On generalized rectangular and rhombic functional equations

By J. K. CHUNG (Guangzhou), B. R. EBANKS (Louisville),
C. T. NG (Waterloo), P. K. SAHOO (Louisville) and W. B. ZENG (Louisville)

1. Introduction

In [2], the functional equations

$$
\begin{gather*}
f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)+f\left(x_{1}+y_{1}, x_{2}-y_{2}\right)+ \\
+f\left(x_{1}-y_{1}, x_{2}+y_{2}\right)+f\left(x_{1}-y_{1}, x_{2}-y_{2}\right)=4 f\left(x_{1}, x_{2}\right) \tag{RE}
\end{gather*}
$$

and

$$
\begin{gather*}
f\left(x_{1}+y_{1}, x_{2}\right)+f\left(x_{1}-y_{1}, x_{2}\right)+ \tag{RH}\\
+f\left(x_{1}, x_{2}+y_{2}\right)+f\left(x_{1}, x_{2}-y_{2}\right)=4 f\left(x_{1}, x_{2}\right)
\end{gather*}
$$

among others, were considered for f mapping \mathfrak{R}^{2} into \mathfrak{R} (the reals). For obvious geometric reasons, these equations are referred to as the rectangular and rhombic equations, respectively. Their general solutions are the same: $f\left(x_{1}, x_{2}\right)=A\left(x_{1}, x_{2}\right)+B\left(x_{1}\right)+C\left(x_{2}\right)+\alpha$, where A is an arbitrary biadditive map, B and C are arbitrary additive maps, and α is an arbitrary constant.

In the present paper, we generalize those results in three ways. For one thing, we consider a more general right hand side. Also, we generalize the domain to a product of groups and the range to a field. And thirdly, we deal with functions of any finite number of variables. Specifically, we consider the equations

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right)= \tag{GRE}\\
=f\left(x_{1}, \ldots, x_{n}\right) g\left(y_{1}, \ldots, y_{n}\right)+h\left(y_{1}, \ldots, y_{n}\right)
\end{gather*}
$$

and

$$
\begin{align*}
& \sum_{i=1}^{n} \sum_{\sigma_{i}= \pm 1} f\left(x_{1}, \ldots, x_{i-1}, x_{i} y_{i}^{\sigma_{i}}, x_{i+1}, \ldots, x_{n}\right)= \tag{GRH}\\
& \quad=f\left(x_{1}, \ldots, x_{n}\right) p\left(y_{1}, \ldots, y_{n}\right)+q\left(y_{1}, \ldots, y_{n}\right)
\end{align*}
$$

for $f, g, h, p, q: \mathbf{G}_{1} \times \mathbf{G}_{2} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$, where each $\mathbf{G}_{i}(i=1,2 \ldots, n)$ is a group and \mathbf{K} is a quadratically closed (commutative) field of characteristic different from 2.

In Section 3 of the paper, we find the general solution of the generalized rectangular equation (GRE). In Section 4, we show that the class of all f satisfying the generalized rhombic equation (GRH) is identical with the class of all f satisfying a generalized rectangular equation. Then the result of Section 3 is invoked to obtain the general solution of the generalized rhombic equation. In Section 5, we complete the link between (GRE) and (GRH) and give the regular solutions of these equations.

2. Some preliminaries

The proof of the main results are by induction on n, the number of variables. Hence our starting point is provided by the following result, which covers the initial step $n=1$.

Lemma 1. The general solution $f, g, h,: \mathbf{G} \rightarrow \mathbf{K}$ of

$$
\begin{equation*}
f(x y)+f\left(x y^{-1}\right)=f(x) g(y)+h(y) \tag{2.1}
\end{equation*}
$$

with f satisfying the factorization condition

$$
\begin{equation*}
f(x y z)=f(x z y) \tag{FC}
\end{equation*}
$$

is provided by

$$
\begin{gather*}
f(x)=\gamma, \quad g \text { arbitrary, } \quad h(y)=\gamma[2-g(y)] \tag{2.2}\\
f(x)=Q(x)+A(x)+\gamma, \quad g(y)=2, \quad h(y)=2 Q(y) \tag{2.3}\\
f(x)=\alpha \psi(x)+\beta \psi(x)^{-1}+\gamma, \quad g(y)=\psi(y)+\psi(y)^{-1} \tag{2.4}\\
h(y)=\gamma\left\{2-\left[\psi(y)+\psi(y)^{-1}\right]\right\}, \quad \psi(y) \not \equiv \psi(y)^{-1} ;
\end{gather*}
$$

or by

$$
\begin{align*}
& f(x)=[A(x)+\alpha] \psi(x)+\gamma, \quad g(y)=2 \psi(y) \\
& h(y)=2 \gamma[1-\psi(y)], \quad \psi(y) \equiv \psi(y)^{-1} \not \equiv 1, \tag{2.5}
\end{align*}
$$

where $\alpha, \beta, \gamma \in \mathbf{K}$ are arbitrary constants, $Q: \mathbf{G} \rightarrow \mathbf{K}$ is a quadratic function:

$$
Q(x y)+Q\left(x y^{-1}\right)=2 Q(x)+2 Q(y)
$$

$A: \mathbf{G} \rightarrow \mathbf{K}$ is an additive function:

$$
A(x y)=A(x)+A(y)
$$

and $\psi: \mathbf{G} \rightarrow \mathbf{K}$ is a nonzero exponential function:

$$
\psi(x y)=\psi(x) \psi(y), \quad \psi \not \equiv 0
$$

Proof. Equation (2.1) is a special case of an equation treated in Theorem 3.1 in [3]. An exhaustive case-by-case reduction of the solutions provided there leads to (2.2)-(2.5).

Remark 1. The condition (FC) essentially allows us to operate as if the function is defined on the abelian group \mathbf{G} / \mathbf{C}, where \mathbf{C} is the commutator subgroup of \mathbf{G} (see [4, p. 136]).

Remark 2. Any such quadratic function Q as above can be described as the diagonal of a biadditive function $A_{12}: \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{K}$ (see [1]). We choose the quadratic nomenclature and notation here to avoid confusion with the many other multiadditive functions which will appear.

In the next section, we shall solve the generalized rectangular equation (GRE) under the supposition that f satisfies the factorization condition (FC) in each variable. In describing the solutions of (GRE), the following definition will be helpful. Any function $S: \mathbf{G}_{1} \times \mathbf{G}_{2} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$ of the form

$$
\begin{aligned}
S\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & A_{12 \cdots n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+ \\
& +\left[A_{12 \cdots(n-1)}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+\cdots+\right. \\
& \left.+A_{23 \cdots n}\left(x_{2}, x_{3}, \ldots, x_{n}\right)\right]+ \\
& +\cdots+\left[A_{1}\left(x_{1}\right)+\cdots+A_{n}\left(x_{n}\right)\right],
\end{aligned}
$$

where each $A_{j_{1} \cdots j_{k}}: \mathbf{G}_{j_{1}} \times \cdots \times \mathbf{G}_{j_{k}} \rightarrow \mathbf{K}\left(1 \leq j_{1}<\cdots<j_{k} \leq n\right)$ is additive in each variable, is termed a sum of multiadditive functions (SMAF) of order n. For example, any function of the form $A_{12}\left(x_{1}, x_{2}\right)+$ $A_{1}\left(x_{1}\right)+A_{2}\left(x_{2}\right)+\alpha$, where A_{12} is biadditive and A_{1} and A_{2} are additive, could be written as $S\left(x_{1}, x_{2}\right)+\alpha$, where S is a SMAF of order 2 .

