{-1} = -x$ for every $x \in G$. G is said to be nilpotent of step $r \ge 0$, if for the lower central series of G: $G_{(1)} \stackrel{\text{def}}{=} G$, $G_{(j)} \stackrel{\text{def}}{=} [G, G_{(j-1)}]$ we have $G_{(r+1)} = \{0\}$. Then it follows from the Campbell–Hausdorff formula that the polynomial mapping P in (*) is of degree $\le r$.

Now let $(X_n)_{n\geq 1}$ be a sequence of independent *G*-valued random variables with probability distributions $(\nu_n)_{n\geq 1}$ and let $S_N \stackrel{\text{def}}{=} \prod_{n=1}^N X_n =$ $X_1 \cdot X_2 \cdots X_N$ denote the partial product. Since by [3, XII.3 Theorem 2.3] every simply connected nilpotent Lie group is aperiodic (cf. [2, 2.2.18 Definition]), the convergence of $(S_N)_{N\geq 1}$ in probability, almost surely, and in distribution (i.e. the weak convergence of $(\nu_1 * \cdots * \nu_N)_{N\geq 1}$) resp. are equivalent. (See [2, 2.2.19 Theorem].) Using this fact, for the sufficiency part of our theorem it is enough to show that our conditions imply the convergence in distribution of $(S_N)_{N\geq 1}$. We will do this by using Fourier analytic methods on *G*, especially Lévy's continuity theorem.

2. Results

Let G be a simply connected nilpotent Lie group. A G-valued random variable X is called symmetric, if X and $X^{-1} = -X$ have the same distribution. Let $\mathcal{L}(X)$ denote the law of a random variable X. For c > 0 let $X_c \stackrel{\text{def}}{=} X1_{\{||X|| < c\}}$ denote the truncated random variable, where ||X|| is the Euclidean norm of X. (Note that we have realized G as \mathbb{R}^d .) Furthermore for $x_1, x_2, \ldots \in G$ we define $\prod_{n=1}^N x_n = x_1 \cdot x_2 \dots x_N$ and $\prod_{n=1}^\infty x_n = \lim_{N \to \infty} \prod_{n=1}^N x_n$. We will prove

Theorem 1. Let G be a simply connected nilpotent Lie group and let $(X_n)_{n\geq 1}$ be a sequence of independent symmetric G-valued random variables.

(a) If for some c > 0

(1)
$$\sum_{n=1}^{\infty} P\{\|X_n\| \ge c\} < \infty$$

and

(2)
$$\sum_{n=1}^{\infty} E \|X_{n,c}\|^2 < \infty,$$

then $\prod_{n=1}^{\infty} X_n$ is a.s. convergent.

(b) If furthermore G is step 2-nilpotent and $\prod_{n=1}^{\infty} X_n$ is a.s. convergent, then (1) and (2) hold for every c > 0.

Remark. It is easy to see that if condition (1) and (2) hold for some c > 0, then they hold for any c > 0. Hence we may assume that c is small enough.

First we need an auxiliary result.

Lemma 1. Under the conditions (1) and (2) of the Theorem the sequence $\left(\mathcal{L}\left(\prod_{n=1}^{N} X_{n}\right)\right)_{N\geq 1}$ is weakly relatively compact.

PROOF. Assume $c \in [0, 1]$ small enough. We show that the sequence $\left(\prod_{n=1}^{N} X_{n,c}\right)_{N\geq 1}$ is L^2 -bounded (with respect to $\|\cdot\|$); then $\left(\mathcal{L}\left(\prod_{n=1}^{N} X_{n,c}\right)\right)_{N\geq 1}$ is weakly relatively compact and the assertion follows from condition (1) and the Borel–Cantelli Lemma. Write every component of [x, y] in the form $x^{\text{tr}} \cdot A \cdot y$ with a suitable matrix A. Consider the expansion E(Q) of $E||\prod_{n=1}^{N} X_{n,c}||^2$ as expectation of a polynomial in

175

the elements of the matrices A and in the components of the $X_{n,c}$. Now, for Q perform the following procedure (P) (in the prescribed order):

i) Delete any monomial where there is an n such that only one component of $X_{n,c}$ occurs, and actually in first power.

ii) Replace any element of one of the matrices A by its absolute value and any component on an $X_{n,c}$ by $||X_{n,c}||$.

iii) Replace any exponent (> 0) of a power of an $||X_{n,c}||$ by 2.

By the symmetry, we have $EX_{n,c} = 0$, so i) does not change the value of E(Q). Clearly, ii) does not decrease the value of Q. By i), no exponent 1 remains before iii), so (since $c \leq 1$) also iii) does not decrease the value of Q. Hence the procedure (P) yields an upper bound E(Q') for E(Q). Now the degree of Q' in the $||X_{n,c}||$ is bounded (as $N \to \infty$) and so it is (by the nilpotency) in the absolute values of the elements of the matrices A. So (by the independence) E(Q') may be majorized by a constant times a fixed power of $\sum_{n=1}^{\infty} E||X_{n,c}||^2$, hence by condition (2) E(Q') (and thus E(Q)) is bounded (as $N \to \infty$), which proves the asserted L^2 -boundedness.

