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Generic submanifolds of a trans-Sasakian manifold

By M. HASAN SHAHID (New Delhi) and ION MIHAI (Bucharest)

In [C2] B.Y. Chen introduced the notion of a generic submanifold of a
Kaehler manifold and obtained interesting properties. The class of generic
submanifolds includes complex, totally real, slant and CR-submanifolds.
Generic submanifolds of Sasakian manifolds and of framed f -manifolds
have been studied by the present authors (see [HA], [M2]), P. Verheyen
[V], etc. In [O], J.A. Oubina introduced a new class of almost contact
metric manifolds and called them trans-Sasakian manifolds. This class
contains both α-Sasakian and β-Kenmotsu manifolds (see [OR]).

The aim of the present paper is to study generic submanifolds of trans-
Sasakian manifolds. Certain submanifolds of a β-Kenmotsu manifold were
investigated in [MMR].

1. Preliminaries

Let M̄ be a (2n+1)-dimensional almost contact metric manifold with
an almost contact metric structure (φ, ξ, η, g). Then we have [B]

(1.1) φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1,

(1.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ),

for any vector fields X,Y on M̄ , where I denotes the identity transforma-
tion on TM̄ .

An almost contact structure (φ, ξ, η) is said to be normal if the almost
complex structure J on M̄ × R given by

(1.3) J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where f is a C∞ function on M̄ ×R, is integrable, or equivalently [φ, φ] +
2dη ⊗ ξ = 0, where [φ, φ] denotes the Nijenhuis tensor of φ.
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In the classification of A. Gray and L.M. Hervella [GH] of almost
Hermitian manifolds, there appears a class of Hermitian manifolds called
W4, which contains locally conformal Kaehler manifolds. An almost con-
tact metric manifold M̄ is called trans-Sasakian if (M̄×R, J,G) belongs to
the class W4, where J is the almost complex structure on M̄ × R defined
by (1.3) and G is the product Riemannian metric on M̄ ×R. This may be
expressed by the condition (see [BO])

(1.4) (∇̄Xφ)Y = α{g(X,Y )ξ − η(Y )X}+ β{g(φX, Y )ξ − η(Y )φX},
for some functions α and β on M̄ , and we say that the trans-Sasakian
structure is of type (α, β). In particular, it is normal. From (1.4), one
easily obtains

(1.5) ∇̄Xξ = −αφX + β(X − η(X)ξ).

In the following, by a trans-Sasakian manifold we always mean a trans-
Sasakian manifold of type (α, β).

Let M be an n-dimensional isometrically immersed submanifold of
M̄ , tangent to ξ. Let g be the metric tensor field on M̄ as well as the
induced metric on M . We denote by ∇ the Riemannian connection with
respect to g on M . The Gauss and Weingarten formulae are respectively
given by

(1.6) ∇̄XY = ∇XY + h(X,Y ),

(1.7) ∇̄XN = −ANX +∇⊥XN,

where X,Y ∈ Γ(TM) and N ∈ Γ(T⊥M). We recall that the second
fundamental form h and the shape operator AN are related by

g(ANX, Y ) = g(h(X, Y ), N).

Definition. Let M be a submanifold of an almost contact metric man-
ifold M̄ . If the maximal invariant subspaces by φ, orthogonal to ξ in TxM ,

Dx = TxM ∩ φTxM, x ∈ M

define a differentiable subbundle of TM (i.e. the dimension of Dx is con-
stant along M), then M is called a generic submanifold of M̄ .

For any vector field X tangent to M , we put

(1.8) φX = PX + QX,

where PX and QX denote the tangential and normal components of φX
respectively.
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For any vector field N normal to M , we put

(1.9) φN = BN + CN,

where BN and CN denote the tangential and normal components of φN
respectively.

We call D the holomorphic distribution and the subbundle D⊥ or-
thogonal to D ⊕ {ξ} in TM the purely real distribution. They satisfy the
following relations:

(1.10) Dx ⊥ D⊥x , D⊥x ∩ φD⊥x = {0}, PDx = Dx, PD⊥x ⊂ D⊥x .

If the purely real distribution is an anti-invariant subbundle by φ, i.e.
φ(D⊥x ) ⊂ T⊥x M, ∀x ∈ M , then M is called a CR-submanifold of M̄ (see,
for instance, [HA], [M1]).

Let νx be the maximal invariant vector subspace of T⊥x M , i.e.

