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Some binomial inversions in terms
of ordinary generating functions

By PENTTI HAUKKANEN (Tampere)

Abstract. In this paper we express the binomial inversion an =
Pn

k=0

�n
k

�
bk iff

bn =
Pn

k=0

�n
k

�
(−1)n−kak and some related simple inversions in terms of the ordinary

generating functions, and provide recent concrete examples of one of these inversion
formulas from the theory of stack filters. We also emphasize the role of ordinary gener-
ating functions as a tool in finding recurrences for sequences, and give some examples
involving binomial sums of Fibonacci numbers.

Introduction

For two sequences {an} and {bn} the following simple inversion for-
mulas are well-known:

an =
n∑

k=0

(
n

k

)
bk ⇔ bn =

n∑

k=0

(
n

k

)
(−1)n−kak,(0.1)

an =
m∑

k=n

(
k

n

)
bk ⇔ bn =

m∑

k=n

(
k

n

)
(−1)k−nak,(0.2)

an =
n∑

k=0

(
n + p

k + p

)
bk ⇔ bn =

n∑

k=0

(
n + p

k + p

)
(−1)n−kak,(0.3)

an =
m∑

k=n

(
k + p

n + p

)
bk ⇔ bn =

m∑

k=n

(
k + p

n + p

)
(−1)k−nak,(0.4)
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where m ∈ N or m = ∞. Riordan [8, Section 2.2] gave a matrix theo-
retic interpretation for these inversion formulas, and it is well-known that
(0.1) arises naturally from the theory of exponential generating functions
(see e.g. [8, Section 3.4]). The purpose of this paper is to express the
present formulas in terms of the ordinary generating functions. We will
also present some recent concrete examples of (0.3) from the theory of
signal processing, to be more precise, from the theory of stack filters [6].
Further, we will point out that the method of ordinary generating func-
tions makes it possible to find recurrences for binomial sums easily, and
derive some examples involving binomial Fibonacci sums [1].

Throughout this paper A(x) and B(x) will denote the ordinary gen-
erating functions of {an} and {bn}, respectively. That is,

A(x) =
∞∑

n=0

anxn, B(x) =
∞∑

n=0

bnxn.

1. A characterization of (0.1)

Throughout this paper let d be an arbitrary but fixed real number.

Theorem 1. We have

an =
n∑

k=0

(
n

k

)
dn−kbk(1.1)

⇔ A(x) = (1− dx)−1B (x/(1− dx))(1.2)

⇔ B(x) = (1 + dx)−1A (x/(1 + dx))(1.3)

⇔ bn =
n∑

k=0

(
n

k

)
(−d)n−kak.(1.4)

Proof. Firstly, since

∞∑
n=0

xn
n∑

k=0

(
n

k

)
dn−kbk =

∞∑

k=0

bkxk
∞∑

n=k

(
n

k

)
dn−kxn−k

=
∞∑

k=0

bkxk(1− dx)−k−1 = (1− dx)−1B (x/(1− dx)) ,

we have (1.1) ⇔ (1.2) [3, Theorem 1].
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Secondly, writing x/(1 + dx) for x in (1.2) we obtain (1.3), and con-
versely, writing x/(1 − dx) for x in (1.3) we obtain (1.2). Therefore
(1.2) ⇔ (1.3).

Thirdly, writing −d for d and interchanging an and bn in (1.1) we see
that (1.3) ⇔ (1.4). This completes the proof.

Remark. A natural representation of the inversion (1.1) ⇔ (1.4) is
given in terms of the exponential generating functions:

∞∑
n=0

an
xn

n!
= edx

∞∑
n=0

bn
xn

n!
⇔

∞∑
n=0

bn
xn

n!
= e−dx

∞∑
n=0

an
xn

n!
.

For further information on exponential generating functions, see [2, Chap-
ter 7; 7, Chapter 2].

2. A characterization of (0.2)

Theorem 2. Let m ∈ N or m = ∞. Then

an =
m∑

k=n

(
k

n

)
dk−nbk(2.1)

⇔ A(x) = B(x + d)(2.2)

⇔ B(x) = A(x− d)(2.3)

⇔ bn =
m∑

k=n

(
k

n

)
(−d)n−kak.(2.4)

(If m ∈ N, we assume an = bn = 0 for n > m.)

