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1. Introduction

In [2], the functional equations

(RE)
f(x1 + y1, x2 + y2) + f(x1 + y1, x2 − y2)+

+f(x1 − y1, x2 + y2) + f(x1 − y1, x2 − y2) = 4 f(x1, x2)

and

(RH)
f(x1 + y1, x2) + f(x1 − y1, x2)+

+f(x1, x2 + y2) + f(x1, x2 − y2) = 4 f(x1, x2),

among others, were considered for f mapping R2 into R (the reals). For
obvious geometric reasons, these equations are referred to as the rectan-
gular and rhombic equations, respectively. Their general solutions are the
same: f(x1, x2) = A(x1, x2) + B(x1) + C(x2) + α, where A is an arbi-
trary biadditive map, B and C are arbitrary additive maps, and α is an
arbitrary constant.

In the present paper, we generalize those results in three ways. For
one thing, we consider a more general right hand side. Also, we generalize
the domain to a product of groups and the range to a field. And thirdly,
we deal with functions of any finite number of variables. Specifically, we
consider the equations

(GRE)

∑
σ1,...,σn=±1

f(x1y
σ1
1 , ..., xnyσn

n ) =

= f(x1, ..., xn) g(y1, ..., yn) + h(y1, ..., yn)
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and

(GRH)

n∑

i=1

∑
σi=±1

f(x1, ..., xi−1, xiy
σi
i , xi+1, ..., xn) =

= f(x1, ..., xn) p(y1, ..., yn) + q(y1, ..., yn)

for f, g, h, p, q : G1×G2×· · ·×Gn → K, where each Gi (i = 1, 2..., n) is a
group and K is a quadratically closed (commutative) field of characteristic
different from 2.

In Section 3 of the paper, we find the general solution of the general-
ized rectangular equation (GRE). In Section 4, we show that the class of
all f satisfying the generalized rhombic equation (GRH) is identical with
the class of all f satisfying a generalized rectangular equation. Then the
result of Section 3 is invoked to obtain the general solution of the general-
ized rhombic equation. In Section 5, we complete the link between (GRE)
and (GRH) and give the regular solutions of these equations.

2. Some preliminaries

The proof of the main results are by induction on n, the number of
variables. Hence our starting point is provided by the following result,
which covers the initial step n = 1.

Lemma 1. The general solution f, g, h, : G → K of

(2.1) f(xy) + f(xy−1) = f(x) g(y) + h(y)

with f satisfying the factorization condition

(FC) f(xyz) = f(xzy)

is provided by

f(x) = γ, g arbitrary, h(y) = γ[2− g(y)];(2.2)

f(x) = Q(x) + A(x) + γ, g(y) = 2, h(y) = 2Q(y);(2.3)

f(x) = α ψ(x) + β ψ(x)−1 + γ, g(y) = ψ(y) + ψ(y)−1(2.4)

h(y) = γ {2− [ψ(y) + ψ(y)−1]}, ψ(y) 6≡ ψ(y)−1;

or by

(2.5)
f(x) = [A(x) + α]ψ(x) + γ, g(y) = 2 ψ(y)

h(y) = 2 γ [1− ψ(y)], ψ(y) ≡ ψ(y)−1 6≡ 1,
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where α, β, γ ∈ K are arbitrary constants, Q : G → K is a quadratic
function:

Q(xy) + Q(xy−1) = 2Q(x) + 2Q(y),

A : G → K is an additive function:

A(xy) = A(x) + A(y),

and ψ : G → K is a nonzero exponential function:

ψ(xy) = ψ(x)ψ(y), ψ 6≡ 0.

Proof. Equation (2.1) is a special case of an equation treated in
Theorem 3.1 in [3]. An exhaustive case-by-case reduction of the solutions
provided there leads to (2.2)–(2.5).

Remark 1. The condition (FC) essentially allows us to operate as if the
function is defined on the abelian group G/C, where C is the commutator
subgroup of G (see [4, p. 136]).

Remark 2. Any such quadratic function Q as above can be described
as the diagonal of a biadditive function A12 : G×G → K (see [1]). We
choose the quadratic nomenclature and notation here to avoid confusion
with the many other multiadditive functions which will appear.