νx = T⊥x M ∩ φ(T⊥x M) ;

then νx defines a differentiable subbundle of T⊥M , satisfying

(1.11) T⊥M = QD⊥ ⊕ ν, B(T⊥M) ⊂ D⊥, QD⊥ ⊥ ν.

Examples. Let E2n+1 = Cn × R be the (2n + 1)-dimensional Eu-
clidean space endowed with the standard almost contact metric structure
(φ, ξ, η, g), defined by (see [B])

φ(x1, ..., x2n, z) = (−x2, x1, ...,−x2n, x2n−1, 0),

η = dz, ξ =
∂

∂z
,

and 1 ≤ h ≤ n. The product M1 × M2 × R, where M1 is a complex
submanifold of Ch and M2 a slant submanifold of Cn−h, is a generic sub-
manifold of E2n+1 (for definition and examples of slant submanifolds see
B.Y. Chen’s book [C4]).

2. Integrability of distributions

In this section, we shall study the integrability conditions for the
distributions on a generic submanifold of a trans-Sasakian manifold.

Proposition 2.1. Let M̄ be a trans-Sasakian manifold with α 6=0 and
M a generic submanifold of M̄ . Then the distributionD is never integrable.

Proof. Let X be a non-zero vector field belonging to D. Then from
(1.5) it follows that

g([X, φX], ξ) = 2αg(X, X) 6= 0;
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thus D cannot be integrable.

Theorem 2.2. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . Then the following assertions are equivalent to each other:

i) the distribution D ⊕ {ξ} is integrable;

ii) h(φX, Y ) = h(X,φY ) for any X, Y ∈ Γ(D), i.e. φ is self adjoint on
D with respect to the second fundamental form h;

iii) g(h(φX, Y ), φZ) = g(h(X, φY ), φZ) , for any X,Y ∈ Γ(D) and
Z ∈ Γ(D⊥).

Proof. From (1.4) and using Gauss formula, we get

h(X, φY ) = φ∇XY + φh(X, Y )−∇XφY

+ α{g(X, Y )ξ − η(Y )X}+ β{g(φX, Y )ξ − η(Y )φX},
for any X, Y ∈ Γ(D).

Thus we have

h(X, φY )− h(φX, Y ) = φ[X, Y ]−∇XφY +∇Y φX + 2βg(φX, Y )ξ.

Taking the normal part of the right term, we find

h(X, φY )− h(φX, Y ) = Q[X,Y ].

Therefore D ⊕ {ξ} is involutive if and only if

h(φX, Y ) = h(X, φY ), ∀X, Y ∈ Γ(D).

The other equivalences are obvious.

Corollary 2.3. Let M̄ be a β-Kenmotsu manifold and M a generic
submanifold. Then the distribution D is integrable if and only if the above
assertions i)-iii) hold good.

Next, we concentrate on the integrability of the purely real distribu-
tion.

Theorem 2.4. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . Then the following assertions are equivalent to each other:

i) the distribution D⊥ ⊕ {ξ} is integrable;
ii) AQW Z − AQZW + ∇W PZ − ∇ZPW ∈ Γ(D⊥) , for any Z, W ∈

Γ(D⊥).

Proof. For any vector fields Z, W ∈ Γ(D⊥) and X ∈ Γ(D), we have

g([Z, W ], φX) = −g(∇̄ZφW,X) + g(∇̄W φZ, X) =

−g(∇ZPW −AQW Z −∇W PZ + AQZW,X).
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Using Frobenius theorem, it follows that D⊥⊕{ξ} is integrable if and
only if ii) holds good.

Lemma 2.5. Let M be a CR-submanifold of a trans-Sasakian mani-
fold M̄ . Then

AQZW = AQW Z,

for any Z, W ∈ Γ(D⊥).

Proof. For Z, W ∈ Γ(D⊥) and Y ∈ Γ(TM), using (1.4), (1.6) and
(1.7), we have

g(AQW Z, Y ) = g(h(Y,Z), φW ) = g(∇̄Y Z, φW ) = −g(φ∇̄Y Z,W ) =

−g(∇̄Y φZ, W ) = g(AQZY,W ) = g(AQZW,Y ),

which achieves the proof.

Proposition 2.6. Let M̄ be a trans-Sasakian manifold with α 6= 0 and
M a generic submanifold of M̄ . Then the distribution D⊥ is integrable if
and only if M is a CR-submanifold.

Proof. Let Z, W ∈ Γ(D⊥). If D⊥ is integrable, we have

0 = g([Z, W ], ξ) = 2αg(φZ, W ),

i.e. M is a CR-submanifold.
Conversely, if M is a CR-submanifold, then by Theorem 2.4 and

Lemma 2.5 it follows that D⊥ is integrable (see also [H], [M2], [V]).