Proof. Since

m∑
n=0

xn
m∑

k=n

(
k

n

)
dk−nbk =

m∑

k=0

bk

k∑
n=0

(
k

n

)
dk−nxn

=
m∑

k=0

bk(x + d)k = B(x + d),

we obtain (2.1) ⇔ (2.2). Then writing x− d for x in (2.2) and conversely
writing x + d for x in (2.3) we see that (2.2) ⇔ (2.3). Finally, writing −d
for d and interchanging an and bn in (2.1) we see that (2.3) ⇔ (2.4). This
completes the proof.
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Remark. A well-known example of the inversion (2.2) ⇔ (2.3) is the
relationship between ordinary generating functions for probabilities and
binomial moments (see e.g. [7, Section 2.6]).

3. A characterization of (0.3)

For the sums in relations (0.3) and (0.4) we define the binomial coef-
ficients in the case of negative integers. If n ≥ 0, k < 0 or n < 0, k ≥ 0, we
define

(
n
k

)
= 0, and if n < 0, k < 0, we define

(
n
k

)
= (−1)n+k

(−k−1
−n−1

)
(see

[7, p. 5]). Then it is easy to see that the recurrence relation
(
n
k

)
+

(
n

k+1

)
=(

n+1
k+1

)
holds for all integers n and k.

Theorem 3. Let p ∈ Z. Then

a(p)
n =

n∑

k=0

(
n− p

k − p

)
dn−kbk(3.1)

⇔ A(p)(x) = (1− dx)p−1B (x/(1− dx))(3.2)

⇔ B(x) = (1 + dx)p−1A(p) (x/(1 + dx))(3.3)

⇔ bn =
n∑

k=0

(
n− p

k − p

)
(−d)n−ka

(p)
k .(3.4)

Proof. We shall first prove that (3.1) ⇔ (3.2). Assume that (3.2)
holds. We proceed by induction on p to prove that (3.1) holds. The result
holds for p = 0 by Theorem 1. Assume that (3.1) holds for p = q (≥ 0).
By (3.2), A(q+1)(x) = (1− dx)A(q)(x) and thus a

(q+1)
0 = a

(q)
0 = b0 and for

n ≥ 1,

a(q+1)
n = a(q)

n − d a
(q)
n−1 =

n−1∑

k=0

[(
n− q

k − q

)
−

(
n− 1− q

k − q

)]
dn−kbk + bn

(3.5)

=
n∑

k=0

(
n− (q + 1)
k − (q + 1)

)
dn−kbk.

Since
(−(q+1)
−(q+1)

)
= 1, (3.5) holds for all n ≥ 0. For negative integers p the

proof is analogous. Therefore (3.2) ⇒ (3.1). Since the generating function
is unique, we have (3.1) ⇔ (3.2).

The other equivalences follow in a similar way to the analogous results
in Theorem 1. This completes the proof.
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4. A characterization of (0.4)

In characterizing (0.4) we need the following notation. If F (x) =
f−px

−p + · · ·+ f−1x
−1 +

∑∞
n=0 fnxn (p ≥ 0), then we denote

neg(F (x)) = f−px
−p + · · ·+ f−1x

−1.

Theorem 4. Let m ∈ N or m = ∞. If p is a nonnegative integer, then

a(p)
n =

m∑

k=n

(
k + p

n + p

)
dk−nbk(4.1)

⇔ A(p)(x) = (1 + d/x)pB(x + d)− neg[(1 + d/x)pB(x + d)](4.2)

⇔ B(x) = (1− d/x)pA(p)(x− d)− neg[(1− d/x)pA(p)(x− d)](4.3)

⇔ bn =
m∑

k=n

(
k + p

n + p

)
(−d)n−ka

(p)
k .(4.4)

(If m ∈ N, then we assume a
(p)
n = bn = 0 for n > m.)

Proof. We shall first prove that (4.1) ⇔ (4.2). Assume that (4.2)
holds. We proceed by induction on p to prove that (4.1) holds. If p = 0,
the result is given in Theorem 2. Assume that (4.1) holds for p = q (≥ 0).
By (4.2),

A(q+1)(x) = (1 + d/x)A(q)(x)− neg[(1 + d/x)A(q)(x)]

and thus

a(q+1)
n = d a

(q)
n+1 + a(q)

n =
m∑

k=n+1

[(
k + q

n + 1 + q

)
+

(
k + q

n + q

)]
dk−nbk + bn

=
m∑

k=n

(
k + (q + 1)
n + (q + 1)

)
dk−nbk.

Therefore (4.1) holds and we have thus proved that (4.2) ⇒ (4.1). Since
the generating function is unique, we have (4.1) ⇔ (4.2).