3. General solution of (GRE)

Now we are ready to establish the first main result.
Theorem 1. The general solution $f, g, h: \mathbf{G}_{1} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$ of (GRE) with f satisfying (FC) in each variable, is given by (with $X=$ $\left.\left(x_{1}, x_{2}, \ldots, x_{n}\right), Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)$

$$
\begin{gather*}
f(X)=\gamma, \quad g \text { arbitrary, } \quad h(Y)=\gamma\left[2^{n}-g(Y)\right], \tag{3.1}\\
f(X)=S(X)+\alpha+\sum_{i=1}^{n} Q_{i}\left(x_{i}\right), \tag{3.2}\\
g(Y)=2^{n}, \quad h(Y)=2^{n} \sum_{i=1}^{n} Q_{i}\left(y_{i}\right), \\
\left\{\begin{array}{c}
f(X)=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{n-k}}\right)\right. \\
\left.\quad+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\right] \prod_{i=1}^{n-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{n} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}+\gamma \\
g(Y)=\prod_{i=1}^{n}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right], \quad h(Y)=\gamma\left[2^{n}-g(Y)\right] \\
\left\{\begin{array}{c}
\psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1}, i=1,2, \ldots, n, \\
f(X)=\left[S\left(x_{1}, \ldots, x_{n}\right)+\alpha\right] \prod_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\gamma, \\
g(Y)=2^{n} \prod_{i=1}^{n} \psi_{i}\left(y_{i}\right) \neq 2^{n}, \quad h(Y)=\gamma\left[2^{n}-g(Y)\right],
\end{array}\right.
\end{array}>\left\{\begin{array}{l}
f(Y)
\end{array}\right.\right. \tag{3.3a}
\end{gather*}
$$

where k is a fixed integer $(1 \leq k \leq n), \alpha, \gamma$ and $\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\left(\sigma_{1}, \ldots, \sigma_{k}= \pm 1\right)$ are arbitrary constants, S and $S_{\sigma_{1}, \ldots, \sigma_{k}}\left(\sigma_{1}, \ldots, \sigma_{k}= \pm 1\right)$ are SMAF's of order n and $n-k$, respectively, Q_{i} is quadratic and ψ_{i} is a nonzero exponential $(i=1,2, \ldots, k), \psi_{p_{i}}(i=1,2, \ldots, n-k)$ satisfies also $\psi_{p_{i}}(\cdot)=\psi_{p_{i}}(\cdot)^{-1}$, $\psi_{r_{j}}(j=1,2, \ldots, k)$ satisfies also $\psi_{r_{j}}(\cdot) \neq \psi_{r_{j}}(\cdot)^{-1}$, and $\{1,2, \ldots, n\}$ is the (disjoint) union of the sets $\left\{p_{1}, \ldots, p_{n-k}\right\}$ and $\left\{r_{1}, \ldots, r_{k}\right\}$.

Here we have adopted the convention that in (3.3a)

$$
\begin{align*}
& \quad S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{n-k}}\right):=0 \\
& \text { and } \quad \prod_{i=1}^{n-k} \psi_{p_{i}}\left(x_{p_{i}}\right):=1 \quad \text { if } \quad k=n . \tag{C1}
\end{align*}
$$

Remark 3. Note that (3.3b) can be included as the special case $k=0$ of (3.3a) if we interpret $\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}$ as a single term and $\prod_{j=1}^{k}=1$ when $k=0$. The statement and proof of the theorem seem clearer, however, if we separate this case.

Proof. The proof is by induction on n. For $n=1$, it is Lemma 1 . Suppose now that the statement is true for $n=N \geq 1$, and consider (GRE) for $n=N+1$.

If $f=\gamma$, then (GRE) yields $2^{n} \gamma=\gamma g(Y)+h(Y)$. This gives solution (3.1) immediately, and henceforth we assume that f is nonconstant.

Putting $y_{i}=e_{i}$ (the identity of \mathbf{G}_{i}) for $i=1,2, \ldots, N$ in (GRE), we get

$$
\begin{aligned}
& 2^{N}\left[f\left(x_{1}, \ldots, x_{N}, x_{N+1} y_{N+1}\right)+f\left(x_{1}, \ldots, x_{N}, x_{N+1} y_{N+1}^{-1}\right)\right]= \\
& \quad=f\left(x_{1}, \ldots, x_{N+1}\right) g\left(e_{1}, \ldots, e_{N}, y_{N+1}\right)+h\left(e_{1}, \ldots, e_{N}, y_{N+1}\right)
\end{aligned}
$$

Since char $\mathbf{K} \neq 2$, this can be written as

$$
\begin{gathered}
f\left(x_{1}, \ldots, x_{N}, x_{N+1} y_{N+1}\right)+f\left(x_{1}, \ldots, x_{N}, x_{N+1} y_{N+1}^{-1}\right)= \\
=f\left(x_{1}, \ldots, x_{N+1}\right) g^{\prime}\left(y_{N+1}\right)+h^{\prime}\left(y_{N+1}\right) .
\end{gathered}
$$

For each fixed $\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{G}_{1} \times \cdots \times \mathbf{G}_{N}$, this is an equation of the form (2.1). By Lemma 1, f must have one of the following three forms, with Q_{N+1} quadratic, A_{N+1} additive in its last variable, and ψ_{N+1} a nonzero exponential:

$$
\begin{gather*}
f\left(x_{1}, \ldots, x_{N+1}\right)= \tag{3.4}\\
=Q_{N+1}\left(x_{N+1}\right)+A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)+B\left(x_{1}, \ldots, x_{N}\right)
\end{gather*}
$$

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{N+1}\right)=A\left(x_{1}, \ldots, x_{N}\right) \psi_{N+1}\left(x_{N+1}\right)+ \tag{3.5}
\end{equation*}
$$

$$
+B\left(x_{1}, \ldots, x_{N}\right) \psi_{N+1}\left(x_{N+1}\right)^{-1}+\gamma \quad \text { with } \quad \psi_{N+1}(x) \not \equiv \psi_{N+1}(x)^{-1}
$$

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{N+1}\right)=\left[A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)+\right. \tag{3.6}
\end{equation*}
$$

$$
\left.+B\left(x_{1}, \ldots, x_{N}\right)\right] \psi_{N+1}\left(x_{N+1}\right)+\gamma \quad \text { with } \quad \psi_{N+1}(x) \equiv \psi_{N+1}(x)^{-1} \not \equiv 1
$$

In writing (3.5), we have used implicitly the fact that nonzero exponentials are independent if distinct.