To fix notation we now recall some basic facts about Fourier analysis on Lie groups (see [5, p. 115–118] for details):

Let $\boldsymbol{g} = \mathbb{R}^d$ denote the Lie algebra of G with basis $\{Y_i = e_i : i = 1, \ldots, d\}$, where $\{e_i\}_{i=1\ldots d}$ is the natural basis of \mathbb{R}^d . As usual we regard every element $Y \in \boldsymbol{g}$ as a left invariant differential operator on G. Furthermore let $\operatorname{Irr}(G)$ denote the set of all irreducible unitary representations of G. For $D \in \operatorname{Irr}(G)$ let $\mathcal{H}(D)$ be the representation Hilbert space of Dwith inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. A vector $u \in \mathcal{H}(D)$ is said to be a C^{∞} -vector (of D) if the function $x \mapsto \langle D(x)u, v \rangle$ is C^{∞} for all $v \in \mathcal{H}(D)$. We denote the subspace of all C^{∞} -vectors by $\mathcal{H}_0(D)$. It is well known that $\mathcal{H}_0(D)$ is a dense subspace of $\mathcal{H}(D)$. For a probability measure ν on G we define its Fourier transform $\hat{\nu}$ by

$$\langle \hat{\nu}(D)u, v \rangle \stackrel{\text{def}}{=} \int_{G} \langle D(x)u, v \rangle \, d\nu(x)$$

for all $D \in Irr(G)$ and all $u, v \in \mathcal{H}(D)$. In this context some of the usual properties of characteristic functions, especially a continuity theorem hold.

PROOF of Theorem 1. First we show that conditions (1) and (2) imply

(3)
$$\sum_{n=1}^{\infty} \|\hat{\nu}_n(D)u - u\| < \infty$$

for all $D \in \operatorname{Irr}(G)$ and all $u \in \mathcal{H}_0(D)$, where ν_n is the distribution of X_n . In fact consider the symmetric open neighborhood $U_c \stackrel{\text{def}}{=} \{x \in G : ||x|| < c\}$

The "Two-Series Theorem" for symmetric random variables ...

of $0 \in G$. Following [5, Lemma 5.1] we have for $D \in Irr(G)$ and $u \in \mathcal{H}_0(D)$:

$$D(x)u - u = \sum_{i=1}^{d} x_i D(Y_i)u + \frac{1}{2} \sum_{i,j=1}^{d} x_i x_j T(D)(x) D(Y_i) D(Y_j)u$$

for all $x \in U_0$. Here each T(D)(x) is a linear contraction (i.e. a bounded linear operator on $\mathcal{H}(D)$ such that $||T(D)(x)|| \leq 1$). For $u \in \mathcal{H}_0(D)$ let $||u||_* = ||u|| + \sum_{i,j=1}^d ||D(Y_i)D(Y_j)u||$. Using $|x_ix_j| \leq \sum_{i=1}^d x_i^2 = ||x||^2$ for all $x \in U_c$ and the symmetry of the X_n we get

$$\left\| \int_{U_c} (D(x)u - u) \, d\nu_n(x) \right\| \le \frac{1}{2} \sum_{i,j=1}^d \int_{U_c} \|x\|^2 \, d\nu_n(x) \|D(Y_i)D(Y_j)u\| \\ \le C \|u\|_* E \|X_{n,c}\|^2 \,,$$

for some constant C > 0. On the other hand

$$\left\| \int_{\mathcal{C}U_c} (D(x)u - u) \, d\nu_n(x) \right\| \le 2 \|u\| P\{\|X_n\| \ge c\} \le 2 \|u\|_* P\{\|X_n\| \ge c\},$$

so we finally conclude

$$\|\hat{\nu}_{n}(D)u - u\| \leq \left\| \int_{U_{c}} (D(x)u - u) \, d\nu_{n}(x) \right\| + \left\| \int_{\mathcal{C}U_{c}} (D(x)u - u) \, d\nu_{n}(x) \right\|$$
$$\leq C \|u\|_{*} (E\|X_{n,c}\|^{2} + P\{\|X_{n}\| \geq c\})$$

and (3) follows from (1) and (2).