The other equivalences follow in a similar way to the analogous results
in Theorem 2. This completes the proof.
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Theorem 5. Let m ∈ N or m = ∞. If p is a negative integer, then

a(p)
n =

m∑

k=n

(
k + p

n + p

)
dk−nbk(4.5)

⇔ B(x + d) = (1 + d/x)−pA(p)(x)− neg[(1 + d/x)−pA(p)(x)](4.6)

⇔ A(p)(x− d) = (1− d/x)−pB(x)− neg[(1− d/x)−pB(x)](4.7)

⇔ bn =
m∑

k=n

(
k + p

n + p

)
(−d)n−ka

(p)
k .(4.8)

(If m ∈ N, we assume an = bn = 0 for n > m.)

Theorem 5 can be proved in a similar way to Theorem 4. We omit
the details.

5. Examples of (0.3) from the theory of stack filters

Consider a stack filter (for definition, see e.g. [5, 9]). Let the inputs
be i.i.d. with distribution function Φ(·). It is known [6, Section 1] that
the output distribution function Ψ(·) can be written in the following three
forms:

Ψ(y) =
N∑

n=1

rn

N∑

k=n

(
N

k

)
Φ(y)k(1− Φ(y))N−k,

Ψ(y) =
N∑

n=1

cnΦ(y)n,

Ψ(y) =
N∑

n=1

anΦ(y)n(1− Φ(y))N−n,

where the coefficients rn, cn and an have a certain natural interpretation
(see [6]).

Kuosmanen et al. [6, Section 2] study the connections between the
coefficients rn, cn and an. The connections are given by

(
N

n

) n∑

k=1

rk = an,(5.1)
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cn =
(

N

n

) n∑

k=1

(
n− 1
k − 1

)
(−1)n−krk,(5.2)

cn =
N∑

k=1

(
N − k

n− k

)
(−1)n+kak.(5.3)

Kuosmanen et al. [6, Section 2] express (5.1) to (5.3) in matrix forms and
derive their inverse forms by inverting the appropriate matrices. Equations
(5.1) to (5.3) and their inverse forms can also be interpreted in a natural
way via ordinary generating functions. The ordinary generating function
of

∑n
k=1 rk in (5.1) is plainly R(x)/(1 − x) and therefore (5.1) can be

inverted by multiplication by 1− x. We do not go into the details of (5.1)
as they are not connected with binomial inversions. The main purpose
of this section is to point out that equations (5.2) and (5.3) can also be
written in a natural way in terms of ordinary generating functions and that
the inversions of (5.2) and (5.3) are, in fact, special cases of Theorem 3.

Firstly, we write (5.2) as

(5.4) bn =
n∑

k=1

(
n− 1
k − 1

)
(−1)n−krk,

where cn = bn

(
N
n

)
. By Theorem 3, (5.4) holds if and only if

B(x) = R(x/(1 + x))

if and only if
R(x) = B(x/(1− x))

if and only if

(5.5) rn =
n∑

k=1

(
n− 1
k − 1

)
bk.

This is the inverse form of (5.2).
Secondly, we write (5.3) in the form of Theorem 3 as

(5.6) cn =
N∑

k=1

(
n− (N + 1)
k − (N + 1)

)
ak.

Now, applying Theorem 3 we see that (5.6) holds if and only if

C(x) = (1− x)NA(x/(1− x))

if and only if
A(x) = (1 + x)NC(x/(1 + x))
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if and only if

an =
n∑

k=1

(
n− (N + 1)
k − (N + 1)

)
(−1)n−kck.

The last identity can be written as

(5.7) an =
n∑

k=1

(
N − k

N − n

)
ck.

This is the inverse form of (5.3).

6. Finding recurrences

Let {bn} be an rth order linear recurrence sequence satisfying the
relation

(6.1) bn+r = cr−1bn+r−1 + cr−2bn+r−2 + · · ·+ c0bn (n = 0, 1, . . . ).

It can then be shown (cf. [4]) that B(x) is of the form

(6.2) B(x) =
btx

t(1− β1x) · · · (1− βsx)
(1− α1x) · · · (1− αrx)

,

where t is the least integer for which bt 6= 0, and t + s = r − 1, and
α1, . . . , αr are the roots of the characteristic polynomial of the relation
(6.1). If

(6.3) an =
n∑

k=0

(
n

k

)
dn−kbk,

then, by Theorem 1, we obtain after some algebraic manipulations that

(6.4) A(x) = (1− dx)−1B

(
x

1− dx

)
=

=
btx

t(1− (β1 + d)x) · · · (1− (βs + d)x)
(1− (α1 + d)x) · · · (1− (αr + d)x)

.