We consider each of these cases in turn.
Case 1. Substituting the form (3.4) of f into (GRE), we simplify using the fact that Q_{N+1} is quadratic and A_{N+1} is additive in its last variable. Thus we arrive at

$$
\begin{equation*}
2^{N+1}\left[Q_{N+1}\left(x_{N+1}\right)+Q_{N+1}\left(y_{N+1}\right)\right]+ \tag{3.7}
\end{equation*}
$$

$$
\begin{aligned}
& +2 \sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1}\left[A_{N+1}\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}, x_{N+1}\right)+B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)\right] \\
& =\left[Q_{N+1}\left(x_{N+1}\right)+A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)+B\left(x_{1}, \ldots, x_{N}\right)\right] g(Y)+h(Y)
\end{aligned}
$$

Since $Q_{N+1}(\cdot), A_{N+1}\left(x_{1}, \ldots, x_{N}, \cdot\right)$ and 1 are linearly independent (if nonzero), we deduce that

$$
\begin{gather*}
2^{N+1} Q_{N+1}\left(x_{N+1}\right)=Q_{N+1}\left(x_{N+1}\right) g(Y), \tag{3.7a}\\
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} A_{N+1}\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}, x_{N+1}\right)= \\
=A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right) \frac{1}{2} g(Y), \\
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)= \tag{3.7c}\\
=B\left(x_{1}, \ldots, x_{N}\right) \frac{1}{2} g(Y)+\frac{1}{2}\left[h(Y)-2^{N+1} Q_{N+1}\left(y_{N+1}\right)\right] .
\end{gather*}
$$

Now let us consider three subcases. First, suppose that $g(Y) \equiv 2^{N+1}$. Then (3.7a,b,c) yields

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} A_{N+1}\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}, x_{N+1}\right)= \tag{3.8a}\\
=2^{N} A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right), \\
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)= \tag{3.8b}\\
=2^{N} B\left(x_{1}, \ldots, x_{N}\right)+\frac{1}{2}\left[h(Y)-2^{N+1} Q_{N+1}\left(y_{N+1}\right)\right] .
\end{gather*}
$$

Equations (3.8a) and (3.8b) are of the form (GRE), to which we can apply the induction hypothesis. Note that with the particular form of g here, (3.1) is a special case of (3.2), while (3.3a) and (3.3b) are not possible. (In the case of (3.3a), $\prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right] \equiv 2^{N}$ is possible only if $\psi_{i}=1$ for each i. But this is impossible, since $k \geq 1$.) Hence we obtain from (3.8a) and (3.8b) that

$$
\begin{equation*}
A_{N+1}\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)=S_{A}\left(x_{1}, \ldots, x_{N} ; x_{N+1}\right)+C_{A}\left(x_{N+1}\right) \tag{3.9a}
\end{equation*}
$$

$$
\begin{equation*}
B\left(x_{1}, \ldots, x_{N}\right)=S_{B}\left(x_{1}, \ldots, x_{N}\right)+\alpha+\sum_{i=1}^{N} Q_{i}\left(x_{i}\right) \tag{3.9b}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{2} h(Y)-2^{N} Q_{N+1}\left(y_{N+1}\right)=2^{N} \sum_{i=1}^{N} Q_{i}\left(y_{i}\right) \tag{3.9c}
\end{equation*}
$$

where S_{A} is a SMAF of order N in its first N variables, S_{B} is a SMAF of order N, and $Q_{i}(i=1,2, \ldots, N)$ is quadratic.

Moreover, since A_{N+1} is additive in its last variable, (3.9a) and the linear independence of $S_{A}\left(x_{1}, \ldots, x_{N+1}\right)$ and $C_{A}\left(x_{N+1}\right)$ as functions of $x_{1}, . ., x_{N}$ (if nonzero) show that S_{A} is additive in its last variable and that C_{A} is additive. Hence, the map $S: \mathbf{G}_{1} \times \cdots \times \mathbf{G}_{N+1} \rightarrow \mathbf{K}$ defined by

$$
S\left(x_{1}, \ldots, x_{N+1}\right):=S_{A}\left(x_{1}, \ldots, x_{N} ; x_{N+1}\right)+C_{A}\left(x_{N+1}\right)+S_{B}\left(x_{1}, \ldots, x_{N}\right)
$$

is a SMAF of order $N+1$. Together with (3.9a,b,c) and (3.4), this shows that in this case we have a solution of the form (3.2) for $n=N+1$.

Next, suppose that $g(Y) \not \equiv 2^{N+1}$ and $A_{N+1}=0$. Then by (3.7a) we have

$$
\begin{equation*}
Q_{N+1}=0 . \tag{3.10}
\end{equation*}
$$

Now (3.4) reduces to $f\left(x_{1}, \ldots, x_{N+1}\right)=B\left(x_{1}, \ldots, x_{N}\right)$. Moreover, (3.7c) (now with $Q_{N+1}=0$) is, for each fixed y_{N+1}, of the form (GRE) with $n=N$. Applying the induction hypothesis, since B is nonconstant, we conclude that $B, \frac{1}{2} g, \frac{1}{2} h$ have the forms of f, g, h (respectively) in either (3.2), (3.3a) or (3.3b) for each y_{N+1}. The first case, (3.2), is impossible as $\frac{1}{2} g(Y) \equiv 2^{N}$ contradicts the hypothesis $g(Y) \not \equiv 2^{N+1}$. In the second case, the solution is of the form (3.3a) for $n=N+1$, with $\psi_{N+1}=1$, where $p_{N+1-k}:=N+1$ and each $S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{N+1-k}}\right):=S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)$. Similarly, in the third case the solution is of the form (3.3b).

Finally, suppose that $g(Y) \not \equiv 2^{N+1}$ and $A_{N+1} \neq 0$. We again get (3.10) from (3.7a). Furthermore, (3.7b) shows that $g(Y)$ is independent of
y_{N+1}. Thus, for each fixed $x_{N+1},(3.7 \mathrm{~b})$ is of the form (GRE) for $n=N$ with $h=0$. By induction hypothesis, we deduce that $A_{N+1}\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)$ must be of the form (3.3a) or (3.3b) in the first N variables, for each fixed x_{N+1}. We also find that

$$
\begin{equation*}
\frac{1}{2} g(Y)=\prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right] \not \equiv 2^{N} \tag{3.11}
\end{equation*}
$$

and that $\gamma=0$ in (3.3a), (3.3b). That is, A_{N+1} is given by

$$
\begin{gather*}
A_{N+1}(X)=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}, x_{N+1}\right)+\right. \\
\left.\quad+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{N+1}\right)\right] \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}} \tag{3.12a}
\end{gather*}
$$

or

$$
\begin{gather*}
A_{N+1}(X)=\left[S^{(A)}\left(x_{1}, \ldots, x_{N}, x_{N+1}\right)+\right. \tag{3.12b}\\
\left.+\alpha^{(A)}\left(x_{N+1}\right)\right] \prod_{i=1}^{N} \psi_{i}\left(x_{i}\right), \quad \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1}, i=1,2, \ldots, N
\end{gather*}
$$

where $S^{(A)}$ and $S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}$ are SMAF's of order N and $N-k$ (respectively) in all variables but the last, and where $S^{(A)}, S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}, \alpha^{(A)}$ and $\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}$ are additive functions of x_{N+1}.

Using (3.10) and (3.11), we obtain

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)= \\
=B\left(x_{1}, \ldots, x_{N}\right) \prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right]+\frac{1}{2} h(Y) \tag{3.13}
\end{gather*}
$$

from (3.7c). This shows that $h(Y)$, is independent of y_{N+1}. Applying the induction hypothesis, we see that B is given by (3.3a) or (3.3b). Moreover, the form of B corresponds to the form of A_{N+1} given in (3.12a) or (3.12b), according to the set of indices $\left\{p_{1}, \ldots, p_{N-k}\right\}$ for which $\psi_{p_{i}}(x) \equiv \psi_{p_{i}}\left(x_{i}\right)^{-1}$.