Since by Lemma 1 $(\mathcal{L}(S_N))_{N\geq 1}$ is weakly relatively compact we have, using the continuity theorem of the Fourier transform (see [5, p. 117 and Lemma 2.1]), only to show that

$$\hat{\mu}_N(D)u = \prod_{n=1}^N \hat{\nu}_n(D)u$$

is convergent in $\mathcal{H}(D)$ for every $u \in \mathcal{H}_0(D)$ and every $D \in \operatorname{Irr}(G)$. But $\|\hat{\nu}_n(D)\| \leq 1$ and so

$$\begin{split} & \left\|\prod_{n=1}^{N} \hat{\nu}_{n}(D)u - \prod_{n=1}^{N+K} \hat{\nu}_{n}(D)u\right\| = \left\|\prod_{n=1}^{N} \hat{\nu}_{n}(D)\left(I - \prod_{n=N+1}^{N+K} \hat{\nu}_{n}(D)\right)u\right\| \\ \leq & \left\|u - \prod_{n=N+1}^{N+K} \hat{\nu}_{n}(D)u\right\| \end{split}$$

177

$$= \left\| \left((\hat{\nu}_{N+1}(D) - I) + \hat{\nu}_{N+1}(D) (\hat{\nu}_{N+2}(D) - I) + \dots \\ \dots + \hat{\nu}_{N+1}(D) \cdots \hat{\nu}_{N+K-1}(D) (\hat{\nu}_{N+K}(D) - I) \right) u \right\|$$

$$\leq \sum_{n=N+1}^{N+K} \left\| \hat{\nu}_n(D) u - u \right\|.$$

Using the above estimation and (3) we conclude that $(\hat{\mu}_N(D)u)_{N\geq 1}$ is a Cauchy sequence and hence convergent in $\mathcal{H}(D)$. This completes the proof of the first part of our Theorem.

For the proof of the second part we assume that G is step 2-nilpotent and $\prod_{n=1}^{N} X_n$ is a.s. convergent. By the symmetry, the processes

$$\left\{\prod_{n=1}^{N} X_n\right\}_{N \ge 1} \qquad , \qquad \left\{-\prod_{n=1}^{N} X_{N+1-n}\right\}_{N \ge 1}$$

have the same distribution, (since $-\prod_{n=1}^{N} X_{N+1-n} = \prod_{n=1}^{N} -(X_n)$),

so $\left\{-\prod_{n=1}^{N} X_{N+1-n}\right\}_{N \ge 1}$ is a.s. a Cauchy sequence, hence

$$\lim_{N \to \infty} \prod_{n=1}^{N} X_{N+1-n}$$

and thus

$$\lim_{N \to \infty} \left(\prod_{n=1}^{N} X_n + \prod_{n=1}^{N} X_{N+1-n} \right)$$

exist a.s. But

$$\begin{split} \prod_{n=1}^{N} X_n + \prod_{n=1}^{N} X_{N+1-n} &= \sum_{n=1}^{N} X_n + \frac{1}{2} \sum_{1 \le n < m \le N} [X_n, X_m] + \sum_{n=1}^{N} X_{N+1-n} \\ &+ \frac{1}{2} \sum_{1 \le n < m \le N} [X_{N+1-n}, X_{N+1-m}] \\ &= 2 \sum_{n=1}^{N} X_n + \frac{1}{2} \sum_{1 \le n < m \le N} ([X_n, X_m] + [X_m, X_n]) \\ &= 2 \sum_{n=1}^{N} X_n \,, \end{split}$$

178

hence condition (1) and (2) hold for every c > 0 by the classical Three-Series Theorem in the vector space case.

Remark. Interestingly enough, our Theorem implies that if G is step 2-nilpotent and $\prod_{n=1}^{\infty} X_n$ is convergent, then an arbitrary reordering of the X_n does not disturb the convergence, i.e. $\prod_{n=1}^{\infty} X_{\sigma(n)}$ is convergent for every permutation σ of \mathbb{N} . It would be interesting to investigate, for a specific sequence $(X_n)_{n\geq 1}$, what the class of possible limit laws of $\prod_{n=1}^{\infty} X_{\sigma(n)}$ $(\sigma$ any permutation of \mathbb{N}) looks like.

Acknowledgements. The authors wish to thank G. Pap and the referee for very helpful criticism.

References

- [1] G. B. FOLLAND and E. M. STEIN, Hardy spaces on homogeneous groups, Mathematical Notes, vol. 28, *Princeton University Press*, *Princeton*, NJ, 1982.
- [2] H. HEYER, Probability Measures on Locally Compact Groups, Ergebnisse der Math., Springer, Berlin-Heidelberg-New York, 1977.
- [3] G. HOCHSCHILD, The Structure of Lie Groups, Holden Day Inc., San Francisco-London-Amsterdam, 1965.
- [4] A. KAPLAN, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, *Trans. Amer. Math. Soc.* 258 no. 1 (1980), 147–153.
- [5] E. SIEBERT, Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math. 39 (1981), 111–154.
- [6] A. N. SHIRYAYEV, Probability, Springer, New York, 1984.

DANIEL NEUENSCHWANDER INGENIEURSCHULE BIEL CH-2501 BIEL-BIENNE

HANS-PETER SCHEFFLER UNIVERSITÄT DORTMUND INSTITUT FÜR MATHEMATIK D-44221 DORTMUND DEUTSCHLAND

(Received July 15, 1994; revised January 16, 1995)