3. Generic submanifolds with parallel canonical structures

Let P, C,Q and B be the endomorphisms and the vector bundle-valued
1-forms defined by (1.8) and (1.9) respectively. Now, let us define the
covariant differentiations of P, Q,B and C as follows:

(∇̄XP )Y = ∇XPY − P∇XY,(3.1)

(∇̄XQ)Y = ∇⊥XQY −Q∇XY,(3.2)

(∇̄XB)N = ∇XBN −B∇⊥XN,(3.3)

(∇̄XC)N = ∇⊥XCN − C∇⊥XN,(3.4)

for any vector fields X and Y tangent to M and any vector field N normal
to M .
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Definition. The endomorphism P (resp. the endomorphism C, the 1-
forms Q and B) is called parallel if ∇̄P = 0 (resp. ∇̄C = 0, ∇̄Q = 0 and
∇̄B = 0).

Now, from (1.4) and using (1.6)–(1.8) we have

∇XPY + h(X, PY )−AQY X +∇⊥XQY − P∇XY−
−Q∇XY −Bh(X,Y )− Ch(X, Y )

= α{g(X,Y )ξ − η(Y )X}+ β{g(PX, Y )ξ − η(X)(PX + QX)},
for all X, Y ∈ Γ(TM).

Comparing tangential and normal components respectively, we get

∇XPY − P∇XY = (∇̄XP )Y = AQY X + Bh(X, Y )(3.5)

+α{g(X,Y )ξ − η(Y )X}+ β{g(PX, Y )ξ − η(Y )PX},

∇⊥XQY −Q∇XY = (∇̄XQ)Y(3.6)

= Ch(X, Y )− h(X, PY )− βη(Y )QX,

for any X, Y ∈ Γ(TM).
Analogously, we find

∇XBN −B∇⊥XN = (∇̄XB)N(3.7)

= ACNX − PANX + βg(QX, N)ξ,

∇⊥XCN − C∇⊥XN = (∇̄XC)N = −h(X, BN)−QANX.(3.8)

Lemma 3.1. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . Then the endomorphism P is parallel if and only if

AQXY −AQY X = α{η(X)Y − η(Y )X}+ β{η(Y )PX − η(X)PY },
for any vector fields X,Y tangent to M .

Proof. From (3.5) we have

g((∇̄XP )Y, Z) = g(AQY X, Z) + g(Bh(X, Y ), Z)

+α{g(X, Y )η(Z)− g(X,Z)η(Y )}+ β{g(PX, Y )η(Z)− g(PX, Z)η(Y )}
= g(AQY X, Z)− g(AQZX, Y ) + α{g(X, Y )η(Z)− g(X, Z)η(Y )}

+β{g(PX, Y )η(Z)− g(PX, Z)η(Y )},
which proves our assertion.

Next, we have the following
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Proposition 3.2. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . If P is parallel, then:

i) the holomorphic distribution D ⊕ {ξ} is integrable;

ii) AQUX = α{η(U)X − η(X)U}+ β{η(X)PU − η(U)PX} , for any
X ∈ Γ(D) and U ∈ Γ(TM).

Proof. Assume that P is parallel, i.e. ∇̄P = 0; then Lemma 3.1
gives

AQUX = αη(U)X − βη(U)PX,

for any X ∈ Γ(D) and U ∈ Γ(TM).
For U = Z ∈ Γ(D⊥), X, Y ∈ Γ(D), and using PD⊥ ⊂ D⊥ we get

g(AQZX, Y ) = 0, i.e. g(h(X, Y ), QZ) = 0.

Proposition 3.3. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . Then Q is parallel if and only if B is parallel.

Proof. Suppose that B is parallel, i.e. ∇̄B = 0. Then from (3.7) it
follows that

g(ACNX,Y ) = g(PANX, Y )− βg(QX, N)g(Y, ξ),

for any vector fields X,Y tangent to M and N normal to M .
Hence we have

g(Ch(X,Y ), N) = g(h(X, PY ), N) + βg(QX,N)η(Y ),

which is equivalent to

Ch(X, Y ) = h(X,PY ) + βη(Y )QX,

i.e. ∇̄Q = 0.
The proof for the converse statement is similar.