If A_{N+1} is given by (3.12a) then B and h are given by

$$
\begin{gathered}
B(X)=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\right] \times \\
\times \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}+\gamma \\
\quad \frac{1}{2} h(Y)=\gamma\left[2^{N}-g(Y)\right]
\end{gathered}
$$

In this case, defining $p_{N-k+1}:=N+1, \psi_{N+1}=1$, and

$$
\begin{gathered}
S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{N+1-k}}\right):=S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}} ; x_{N+1}\right)+ \\
+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{N+1}\right)+S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)
\end{gathered}
$$

we deduce from (3.4) that f has the form given by in (3.3a), with $n=N+1$. We see that g and h are as given in (3.3a) also.

The other possibility is that A_{N+1} is given by (3.12b). In the same manner as the previous case, we find that the solution is of the form (3.3b) for $n=N+1$.

Case 2. Substituting (3.5) for f into (GRE) and simplifying, using the fact that ψ_{N+1} is nonzero exponential, we find that

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1}\left[A\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right) \psi_{N+1}\left(x_{N+1}\right)\right. \\
\left.+B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right) \psi_{N+1}\left(x_{N+1}\right)^{-1}\right]\left[\psi_{N+1}\left(y_{N+1}\right)+\right. \tag{3.14}\\
\left.+\psi_{N+1}\left(y_{N+1}\right)^{-1}\right]+2^{N+1} \gamma=\left[A\left(x_{1}, \ldots, x_{N}\right) \psi_{N+1}\left(x_{N+1}\right)+\right. \\
\left.+B\left(x_{1}, \ldots, x_{N}\right) \psi_{N+1}\left(x_{N+1}\right)^{-1}+\gamma\right] g(Y)+h(Y) .
\end{gather*}
$$

Since $\psi_{N+1}(x) \not \equiv \psi_{N+1}(x)^{-1}$, it follows that $\psi_{N+1}(\cdot), \psi_{N+1}(\cdot)^{-1}$ and 1 are linearly independent. Thus, we deduce from (3.14) that

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} A\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right) \times \tag{3.15}\\
\times\left[\psi_{N+1}\left(y_{N+1}\right)+\psi_{N+1}\left(y_{N+1}\right)^{-1}\right]=A\left(x_{1}, \ldots, x_{N}\right) g(Y)
\end{gather*}
$$

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right) \times \tag{3.16}\\
\times\left[\psi_{N+1}\left(y_{N+1}\right)+\psi_{N+1}\left(y_{N+1}\right)^{-1}\right]=B\left(x_{1}, \ldots, x_{N}\right) g(Y) \\
2^{N+1} \gamma=\gamma g(Y)+h(Y) . \tag{3.17}
\end{gather*}
$$

Furthermore, as we have supposed that f is nonconstant, (3.5) shows that at least one of A or B is nonzero. Suppose, without loss of generality, that $A \neq 0$. Then (3.15) (with $y_{N+1}=e_{N+1}$) yields

$$
\begin{equation*}
g(Y)=\frac{1}{2} g\left(y_{1}, \ldots, y_{N}, e_{N+1}\right)\left[\psi_{N+1}\left(y_{N+1}\right)+\psi_{N+1}\left(y_{N+1}\right)^{-1}\right] . \tag{3.18b}
\end{equation*}
$$

By the induction hypothesis, all solutions of (3.18a) must be of the form (3.1), (3.2), or (3.3). The solution can be of the form (3.1) with $A \neq 0$ and no h-term only if (cf. (3.15)) $\frac{1}{2} g\left(y_{1}, \ldots, y_{N}, e_{N+1}\right) \equiv 2^{N}$. But then by (3.18b) this solution is a special case of (3.3). Similarly, the solution can be of the form (3.2) with $A \neq 0$ and no h-term only if $Q_{i}=0(i=1,2, . ., N)$, and again such a solution is a special case of (3.3).

Therefore, the solution of (3.18a) must be of the form (3.3) with no h-term. That is, either

$$
\begin{gather*}
A\left(x_{1}, \ldots, x_{N}\right)= \\
=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\right] \times \tag{3.19a}\\
\times \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}+\gamma
\end{gather*}
$$

or

$$
\begin{equation*}
=\left[S^{(A)}\left(x_{1}, \ldots, x_{N}\right)+\alpha^{(A)}\right] \prod_{i=1}^{N} \psi_{i}\left(x_{i}\right)+\gamma \quad \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1} \tag{3.19b}
\end{equation*}
$$

and

$$
\frac{1}{2} g\left(y_{1}, \ldots, y_{N}, e_{N+1}\right)=\prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right]
$$

It follows from (3.18b) that

$$
\begin{equation*}
g(Y)=\prod_{i=1}^{N+1}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right] \tag{3.20}
\end{equation*}
$$

Moreover, either $\gamma=0$ or $g\left(y_{1}, \ldots, y_{N}, e_{N+1}\right) \equiv 2^{N+1}$. In the latter case, (3.20) shows that $\psi_{i}=1(i=1,2, . ., N)$. Hence, (3.19a) is impossible and (3.19b) reduces to $A(X)=S^{(A)}(X)+\alpha^{(A)}+\gamma$. Thus (absorbing γ into $\alpha^{(A)}$ if needed) we may drop γ from (3.19) in either case and write

$$
\begin{gather*}
A\left(x_{1}, \ldots, x_{N}\right)= \\
=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\right] \times \tag{3.21a}\\
\times \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}},
\end{gather*}
$$

or

$$
\begin{equation*}
A(X)=\left[S^{(A)}(X)+\alpha^{(A)}\right] \prod_{i=1}^{N} \psi_{i}\left(x_{i}\right), \quad \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1} \tag{3.21b}
\end{equation*}
$$

Note that we know that g has the form (3.20) with determined nonzero exponentials $\psi_{1}, \ldots, \psi_{N+1}$. Assuming that A has the form (3.21a), it follows from (3.16) and the inductive hypothesis that

$$
\begin{gather*}
B\left(x_{1}, \ldots, x_{N}\right)= \\
=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\right] \times \tag{3.22}\\
\times \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}},
\end{gather*}
$$

for the same $\left\{p_{1}, \ldots, p_{N-k}\right\}$ and $\left\{r_{1}, \ldots, r_{k}\right\}$ as in (3.21a). Recalling that $\psi_{N+1}(x) \not \equiv \psi_{N+1}(x)^{-1}$, we define $r_{k+1}:=N+1$. Then (3.5), (3.21a),
(3.22), (3.20) and (3.17) give (3.3a) for $n=N+1$, as soon as we define

$$
\begin{array}{ll}
S_{\sigma_{1}, \ldots, \sigma_{k}, 1}:=S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}, & S_{\sigma_{1}, \ldots, \sigma_{k},-1}:=S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}, \\
\alpha_{\sigma_{1}, \ldots, \sigma_{k}, 1}:=\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}, & \alpha_{\sigma_{1}, \ldots, \sigma_{k},-1}:=\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)} .
\end{array}
$$

