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The “Two-Series Theorem” for symmetric random
variables on nilpotent Lie groups

By D. NEUENSCHWANDER (Biel-Bienne) and H-P. SCHEFFLER (Dortmund)

Abstract. The classical “Three-Series Theorem” due to Kolmogorov is carried
over to symmetric random variables on certain nilpotent Lie groups.

1. Introduction

The classical “Three-Series Theorem” for real valued random variables
can be stated as follows: Let (Xn)n≥1 be a sequence of independent ran-
dom variables and let Sn = X1+· · ·+Xn. For c > 0 let Xn,c = Xn1{|Xn|<c}
denote the truncated random variable. Then the almost sure (a.s.) con-
vergence of (Sn)n≥1 is equivalent to the convergence of the three series∑

n≥1 P{|Xn| ≥ c}, ∑
n≥1 E(Xn,c) and

∑
n≥1 V (Xn,c), where E denotes

the expectation and V the variance of a random variable. (See e.g. [6,
Theorem IV.2.3].)

The aim of this note is to carry over this “Three-Series Theorem” to
symmetric random variables with values in nilpotent Lie groups G: We
show that for simply connected nilpotent Lie groups G the convergence
of the series of tail probabilities and the truncated second moments of
independent random variables Xn imply the almost sure convergence of

the product
∞∏

n=1
Xn = X1 ·X2 · · · . If G is step 2-nilpotent it turns out that

these conditions are also necessary for the almost sure convergence of the
product.
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Examples of simply connected (step 2-) nilpotent Lie groups are the
Heisenberg groups H given as R2d+1 ∼= Rd × Rd × R with the product

x · y = (x′ + y′, x′′ + y′′, x′′′ + y′′′ +
1
2
(〈x′, y′′〉 − 〈x′′, y′〉)) ∈ Rd × Rd × R

for x = (x′, x′′, x′′′), y = (y′, y′′, y′′′) ∈ Rd × Rd × R. The so-called groups
of type H (cf. [4]) are all simply connected step 2-nilpotent.

Using the Campbell–Hausdorff formula, a simply connected nilpotent
Lie group G can be realized as G = Rd for some non-negative integer d
equipped with the multiplication

(∗) x · y = P (x, y) = x + y +
1
2
[x, y] +

1
12

([[x, y], y] + [[y, x], x]) + · · · ,

where P : Rd×Rd → Rd is a polynomial mapping in the components of x
and y. (See [1, (1.2) Proposition].) Clearly, the neutral element e of G is
0 and x−1 = −x for every x ∈ G. G is said to be nilpotent of step r ≥ 0,
if for the lower central series of G: G(1)

def= G, G(j)
def= [G,G(j−1)] we have

G(r+1) = {0}. Then it follows from the Campbell–Hausdorff formula that
the polynomial mapping P in (∗) is of degree ≤ r.

Now let (Xn)n≥1 be a sequence of independent G-valued random

variables with probability distributions (νn)n≥1 and let SN
def=

N∏
n=1

Xn =

X1 ·X2 · · ·XN denote the partial product. Since by [3, XII.3 Theorem 2.3]
every simply connected nilpotent Lie group is aperiodic (cf. [2, 2.2.18 Def-
inition]), the convergence of (SN )N≥1 in probability, almost surely, and
in distribution (i.e. the weak convergence of (ν1 ∗ · · · ∗ νN )N≥1) resp. are
equivalent. (See [2, 2.2.19 Theorem].) Using this fact, for the sufficiency
part of our theorem it is enough to show that our conditions imply the
convergence in distribution of (SN )N≥1. We will do this by using Fourier
analytic methods on G, especially Lévy’s continuity theorem.

2. Results

Let G be a simply connected nilpotent Lie group. A G-valued ran-
dom variable X is called symmetric, if X and X−1 = −X have the
same distribution. Let L(X) denote the law of a random variable X.
For c > 0 let Xc

def= X1{‖X‖<c} denote the truncated random variable,
where ‖X‖ is the Euclidean norm of X. (Note that we have realized G
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as Rd.) Furthermore for x1, x2, . . . ∈ G we define
N∏

n=1
xn = x1 · x2 . . . xN

and
∞∏

n=1
xn = lim

N→∞

N∏
n=1

xn. We will prove

Theorem 1. Let G be a simply connected nilpotent Lie group and
let (Xn)n≥1 be a sequence of independent symmetric G-valued random
variables.