4. Geometry of leaves on generic submanifolds

From (3.5) and (3.6) we have

P∇XZ = −AQZX −Bh(X, Z) + α{η(Z)X − g(X, Z)ξ}(4.1)

+β{η(Z)PX − g(PX, Z)ξ}+∇XPZ

and

(4.2) Q∇XZ = ∇⊥XQZ − Ch(X, Z)− βη(Z)QX − h(X, PZ),

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥).
Now we prove the following
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Proposition 4.1. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . Then the distribution D⊕{ξ} is integrable and its leaves are
totally geodesic in M if and only if

(4.3) g(h(D,D), QD⊥) = 0.

Proof. Let X, Y ∈ Γ(D) and Z ∈ Γ(D⊥). If the distribution D⊕{ξ}
is integrable and its leaves are totally geodesic in M ,
then ∇XφY ∈ Γ(D ⊕ {ξ}).

By (4.1) and using B(T⊥M) ⊂ D⊥, we have

0 = g(∇XφY,Z) = −g(∇XZ, φY ) = g(P∇XZ, Y ) =

−g(AQZX,Y )− g(Bh(X, Z), Y ) + g(∇XPZ, Y ) = −g(h(X, Y ), QZ).

Conversely, suppose that (4.3) holds good. Then the distribution
D ⊕ {ξ} is integrable by virtue of Theorem 2.2. Now, using (1.4) we get

0 = g(h(X,φY ), QZ) = g(∇̄XφY, QZ) = g(φ∇̄XY, QZ) = g(∇XY, Z),

for any X, Y ∈ Γ(D), Z ∈ Γ(D⊥).
Thus ∇XY ∈ Γ(D) for any X,Y ∈ Γ(D) and each leaf of D is totally

geodesic in M , which completes the proof.

Proposition 4.2. Let M be a generic submanifold of a trans-Sasakian
manifold M̄ . If the distribution D⊥ is integrable, then its leaves are totally
geodesic in M if and only if

g(h(X, W ), QZ) = 0,

for any Y ∈ Γ(D) and Z,W ∈ Γ(D⊥).

Proof. From (3.5) and (3.6) we get

(4.5) P∇XZ = −AQZX −Bh(X, Z)− αg(X,Z)ξ − βg(PX, Z)ξ

and

(4.6) Q∇XZ = ∇⊥XQZ − Ch(X, Z),

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥).
Putting X = W ∈ Γ(D⊥) in (4.5), we have

P∇XZ = −AQZW −Bh(Z,W )− αg(Z,W )ξ − βg(Z, PW )ξ.

Taking the inner product with Y ∈ Γ(D), we obtain

g(∇W Z, PY ) = g(h(Y, W ), QZ), ∀Z, W ∈ Γ(D⊥), Y ∈ Γ(D).

The proof is complete.
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5. The CR-structure of a generic submanifold

Each generic submanifold of a Kaehler manifold carries a canonical
Cauchy-Riemann (abr. CR) structure in the sense of S. Greenfield [G] (see
[Op]). This result was extended to Sasakian and β-Kenmotsu manifolds
([V], [MMR]). It is also true in the case under consideration.

Recall the definition of a Cauchy-Riemann structure [G].
A complex distribution H on M (i.e. H ⊂ TM ⊗RC) is said to define

a Cauchy-Riemann structure if it satisfies the following conditions:
i) H ∩ H̄ = {0} , where H̄ is the conjugated distribution of H;
ii) H is involutive, i.e. for any A,B ∈ Γ(H) , [A,B] ∈ Γ(H).

Theorem 5.1. Each generic submanifold M of a trans-Sasakian man-
ifold is a Cauchy-Riemann manifold.

Proof. Let l : TM → D and m : TM → D⊥ be the projection
operators. Then each vector field X can be expressed by X = lX +mX +
η(X)ξ.

We put H = {X − iφX|X ∈ Γ(D)}.
Let A,B ∈ Γ(H); then A = X − iφX , B = Y − iφY , for certain

X, Y ∈ Γ(D).
M̄ being normal, we have [φ, φ](X, Y )+2dη(X, Y )ξ = 0. Then we get

[φX, φY ]− [X,Y ]− φl{[φX, Y ] + [X, φY ]} = 0,

m{[φX, Y ] + [X, φY ]} = 0.

Replacing X by φX, we obtain

[φX, φY ]− [X, Y ] ∈ Γ(D).

On the other hand, we may write

[A,B] = [X,Y ]− [φX, φY ]− i[φX, Y ]− i[X, φY ]

= [X,Y ]− [φX, φY ]− iφ{[X, Y ]− [φX, φY ]} ∈ Γ(H)

and the proof is complete.
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