In the next section, we shall solve the generalized rectangular equation
(GRE) under the supposition that f satisfies the factorization condition
(FC) in each variable. In describing the solutions of (GRE), the following
definition will be helpful. Any function S : G1 ×G2 × · · · ×Gn → K of
the form

S(x1, x2, ..., xn) = A12···n(x1, x2, ..., xn)+

+
[
A12···(n−1)(x1, x2, ..., xn−1) + · · ·+

+A23···n(x2, x3, ..., xn)]+

+ · · ·+ [A1(x1) + · · ·+ An(xn)] ,

where each Aj1···jk
: Gj1 × · · · × Gjk

→ K (1 ≤ j1 < · · · < jk ≤ n)
is additive in each variable, is termed a sum of multiadditive functions
(SMAF) of order n. For example, any function of the form A12(x1, x2) +
A1(x1) + A2(x2) + α, where A12 is biadditive and A1 and A2 are additive,
could be written as S(x1, x2) + α, where S is a SMAF of order 2.
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3. General solution of (GRE)

Now we are ready to establish the first main result.

Theorem 1. The general solution f, g, h : G1 × · · · × Gn → K of
(GRE) with f satisfying (FC) in each variable, is given by (with X =
(x1, x2, ..., xn), Y = (y1, y2, ..., yn))

(3.1) f(X) = γ, g arbitrary, h(Y ) = γ [2n − g(Y )],

(3.2) f(X) = S(X) + α +
n∑

i=1

Qi(xi),

g(Y ) = 2n, h(Y ) = 2n
n∑

i=1

Qi(yi),

(3.3a)





f(X) =
∑

σ1,...,σk=±1

[
Sσ1,...,σk

(xp1 , ..., xpn−k
)

+ασ1,...,σk
]
n−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj + γ

g(Y ) =
n∏

i=1

[
ψi(yi) + ψi(yi)−1

]
, h(Y ) = γ [2n − g(Y )]

(3.3b)





f(X) = [S(x1, ..., xn) + α]
n∏

i=1

ψi(xi) + γ,

ψi(·) = ψi(·)−1, i = 1, 2, ..., n,

g(Y ) = 2n
n∏

i=1

ψi(yi) 6≡ 2n, h(Y ) = γ [2n − g(Y )] ,

where k is a fixed integer (1 ≤ k ≤ n), α, γ and ασ1,...,σk
(σ1, ..., σk = ±1)

are arbitrary constants, S and Sσ1,...,σk
(σ1, ..., σk = ±1) are SMAF’s of

order n and n−k, respectively, Qi is quadratic and ψi is a nonzero exponen-
tial (i = 1, 2, ..., k), ψpi (i = 1, 2, ..., n− k) satisfies also ψpi(·) = ψpi(·)−1,
ψrj (j = 1, 2, ..., k) satisfies also ψrj (·) 6= ψrj (·)−1, and {1, 2, ..., n} is the
(disjoint) union of the sets {p1, ..., pn−k} and {r1, ..., rk}.
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Here we have adopted the convention that in (3.3a)

(C1)

Sσ1,...,σk
(xp1 , ..., xpn−k

) := 0

and
n−k∏

i=1

ψpi
(xpi

) := 1 if k = n.

Remark 3. Note that (3.3b) can be included as the special case k = 0
of (3.3a) if we interpret

∑
σ1,...,σk=±1 as a single term and

∏k
j=1 = 1 when

k = 0. The statement and proof of the theorem seem clearer, however, if
we separate this case.

Proof. The proof is by induction on n. For n = 1, it is Lemma 1.
Suppose now that the statement is true for n = N ≥ 1, and consider
(GRE) for n = N + 1.

If f = γ, then (GRE) yields 2nγ = γg(Y ) + h(Y ). This gives solution
(3.1) immediately, and henceforth we assume that f is nonconstant.