Similarly, if A is given by (3.21b), we get a solution of the form (3.3b).
Case 3. Suppose finally that f has the form (3.6). Substituting (3.6) into (GRE) and simplifying, using the additivity of A_{N+1} in its last variable and the fact that $\psi_{N+1}(x) \equiv \psi_{N+1}(x)^{-1} \not \equiv 1$, we deduce that

$$
\begin{align*}
& 2 \sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1}\left[A_{N+1}\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}, x_{N+1}\right)+\right. \\
& \tag{3.23}\\
& \left.\quad+B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)\right] \psi_{N+1}\left(x_{N+1}\right) \psi_{N+1}\left(y_{N+1}\right)+2^{N+1} \gamma= \\
& = \\
& \left\{\left[A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)+\right.\right. \\
& \left.\left.\quad+B\left(x_{1}, \ldots, x_{N}\right)\right] \psi_{N+1}\left(x_{N+1}\right)+\gamma\right\} g(Y)+h(Y)
\end{align*}
$$

Again, considerations of linear independence lead to

$$
\begin{align*}
& \sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} A_{N+1}\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}, x_{N+1}\right)= \tag{3.24}\\
& =A_{N+1}(X) g(Y)\left(2 \psi_{N+1}\left(y_{N+1}\right)\right)^{-1}
\end{align*}
$$

Suppose that $A_{N+1} \neq 0$. Applying the induction hypothesis, we conclude similar to Case 2 that

$$
\begin{equation*}
g(Y)=\prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right]\left[2 \psi_{N+1}\left(y_{N+1}\right)\right] \tag{3.25}
\end{equation*}
$$

and that either

$$
\begin{align*}
& A_{N+1}\left(x_{1}, \ldots, x_{N+1}\right)= \\
& =\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}} ; x_{N+1}\right)+\right. \tag{3.26a}\\
& \left.+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{N+1}\right)\right] \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}},
\end{align*}
$$

or

$$
\begin{equation*}
A_{N+1}(X)= \tag{3.26b}
\end{equation*}
$$

$$
=\left[S^{(A)}\left(x_{1}, \ldots, x_{N} ; x_{N+1}\right)+\alpha^{(A)}\left(x_{N+1}\right)\right] \prod_{i=1}^{N} \psi_{i}\left(x_{i}\right), \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1}
$$

where each $S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}$ is a SMAF of order $N-k$ in the first $N-k$ variables and additive in the last variable, $S^{(A)}$ is a SMAF of order N in the first N variables and additive in the last variable, and $\alpha^{(A)}$ and each $\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}$ are additive.

Since $\psi_{N+1} \neq 1$, then linear independence, (3.23), and (3.25) draw also

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)= \tag{3.27}\\
=B\left(x_{1}, \ldots, x_{N}\right) \prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right], \\
h(Y)=\gamma\left\{2^{N+1}-g(Y)\right\} . \tag{3.28}
\end{gather*}
$$

Similar to Case 2, (3.27) leads to the form (3.22) for B with the same $\left\{p_{1}, \ldots, p_{N-k}\right\}$ and $\left\{r_{1}, \ldots, r_{k}\right\}$ as in (3.26). From (3.22), (3.26), (3.6), (3.25) and (3.28), we arrive at solution (3.3) again for $n=N+1$, as soon as we define $p_{N-k+1}:=N+1$,

$$
\begin{gathered}
S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{N-k+1}}\right):=S_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}} ; x_{N+1}\right)+ \\
+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(A)}\left(x_{N+1}\right)+S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)
\end{gathered}
$$

and $\alpha_{\sigma_{1}, \ldots, \sigma_{k}}:=\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}$, for each $\sigma_{1}, \ldots, \sigma_{k}= \pm 1$.
The only other possibility is that $A_{N+1}=0$. Now (3.6) takes the form

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{N+1}\right)=B\left(x_{1}, \ldots, x_{N}\right) \psi_{N+1}\left(x_{N+1}\right)+\gamma, \tag{3.29}
\end{equation*}
$$

with $\psi_{N+1}(\cdot)=\psi_{N+1}(\cdot)^{-1} \neq 1$. Here we know that $B \neq 0$, since f is nonconstant. We show that the solution of (GRE) is of the form (3.3).

Consider (3.23) with $A_{N+1}=0$. Since ψ_{N+1} and 1 are linearly independent, we find that

$$
\begin{gather*}
\sum_{\sigma_{1}, \ldots, \sigma_{N}= \pm 1} B\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{N} y_{N}^{\sigma_{N}}\right)= \tag{3.30}\\
=B\left(x_{1}, \ldots, x_{N}\right) g(Y)\left(2 \psi_{N+1}\left(y_{N+1}\right)\right)^{-1}
\end{gather*}
$$

and that

$$
h(Y)=\gamma\left[2^{N+1}-g(Y)\right],
$$

the latter of which is in agreement with a solution of type (3.3) for $n=$ $N+1$. Applying the induction hypothesis to (3.30), we deduce that the solution must be among three possible forms.

The first possibility is that B is a nonzero constant α and
$g(Y)\left[2 \psi_{N+1}\left(y_{N+1}\right)\right]^{-1} \equiv 2^{N}$. In this case, (3.29) shows that we have $f(X)=\alpha \psi_{N+1}\left(x_{N+1}\right)+\gamma$, a solution of type (3.3).

The second possibility is that $B(X)=S\left(x_{1}, \ldots, x_{N}\right)+\alpha$ and $g(Y)\left[2 \psi_{N+1}\left(y_{N+1}\right)\right]^{-1} \equiv 2^{N}$. By (3.29), we again have a solution of the form (3.3).

The third and final possibility is that either

$$
\begin{gathered}
B(X)=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\left(x_{p_{1}}, \ldots, x_{p_{N-k}}\right)+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}^{(B)}\right] \times \\
\quad \times \prod_{i=1}^{N-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}
\end{gathered}
$$

or

$$
B(X)=\left[S^{(B)}\left(x_{1}, \ldots, x_{N}\right)+\alpha\right] \prod_{i=1}^{N} \psi_{i}\left(x_{i}\right) \quad \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1}
$$

and

$$
g(Y)\left[2 \psi_{N+1}\left(y_{N+1}\right)\right]^{-1}=\prod_{i=1}^{N}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right] .
$$

Again, (3.29) shows that f and g have the form specified in (3.3) for $n=N+1$.

This exhausts all possible cases. Since the converse is easy to check, this concludes the proof of the theorem.

4. General solution of (GRH)

We solve (GRH) by showing first that any f satisfying (GRH) satisfies also (GRE).