(a) If for some c > 0

(1)
∞∑

n=1

P{‖Xn‖ ≥ c} < ∞

and

(2)
∞∑

n=1

E‖Xn,c‖2 < ∞ ,

then
∞∏

n=1
Xn is a.s. convergent.

(b) If furthermore G is step 2-nilpotent and
∞∏

n=1
Xn is a.s. convergent,

then (1) and (2) hold for every c > 0.

Remark. It is easy to see that if condition (1) and (2) hold for some
c > 0, then they hold for any c > 0. Hence we may assume that c is small
enough.

First we need an auxiliary result.

Lemma 1. Under the conditions (1) and (2) of the Theorem the se-

quence
(
L( N∏

n=1
Xn

))
N≥1

is weakly relatively compact.

Proof. Assume c ∈ ]0, 1] small enough. We show that the sequence(
N∏

n=1
Xn,c

)

N≥1

is L2-bounded (with respect to ‖ · ‖);

then
(
L( N∏

n=1
Xn,c

))
N≥1

is weakly relatively compact and the assertion

follows from condition (1) and the Borel–Cantelli Lemma. Write every
component of [x, y] in the form xtr ·A·y with a suitable matrix A. Consider
the expansion E(Q) of E||∏N

n=1 Xn,c||2 as expectation of a polynomial in
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the elements of the matrices A and in the components of the Xn,c. Now,
for Q perform the following procedure (P) (in the prescribed order):

i) Delete any monomial where there is an n such that only one com-
ponent of Xn,c occurs, and actually in first power.

ii) Replace any element of one of the matrices A by its absolute value
and any component on an Xn,c by ||Xn,c||.

iii) Replace any exponent (> 0) of a power of an ||Xn,c|| by 2.
By the symmetry, we have EXn,c = 0, so i) does not change the value of
E(Q). Clearly, ii) does not decrease the value of Q. By i), no exponent 1
remains before iii), so (since c ≤ 1) also iii) does not decrease the value of
Q. Hence the procedure (P) yields an upper bound E(Q′) for E(Q). Now
the degree of Q′ in the ||Xn,c|| is bounded (as N →∞) and so it is (by the
nilpotency) in the absolute values of the elements of the matrices A. So
(by the independence) E(Q′) may be majorized by a constant times a fixed
power of

∑∞
n=1 E||Xn,c||2, hence by condition (2) E(Q′) (and thus E(Q))

is bounded (as N →∞), which proves the asserted L2-boundedness.
To fix notation we now recall some basic facts about Fourier analysis

on Lie groups (see [5, p. 115–118] for details):
Let g = Rd denote the Lie algebra of G with basis {Yi = ei : i =

1, . . . , d}, where {ei}i=1...d is the natural basis of Rd. As usual we regard
every element Y ∈ g as a left invariant differential operator on G. Fur-
thermore let Irr(G) denote the set of all irreducible unitary representations
of G. For D ∈ Irr(G) let H(D) be the representation Hilbert space of D
with inner product 〈·, ·〉 and norm ‖ · ‖. A vector u ∈ H(D) is said to be a
C∞-vector (of D) if the function x 7→ 〈D(x)u, v〉 is C∞ for all v ∈ H(D).
We denote the subspace of all C∞-vectors by H0(D). It is well known that
H0(D) is a dense subspace of H(D). For a probability measure ν on G we
define its Fourier transform ν̂ by

〈ν̂(D)u, v〉 def=
∫

G

〈D(x)u, v〉 dν(x)

for all D ∈ Irr(G) and all u, v ∈ H(D). In this context some of the usual
properties of characteristic functions, especially a continuity theorem hold.

Proof of Theorem 1. First we show that conditions (1) and (2) imply

(3)
∞∑

n=1

‖ν̂n(D)u− u‖ < ∞

for all D ∈ Irr(G) and all u ∈ H0(D), where νn is the distribution of Xn. In
fact consider the symmetric open neighborhood Uc

def= {x ∈ G : ‖x‖ < c}
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of 0 ∈ G. Following [5, Lemma 5.1] we have for D ∈ Irr(G) and u ∈ H0(D):

D(x)u− u =
d∑

i=1

xiD(Yi)u +
1
2

d∑

i,j=1

xixjT (D)(x)D(Yi)D(Yj)u

for all x ∈ U0. Here each T (D)(x) is a linear contraction (i.e. a bounded
linear operator on H(D) such that ‖T (D)(x)‖ ≤ 1). For u ∈ H0(D) let
‖u‖∗ = ‖u‖+