We can thus deduce (cf. [4]) that {an} satisfies an rth order linear recur-
rence relation, whose characteristic polynomial has roots α1+d, . . . , αr+d.

More generally, if

(6.5) an =
n∑

k=0

(
n− p

k − p

)
dn−kbk
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and B(x) is as in (6.2), then, by Theorem 3, we obtain after some algebraic
manipulations that

(6.6) A(x) = (1− dx)p btx
t(1− (β1 + d)x) · · · (1− (βs + d)x)

(1− (α1 + d)x) · · · (1− (αr + d)x)
.

Therefore {an} satisfies a linear recurrence relation of order r + |p|. If
p > 0, then the roots of the characteristic polynomial of the relation are
α1 + d, . . . , αr + d, 0, . . . , 0 (0, p times). (Note that, in addition to the
p zeros, some of the roots α1 + d, . . . , αr + d may be equal to zero.) If
p < 0, then the roots of the characteristic polynomial of the relation are
α1 + d, . . . , αr + d, d, . . . , d (d, −p times). (Also some of the roots α1 +
d, . . . , αr + d may be equal to d.)

If an =
∑∞

k=n

(
k
n

)
dn−kbk and B(x) is as in (6.2), then it can be seen

after some algebraic manipulations that {an} satisfies a linear recurrence
relation of order r, whose characteristic polynomial has roots α1/(1 −
α1d), . . . , αr/(1− αrd), provided 1− αid 6= 0 (i = 1, . . . , r).

7. Examples involving binomial sums of Fibonacci numbers

In this section we present some examples in which we apply (6.4) and
(6.6) to obtain expressions for certain binomial sums of Fibonacci numbers.

Example 1. Let bn = Fn, the nth Fibonacci number, and d = 1 in
(6.3). Then

an =
n∑

k=0

(
n

k

)
Fk,

and, by (6.4),

(7.1) A(x) =
x

(1− α2x)(1− β2x)
=

x

1− 3x + x2
,

where α = (1 +
√

5)/2, β = (1 − √
5)/2. The first expression of A(x)

shows that an = C1α
2n + C2β

2n for some constants C1 and C2. Solving
C1 and C2 gives an = (α2n − β2n)/

√
5. Application of the Binet form

Fn = (αn − βn)/(α− β) = (αn − βn)/
√

5 gives

(7.2) an = F2n, n ≥ 0

(cf. [1, equation (24)]). Further, the second expression of A(x) in (7.1)
yields the recurrence

an+2 = 3an+1 − an, n ≥ 0.
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Note that (7.2) could also be derived easily with aid of exponential gener-
ating functions. We do not present the details here.

Example 2. Let bn = Fn, d = 1 and p = −1 in (6.5). Then

an =
n∑

k=0

(
n + 1
k + 1

)
Fk,

and, by (6.6),

(7.3) A(x) =
x

(1− x)(1− α2x)(1− β2x)
=

x

1− 4x + 4x2 − x3
.

The first expression of A(x) shows that an = C1 + C2α
2n + C3β

2n for
some constants C1, C2 and C3. Solving C1, C2 and C3 gives an = −1 +(

1
2 + 1

2
√

5

)
α2n +

(
1
2 − 1

2
√

5

)
β2n. Application of the Binet forms Fn =

(αn − βn)/
√

5 and Ln = αn + βn, where Ln is the nth Lucas number,
gives

(7.4) an = −1 + L2n/2 + F2n/2, n ≥ 0.

Further, the second expression of A(x) in (7.3) yields the recurrence

an+3 = 4an+2 − 4an+1 + an, n ≥ 0.

Example 3. Let bn = Fn, d = 1 and p = 1 in (6.5). Then

an =
n∑

k=0

(
n− 1
k − 1

)
Fk,

and, by (6.6),

(7.5) A(x) =
x(1− x)

(1− α2x)(1− β2x)
= −1 +

1− 2x

1− 3x + x2
.

This shows that an = −1 · 0n + C1α
2n + C2β

2n for some constants C1 and
C2, where 00 = 1. Solving C1 and C2 gives an = −1 · 0n +

(
1
2 − 1

2
√

5

)
α2n +(

1
2 + 1

2
√

5

)
β2n. Application of the Binet forms of Fn and Ln gives

(7.6) an = −1 · 0n + L2n/2− F2n/2, n ≥ 0.

Further, the second expression of A(x) in (7.5) yields the recurrence

an+3 = 3an+2 − an+1, n ≥ 0.

Remark. Further examples involving binomial sums of Fibonacci num-
bers could be derived in a similar way. For instance, Examples 1–3 with
d = −1.
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