Lemma 2. If $f, p, q: \mathbf{G}_{1} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$ satisfy (GRH), then f, g, h satisfy (GRE) with g, h given by

$$
\begin{gather*}
g(Y)=\prod_{k=1}^{n}\left\{p\left[y_{k}\right]-2(n-1)\right\} \tag{4.1a}\\
h(Y)=\sum_{k=1}^{n} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\},
\end{gather*}
$$

where $\left[y_{k}\right]$ represents $\left(e_{1}, e_{2}, \ldots, e_{k-1}, y_{k}, e_{k+1}, \ldots, e_{n}\right)$.
Proof. First, assuming that f, p, q satisfy (GRH), put $y_{i}=e_{i}(i \neq k)$ to get

$$
\begin{align*}
& \sum_{\sigma_{k}= \pm 1} f\left(x_{1}, \ldots, x_{k-1}, x_{k} y_{k}^{\sigma_{k}}, x_{k+1}, \ldots, x_{n}\right)= \tag{4.2}\\
& =f\left(x_{1}, \ldots, x_{n}\right)\left\{p\left[y_{k}\right]-2(n-1)\right\}+q\left[y_{k}\right]
\end{align*}
$$

for each fixed $k \in\{1, \ldots, n\}$.
Next, we establish by induction on j that

$$
\begin{align*}
& \quad \sum_{\sigma_{1}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right)= \\
& \quad=\sum_{\sigma_{j}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1}, \ldots, x_{j-1}, x_{j} y_{j}^{\sigma_{j}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right) \times \tag{4.3}\\
& \times \prod_{i=1}^{j-1}\left\{p\left[y_{i}\right]-2(n-1)\right\}+\sum_{k=1}^{j-1} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\},
\end{align*}
$$

for each $j=1, . ., n$. For $j=1,(4.3)$ is an identity. Suppose that (4.3) holds for $j=J \in\{1, \ldots, n-1\}$. Applying (4.2), we find the right side of (4.3) can be written as

$$
\sum_{\sigma_{J+1}, \ldots, \sigma_{n}= \pm 1} \sum_{\sigma_{J}= \pm 1} f\left(x_{1}, \ldots, x_{J-1}, x_{J} y_{J}^{\sigma_{J}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right) \prod_{i=1}^{J-1}\left\{p\left[y_{i}\right]-2(n-1)\right\}
$$

$$
\begin{aligned}
& +\sum_{k=1}^{J-1} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\} \\
= & \sum_{\sigma_{J+1}, \ldots, \sigma_{n}= \pm 1}\left\{f\left(x_{1}, \ldots, x_{J}, x_{J+1} y_{J+1}^{\sigma_{J+1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right)\left\{p\left[y_{J}\right]-2(n-1)\right\}\right. \\
& \left.+q\left[y_{J}\right]\right\} \prod_{i=1}^{J-1}\left\{p\left[y_{i}\right]-2(n-1)\right\}+\sum_{k=1}^{J-1} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\} \\
= & \sum_{\sigma_{J+1}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1}, \ldots, x_{J}, x_{J+1} y_{J+1}^{\sigma_{J+1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right) \prod_{i=1}^{J}\left\{p\left[y_{i}\right]-2(n-1)\right\} \\
& +2^{n-J} q\left[y_{J}\right] \prod_{i=1}^{J-1}\left\{p\left[y_{i}\right]-2(n-1)\right\}+\sum_{k=1}^{J-1} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\},
\end{aligned}
$$

which gives (4.3) for $j=J+1$. Thus (4.3) is valid for $j=1, . ., n$.
Finally, observe that (4.3) for $j=n$ is

$$
\begin{aligned}
& \quad \sum_{\sigma_{1}, \ldots, \sigma_{n}= \pm 1} f\left(x_{1} y_{1}^{\sigma_{1}}, \ldots, x_{n} y_{n}^{\sigma_{n}}\right)= \\
& =\sum_{\sigma_{n}= \pm 1} f\left(x_{1}, \ldots, x_{n-1}, x_{n} y_{n}^{\sigma_{n}}\right) \prod_{i=1}^{n-1}\left\{p\left[y_{i}\right]-2(n-1)\right\}+ \\
& \quad+\sum_{k=1}^{n-1} 2^{n-k} q\left[y_{k}\right] \prod_{i=1}^{k-1}\left\{p\left[y_{i}\right]-2(n-1)\right\} .
\end{aligned}
$$

Applying (4.2) once more (for $k=n$) on the right hand side of this equation, and defining g, h by (4.1a) and (4.1b), we have (GRE). This finishes the proof.

Now we are ready for the second main result, which is the following.
Theorem 2. The general solution $f, p, q: \mathbf{G}_{1} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$ of (GRH), with f satisfying the factorization condition (FC) in each variable, is given by

$$
\begin{equation*}
f(X)=S(X)+\alpha+\sum_{i=1}^{n} Q_{i}\left(x_{i}\right), \quad p(Y)=2 n, \quad q(Y)=2 \sum_{i=1}^{n} Q_{i}\left(y_{i}\right) \tag{4.4}
\end{equation*}
$$

$$
\begin{align*}
& \left\{\begin{array}{l}
f(X)=\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{n-k}}\right)+\right. \\
\\
\left.\quad+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\right] \prod_{i=1}^{n-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}+\gamma \\
p(Y)=
\end{array} \sum_{i=1}^{n}\left[\psi_{i}\left(y_{i}\right)+\psi_{i}\left(y_{i}\right)^{-1}\right], \quad q(Y)=\gamma[2 n-p(Y)] \$\right. \tag{4.6a}\\
& \left\{\begin{array}{l}
f(X)=[S(X)+\alpha] \prod_{i=1}^{n} \psi_{i}\left(x_{i}\right)+\gamma, \\
p(Y)=2 \sum_{i=1}^{n} \psi_{i}\left(y_{i}\right) \not \equiv 2 n, \\
\quad q(Y)=\gamma[2 n-p(Y)], \quad \psi_{i}(\cdot)=\psi_{i}(\cdot)^{-1}
\end{array}\right. \tag{4.6~b}
\end{align*}
$$

where k is a fixed integer $(1 \leq k \leq n), \alpha, \gamma$ and $\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\left(\sigma_{1}, \ldots, \sigma_{k}= \pm 1\right)$ are arbitrary constants, S and $S_{\sigma_{1}, \ldots, \sigma_{k}}\left(\sigma_{1}, \ldots, \sigma_{k}= \pm 1\right)$ are SMAF's of order n and $n-k$, respectively, Q_{i} is quadratic and ψ_{i} is a nonzero exponential $(1 \leq i \leq n)$, $\psi_{p_{i}}(i=1,2, \ldots, n-k)$ satisfies also $\psi_{p_{i}}(x) \equiv \psi_{p_{i}}(x)^{-1}$, $\psi_{r_{j}}(j=1,2, \ldots, k)$ satisfies also $\psi_{r_{j}}(x) \not \equiv \psi_{r_{j}}(x)^{-1}$, and $\{1,2, \ldots, n\}$ is the (disjoint) union of the sets $\left\{p_{1}, \ldots, p_{n-k}\right\}$ and $\left\{r_{1}, \ldots, r_{k}\right\}$.

Here again we have adopted the convention (C1) in (4.6a) (cf. Theorem 1).

Proof. If f satisfies (GRH), then Lemma 2 shows that it also satisfies an equation of the form (GRE). Since f also satisfies (FC), we may apply Theorem 1 to obtain the possible forms of f. We consider the three forms of f case by case.

First, suppose f is constant, as in (3.1). Substituting $f(X)=\gamma$ into (GRH), we get $2 n \gamma=\gamma g(Y)+h(Y)$, which gives solution (4.4). Henceforth, we assume that f is nonconstant.