∑d
i,j=1 ‖D(Yi)D(Yj)u‖. Using |xixj | ≤

∑d
i=1 x2

i = ‖x‖2 for
all x ∈ Uc and the symmetry of the Xn we get

∥∥∥
∫

Uc

(D(x)u− u) dνn(x)
∥∥∥ ≤ 1

2

d∑

i,j=1

∫

Uc

‖x‖2 dνn(x)‖D(Yi)D(Yj)u‖

≤ C‖u‖∗E‖Xn,c‖2 ,

for some constant C > 0. On the other hand
∥∥∥
∫

CUc

(D(x)u− u) dνn(x)
∥∥∥ ≤ 2‖u‖P{‖Xn‖ ≥ c} ≤ 2‖u‖∗P{‖Xn‖ ≥ c} ,

so we finally conclude

‖ν̂n(D)u− u‖ ≤
∥∥∥
∫

Uc

(D(x)u− u) dνn(x)
∥∥∥ +

∥∥∥
∫

CUc

(D(x)u− u) dνn(x)
∥∥∥

≤ C‖u‖∗(E‖Xn,c‖2 + P{‖Xn‖ ≥ c})
and (3) follows from (1) and (2).

Since by Lemma 1 (L(SN ))N≥1 is weakly relatively compact we have,
using the continuity theorem of the Fourier transform (see [5, p. 117 and
Lemma 2.1]), only to show that

µ̂N (D)u =
N∏

n=1

ν̂n(D)u

is convergent in H(D) for every u ∈ H0(D) and every D ∈ Irr(G). But
‖ν̂n(D)‖ ≤ 1 and so

∥∥∥
N∏

n=1

ν̂n(D)u−
N+K∏
n=1

ν̂n(D)u
∥∥∥ =

∥∥∥
N∏

n=1

ν̂n(D)
(
I −

N+K∏

n=N+1

ν̂n(D)
)
u
∥∥∥

≤
∥∥∥u−

N+K∏

n=N+1

ν̂n(D)u
∥∥∥
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=
∥∥(

(ν̂N+1(D)− I) + ν̂N+1(D)(ν̂N+2(D)− I) + . . .

. . . + ν̂N+1(D) · · · ν̂N+K−1(D)(ν̂N+K(D)− I)
)
u
∥∥

≤
N+K∑

n=N+1

‖ν̂n(D)u− u‖ .

Using the above estimation and (3) we conclude that (µ̂N (D)u)N≥1 is a
Cauchy sequence and hence convergent in H(D). This completes the proof
of the first part of our Theorem.

For the proof of the second part we assume that G is step 2-nilpotent

and
N∏

n=1
Xn is a.s. convergent. By the symmetry, the processes

{
N∏

n=1

Xn

}

N≥1

,

{
−

N∏
n=1

XN+1−n

}

N≥1

have the same distribution, (since −
N∏

n=1
XN+1−n =

N∏
n=1

−(Xn)),

so
{−

N∏
n=1

XN+1−n

}
N≥1

is a.s. a Cauchy sequence, hence

lim
N→∞

N∏
n=1

XN+1−n

and thus

lim
N→∞

(
N∏

n=1

Xn +
N∏

n=1

XN+1−n

)

exist a.s. But
N∏

n=1

Xn +
N∏

n=1

XN+1−n =
N∑

n=1

Xn +
1
2

∑

1≤n<m≤N

[Xn, Xm] +
N∑

n=1

XN+1−n

+
1
2

∑

1≤n<m≤N

[XN+1−n, XN+1−m]

= 2
N∑

n=1

Xn +
1
2

∑

1≤n<m≤N

([Xn, Xm] + [Xm, Xn])

= 2
N∑

n=1

Xn ,
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hence condition (1) and (2) hold for every c > 0 by the classical Three-
Series Theorem in the vector space case.

Remark. Interestingly enough, our Theorem implies that if G is step

2-nilpotent and
∞∏

n=1
Xn is convergent, then an arbitrary reordering of the

Xn does not disturb the convergence, i.e.
∞∏

n=1
Xσ(n) is convergent for every

permutation σ of N. It would be interesting to investigate, for a spe-

cific sequence (Xn)n≥1, what the class of possible limit laws of
∞∏

n=1
Xσ(n)

(σ any permutation of N) looks like.
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