Putting yi = ei (the identity of Gi ) for i = 1, 2, ..., N in (GRE), we
get

2N [f(x1, ..., xN , xN+1yN+1) + f(x1, ..., xN , xN+1y
−1
N+1)] =

= f(x1, ..., xN+1)g(e1, ..., eN , yN+1) + h(e1, ..., eN , yN+1).

Since charK 6= 2, this can be written as

f(x1, ..., xN , xN+1yN+1) + f(x1, ..., xN , xN+1y
−1
N+1) =

= f(x1, ..., xN+1)g′(yN+1) + h′(yN+1).

For each fixed (x1, ..., xN ) ∈ G1×· · ·×GN , this is an equation of the form
(2.1). By Lemma 1, f must have one of the following three forms, with
QN+1 quadratic, AN+1 additive in its last variable, and ψN+1 a nonzero
exponential:

f(x1, ..., xN+1) =(3.4)

= QN+1(xN+1) + AN+1(x1, ..., xN+1) + B(x1, ..., xN ),

f(x1, ..., xN+1) = A(x1, ..., xN ) ψN+1(xN+1)+(3.5)

+B(x1, ..., xN )ψN+1(xN+1)−1 + γ with ψN+1(x) 6≡ ψN+1(x)−1,

f(x1, ..., xN+1) = [AN+1(x1, ..., xN+1)+(3.6)

+B(x1, ..., xN )] ψN+1(xN+1) + γ with ψN+1(x) ≡ ψN+1(x)−1 6≡ 1.
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In writing (3.5), we have used implicitly the fact that nonzero exponentials
are independent if distinct.

We consider each of these cases in turn.
Case 1. Substituting the form (3.4) of f into (GRE), we simplify using

the fact that QN+1 is quadratic and AN+1 is additive in its last variable.
Thus we arrive at

2N+1 [QN+1(xN+1) + QN+1(yN+1)]+(3.7)

+2
∑

σ1,...,σN=±1

[AN+1(x1y
σ1
1 , ..., xNyσN

N , xN+1) + B(x1y
σ1
1 , ..., xNyσN

N )]

= [QN+1(xN+1) + AN+1(x1, ..., xN+1) + B(x1, ..., xN )] g(Y ) + h(Y ).

Since QN+1(·), AN+1(x1, ..., xN , ·) and 1 are linearly independent (if non-
zero), we deduce that

(3.7a) 2N+1QN+1(xN+1) = QN+1(xN+1) g(Y ),

∑
σ1,...,σN=±1

AN+1(x1y
σ1
1 , ..., xNyσN

N , xN+1) =(3.7b)

= AN+1(x1, ..., xN+1)
1
2

g(Y ),

∑
σ1,...,σN=±1

B(x1y
σ1
1 , ..., xNyσN

N ) =(3.7c)

= B(x1, ..., xN )
1
2

g(Y ) +
1
2

[
h(Y )− 2N+1 QN+1(yN+1)

]
.

Now let us consider three subcases. First, suppose that g(Y ) ≡ 2N+1.
Then (3.7a,b,c) yields

∑
σ1,...,σN=±1

AN+1(x1y
σ1
1 , ..., xNyσN

N , xN+1) =(3.8a)

= 2N AN+1(x1, ..., xN+1),

∑
σ1,...,σN=±1

B(x1y
σ1
1 , ..., xNyσN

N ) =(3.8b)

= 2N B(x1, ..., xN ) +
1
2

[h(Y )− 2N+1QN+1(yN+1)].
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Equations (3.8a) and (3.8b) are of the form (GRE), to which we can apply
the induction hypothesis. Note that with the particular form of g here,
(3.1) is a special case of (3.2), while (3.3a) and (3.3b) are not possible. (In
the case of (3.3a),

∏N
i=1[ψi(yi) + ψi(yi)−1] ≡ 2N is possible only if ψi = 1

for each i. But this is impossible, since k ≥ 1.) Hence we obtain from
(3.8a) and (3.8b) that

(3.9a) AN+1(x1, ..., xN , xN+1) = SA(x1, ..., xN ; xN+1) + CA(xN+1),

(3.9b) B(x1, ..., xN ) = SB(x1, ..., xN ) + α +
N∑

i=1

Qi(xi),

(3.9c)
1
2

h(Y )− 2NQN+1(yN+1) = 2N
N∑

i=1

Qi(yi),

where SA is a SMAF of order N in its first N variables, SB is a SMAF of
order N , and Qi (i = 1, 2, ..., N) is quadratic.