Secondly, suppose that f has the form given in (3.2). Inserting this into (GRH) and simplifying, we arrive at

$$
\begin{align*}
& 2 n {\left[S(X)+\alpha+\sum_{i=1}^{n} Q_{i}\left(x_{i}\right)\right]+2 \sum_{i=1}^{n} Q_{i}\left(y_{i}\right)=} \tag{4.7}\\
&=\left[S(X)+\alpha+\sum_{i=1}^{n} Q_{i}\left(x_{i}\right)\right] g(Y)+h(Y)
\end{align*}
$$

where we have used the facts that S is a SMAF of order n and that Q_{i} ($i=1,2, \ldots, n$) is quadratic. Since f is nonconstant, at least one of the functions S, Q_{1}, \ldots, Q_{n} must be nonzero. Thus, by a linear independence argument, we obtain from (4.7) that $g(Y)=2 n$ and $h(Y)=2 \sum_{i=1}^{n} Q_{i}\left(y_{i}\right)$. That is, we have solution (4.5).

Finally, suppose that f is as in (3.3). Substituting form of f from (3.3a) into (GRH) and simplifying, we come to

$$
\begin{align*}
& \sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{n-k}}\right)+\right. \tag{4.8}\\
& \left.\quad+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\right] \prod_{i=1}^{n-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}\left\{\sum_{i=1}^{n-k} 2 \psi_{p_{i}}\left(y_{p_{i}}\right)+\right. \\
& \left.\quad+\sum_{j=1}^{k}\left[\psi_{r_{j}}\left(y_{r_{j}}\right)+\psi_{r_{j}}\left(y_{r_{j}}\right)^{-1}\right]\right\}+2 n \gamma \\
& =\left\{\begin{array}{l}
\sum_{\sigma_{1}, \ldots, \sigma_{k}= \pm 1}\left[S_{\sigma_{1}, \ldots, \sigma_{k}}\left(x_{p_{1}}, \ldots, x_{p_{n-k}}\right)+\right. \\
\left.\left.\quad+\alpha_{\sigma_{1}, \ldots, \sigma_{k}}\right] \prod_{i=1}^{n-k} \psi_{p_{i}}\left(x_{p_{i}}\right) \prod_{j=1}^{k} \psi_{r_{j}}\left(x_{r_{j}}\right)^{\sigma_{j}}+\gamma\right\} g(Y)+h(Y) .
\end{array}\right.
\end{align*}
$$

Here we have used the facts that $S_{\sigma_{1}, \ldots, \sigma_{k}}\left(\sigma_{1}, \ldots, \sigma_{k}= \pm 1 ; 1 \leq k \leq n\right)$ is a SMAF of order $n-k$, that $\psi_{p_{i}}(x) \equiv \psi_{p_{i}}(x)^{-1}(i=1, \ldots, n-k)$, and that each ψ_{i} is nonzero exponential $(i=1, \ldots, n)$. Again using linear independence considerations, we conclude from (4.8) that

$$
g(Y)=\sum_{i=1}^{n-k} 2 \psi_{p_{i}}\left(y_{p_{i}}\right)+\sum_{j=1}^{k}\left[\psi_{r_{j}}\left(y_{r_{j}}\right)+\psi_{r_{j}}\left(y_{r_{j}}\right)^{-1}\right]
$$

and that $h(Y)=2 n \gamma-\gamma g(Y)$.
Thus we have (4.6a). Similarly, if f has the form in (3.3b), then we arrive at (4.6b). This completes the proof.

5. Some further results

We complete the link between (GRE) and (GRH) with the following converse to Lemma 2.

Lemma 3. If $f, g, h: \mathbf{G}_{1} \times \mathbf{G}_{2} \times \cdots \times \mathbf{G}_{n} \rightarrow \mathbf{K}$ satisfy (GRE) then f, p, q satisfy (GRH) with p, q given by

$$
\begin{align*}
& p(Y)=2^{1-n} \sum_{i=1}^{n} g\left[y_{i}\right], \tag{5.1a}\\
& q(Y)=2^{1-n} \sum_{i=1}^{n} h\left[y_{i}\right], \tag{5.1b}
\end{align*}
$$

where, as before, $\left[y_{i}\right]=\left(e_{1}, \ldots, e_{i-1}, y_{i}, e_{i+1}, \ldots, e_{n}\right)$.
Proof. For each fixed $i \in\{1, \ldots, n\}$, setting $y_{j}=e_{j}$ for all $j \neq i$ in (GRE), we get

$$
2^{n-1} \sum_{\sigma_{i}= \pm 1} f\left(x_{1}, \ldots, x_{i-1}, x_{i} y_{i}^{\sigma_{i}}, x_{i+1}, \ldots, x_{n}\right)=f(X) g\left[y_{i}\right]+h\left[y_{i}\right]
$$

Summing over i, we have

$$
\begin{gathered}
2^{n-1} \sum_{i=1}^{n} \sum_{\sigma_{i}= \pm 1} f\left(x_{1}, \ldots, x_{i-1}, x_{i} y_{i}^{\sigma_{i}}, x_{i+1}, \ldots, x_{n}\right)= \\
=f(X) \sum_{i=1}^{n} g\left[y_{i}\right]+\sum_{i=1}^{n} h\left[y_{i}\right]
\end{gathered}
$$

which is (GRH) with p, q given by (5.1a), (5.1b).
This lemma provides a new way of proving Theorem 2. Namely, for nonconstant f, we apply the formulas (5.1a), (5.1b) to (3.2)-(3.3), obtaining thereby (4.5)-(4.6), respectively.

It is a straightforward job to work out the continuous solutions of (GRE) and (GRH) on \mathfrak{R}^{n}, based on Theorems 1 and 2. Such continuous quadratic, additive, and nonzero exponential functions from \mathfrak{R} into \mathbb{C} (the field of complex numbers) are of the forms

$$
Q(x)=b x^{2}, \quad A(x)=a x, \quad \psi(x)=e^{c x}
$$

respectively, for complex constants a, b, c. We call any function $P: \mathfrak{R}^{n} \rightarrow \mathbb{C}$ of the form

$$
\begin{gathered}
P\left(x_{1}, \ldots, x_{n}\right)=a_{12 \cdots n} \prod_{i=1}^{n} x_{i}+a_{12 \cdots n-1} \prod_{i=1}^{n-1} x_{i}+\cdots+ \\
+a_{23 \cdots n} \prod_{i=2}^{n} x_{i}+\cdots+a_{n} x_{n}+a_{0}
\end{gathered}
$$

a sum of multilinear functions (SMULF) of degree n. It can be shown [4] that if $S: \mathfrak{R}^{n} \rightarrow \mathbb{C}$ is a regular SMAF of order n, then for any constant $\alpha, S+\alpha$ is a SMULF of degree n. Moreover, it is also true that f is continuous in (3.2) and (3.3), (4.5) and (4.6) if and only if each SMAF, each quadratic Q_{i}, and each nonzero exponential ψ_{i} is continuous.

Therefore, one obtains the continuous versions of Theorems 1 and 2 on \Re^{n} by replacing each SMAF by an appropriate SMULF, each $Q_{i}(x)$ by $b_{i} x^{2}$, each $\psi_{p_{i}}$ by 1 , and each $\psi_{r_{j}}(x)$ by $e^{c_{r_{j}} x}\left(c_{r_{j}} \neq 0\right)$.

It is also possible (but rather tedious) to work out explicit forms of the real-valued solutions of (GRE) and (GRH) on \mathfrak{R}^{n}. Since \mathfrak{R} is not quadratically closed, Theorems 1 and 2 do not immediately apply in this case. One may proceed by screening the complex-valued solutions to obtain those which are real-valued. As an illustration, we describe the process for finding the continuous real-valued solutions of (GRE) for $n=2$. It turns out that the Q_{i} 's and the SMULF's have the same form as above, but with real constants. From (3.1) and (3.2), we obtain respectively

$$
\begin{gathered}
\left\{\begin{array}{l}
f\left(x_{1}, x_{2}\right)=\gamma \\
g \quad \text { arbitrary real-valued function } \\
h\left(y_{1}, y_{2}\right)=\gamma[4-g(Y)]
\end{array}\right. \\
\left\{\begin{array}{l}
f\left(x_{1}, x_{2}\right)=a_{12} x_{1} x_{2}+a_{1} x_{1}+a_{2} x_{2}+a_{0}+b_{1} x_{1}^{2}+b_{2} x_{2}^{2} \\
g\left(y_{1}, y_{2}\right)=4 \\
h\left(y_{1}, y_{2}\right)=4\left(b_{1} x_{1}^{2}+b_{2} x_{2}^{2}\right)
\end{array}\right.
\end{gathered}
$$

where all constants are real. Case (3.3b) is impossible, since each $\psi_{i}=1$ but $g(Y) \not \equiv 2^{n}$. The situation for (3.3a) is more complicated. Each $\psi_{p_{i}}$ is equal to 1 , but there are two alternatives for each $\psi_{r_{j}}$. Because g must be real-valued, when $\psi(x) \not \equiv \psi(x)^{-1}$, we have either $\psi(x)=e^{b x}$ for real $b(\neq 0)$ or $\psi(x)=\cos b x+\mathbf{i} \sin b x$ for some real $b(\neq 0)$, where \mathbf{i} is the
imaginary unit. When $k=1$, the solutions are given by

$$
\begin{aligned}
& \left\{\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\left(a_{1} x_{2}+\alpha_{1}\right) e^{c x_{1}}+\left(a_{2} x_{2}+\alpha_{2}\right) e^{-c x_{1}}+\gamma \\
g\left(y_{1}, y_{2}\right) & =2\left(e^{c y_{1}}+e^{-c y_{1}}\right) \\
h\left(y_{1}, y_{2}\right) & =\gamma[4-g(Y)]
\end{aligned}\right. \\
& \left\{\begin{aligned}
f\left(x_{1}, x_{2}\right) & =\left(a_{3} x_{2}+\alpha_{3}\right) \cos b x_{1}+\left(a_{4} x_{2}+\alpha_{4}\right) \sin b x_{1}+\gamma \\
g\left(y_{1}, y_{2}\right) & =4 \cos b y_{1} \\
h\left(y_{1}, y_{2}\right) & =\gamma[4-g(Y)]
\end{aligned}\right.
\end{aligned}
$$

where all constants are real, and two similar forms obtained by interchanging x_{1} with x_{2} and y_{1} with y_{2}. Finally, when $k=2$ in (3.3a) there are again four forms, since each of ψ_{1} and ψ_{2} can have either of the forms $e^{b x}$ or $e^{i b x}$ for some real $b(\neq 0)$.

We conclude the paper with an example illustrating the non-equivalence of (GRE) and (GRH) when char $\mathbf{K}=2$.

Example. Let $\mathbf{G}_{1}=\left(\mathbf{Z}_{2},+\right), \mathbf{G}_{2}=(\mathfrak{R},+), \mathbf{K}=\mathbf{Z}_{2}$, and define f : $\mathbf{G}_{1} \times \mathbf{G}_{2} \rightarrow \mathbf{K}$ by

$$
f\left(x_{1}, x_{2}\right)= \begin{cases}1 & \text { if } x_{2} \neq 0 \\ 0 & \text { if } x_{2}=0\end{cases}
$$

Then the left side of (GRE) is

$$
\begin{aligned}
f\left(x_{1}+y_{1}, x_{2}+y_{2}\right) & +f\left(x_{1}-y_{1}, x_{2}+y_{2}\right)+ \\
& +f\left(x_{1}+y_{1}, x_{2}-y_{2}\right)+f\left(x_{1}-y_{1}, x_{2}-y_{2}\right) \\
& =2 f\left(x_{1}+y_{1}, x_{2}+y_{2}\right)+2 f\left(x_{1}+y_{1}, x_{2}-y_{2}\right)=0
\end{aligned}
$$

so f satisfies (GRE) with $g=h=0$. But f does not satisfy (GRH) at all. Indeed, suppose that f did satisfy (GRH) with some p, q. Then, as $f\left(x_{1}+y_{1}, x_{2}\right)+f\left(x_{1}-y_{1}, x_{2}\right)=2 f\left(x_{1}+y_{1}, x_{2}\right)=0,($ GRH $)$ would become

$$
\begin{equation*}
f\left(x_{1}, x_{2}+y_{2}\right)+f\left(x_{1}, x_{2}-y_{2}\right)=f\left(x_{1}, x_{2}\right) p\left(y_{1}, y_{2}\right)+q\left(y_{1}, y_{2}\right) \tag{5.2}
\end{equation*}
$$

Putting $x_{2}=0$ in (5.2), we obtain $q\left(y_{1}, y_{2}\right)=0$. Using this with $y_{2}=1$ in (5.2), we get

$$
f\left(x_{1}, x_{2}+1\right)+f\left(x_{1}, x_{2}-1\right)=f\left(x_{1}, x_{2}\right) p\left(y_{1}, 1\right)
$$

But this equation yields, with $x_{2}=1,2$, respectively,

$$
p\left(y_{1}, 1\right)=1 \quad \text { and } \quad p\left(y_{1}, 1\right)=0
$$

a contradiction.

270J.K. Chung, B.R. Ebanks, C.T. Ng, P.K. Sahoo and W.B. Zeng : On generalized ...
Acknowledgments. The research leading to the results contained herein was supported by grants from the University of Louisville and NSERC of Canada.

References

[1] J. Aczél, J. K. Chung and C. T. Ng, Symmetric second differences in product form on groups, Topics in Mathematical Analysis (Th.M. Rassias, ed.), World Scientific Publ. Co., Singapore, 1989, pp. 1-22.
[2] J. Aczél, H. Haruki, M. A. McKiernan and G. N. Sakovic, General and regular solutions of functional equations characterizing harmonic polynomials, $A e-$ quationes Math. 1 (1968), 37-53.
[3] J. K. Chung, B. R. Ebanks, C. T. Ng and P. K. Sahoo, On a quadratic-trigonometric functional equation and some applications, Transactions Amer. Math. Soc. 347 (1995), 1131-1161.
[4] L. Székelyhidi, Convolution Type Functional Equations on Topological Abelian Groups, World Scientific Publ. Co., Singapore/NewJersey/London/Hong Kong, 1991.

```
J. K. CHUNG
DEPARTMENT OF APPLIED MATHEMATICS
SOUTH CHINA UNIVERSITY OF TECHNOLOGY
GUANGZHOU, PEOPLE'S REPUBLIC OF CHINA
B. R. EBANKS
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292, USA
CURRENT ADDRESS:
DEPARTMENT OF MATHEMATICS
MARSHALL UNIVERSITY
HUNTINGTON, WEST VIRGINIA 25755, USA
C. T. NG
DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF WATERLOO
WATERLOO, ONTARIO, N2L 3G1, CANADA
P. K. SAHOO
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292, USA
W. B. ZENG
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292, USA
```

(Received June 14, 1994)