Moreover, since AN+1 is additive in its last variable, (3.9a) and the
linear independence of SA(x1, ..., xN+1) and CA(xN+1) as functions of
x1, .., xN (if nonzero) show that SA is additive in its last variable and
that CA is additive. Hence, the map S : G1×· · ·×GN+1 → K defined by

S(x1, ..., xN+1) := SA(x1, ..., xN ; xN+1) + CA(xN+1) + SB(x1, ..., xN )

is a SMAF of order N + 1. Together with (3.9a,b,c) and (3.4), this shows
that in this case we have a solution of the form (3.2) for n = N + 1.

Next, suppose that g(Y ) 6≡ 2N+1 and AN+1 = 0. Then by (3.7a) we
have

(3.10) QN+1 = 0.

Now (3.4) reduces to f(x1, ..., xN+1) = B(x1, ..., xN ). Moreover, (3.7c)
(now with QN+1=0) is, for each fixed yN+1, of the form (GRE) with n=N .
Applying the induction hypothesis, since B is nonconstant, we conclude
that B, 1

2g, 1
2h have the forms of f , g, h (respectively) in either (3.2), (3.3a)

or (3.3b) for each yN+1. The first case, (3.2), is impossible as 1
2g(Y ) ≡ 2N

contradicts the hypothesis g(Y ) 6≡ 2N+1. In the second case, the solution
is of the form (3.3a) for n = N +1, with ψN+1 = 1, where pN+1−k := N +1
and each Sσ1,...,σk

(xp1 , ..., xpN+1−k
) := Sσ1,...,σk

(xp1 , ..., xpN−k
). Similarly,

in the third case the solution is of the form (3.3b).
Finally, suppose that g(Y ) 6≡ 2N+1 and AN+1 6= 0. We again get

(3.10) from (3.7a). Furthermore, (3.7b) shows that g(Y ) is independent of
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yN+1. Thus, for each fixed xN+1, (3.7b) is of the form (GRE) for n = N

with h = 0. By induction hypothesis, we deduce that
AN+1(x1, ..., xN , xN+1) must be of the form (3.3a) or (3.3b) in the first N

variables, for each fixed xN+1. We also find that

(3.11)
1
2

g(Y ) =
N∏

i=1

[
ψi(yi) + ψi(yi)−1

] 6≡ 2N

and that γ = 0 in (3.3a), (3.3b). That is, AN+1 is given by

(3.12a)

AN+1(X) =
∑

σ1,...,σk=±1

[
S(A)

σ1,...,σk
(xp1 , ..., xpN−k

, xN+1)+

+α(A)
σ1,...,σk

(xN+1)
] N−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj

or

AN+1(X) =
[
S(A)(x1, ..., xN , xN+1)+(3.12b)

+ α(A)(xN+1)
] N∏

i=1

ψi(xi), ψi(·) = ψi(·)−1, i = 1, 2, ..., N,

where S(A) and S
(A)
σ1,...,σk are SMAF’s of order N and N − k (respectively)

in all variables but the last, and where S(A), S
(A)
σ1,...,σk , α(A) and α

(A)
σ1,...,σk

are additive functions of xN+1.

Using (3.10) and (3.11), we obtain

(3.13)

∑
σ1,...,σN=±1

B(x1y
σ1
1 , ..., xNyσN

N ) =

= B(x1, ..., xN )
N∏

i=1

[
ψi(yi) + ψi(yi)−1

]
+

1
2
h(Y )

from (3.7c). This shows that h(Y ), is independent of yN+1. Applying the
induction hypothesis, we see that B is given by (3.3a) or (3.3b). Moreover,
the form of B corresponds to the form of AN+1 given in (3.12a) or (3.12b),
according to the set of indices {p1, ..., pN−k} for which ψpi(x) ≡ ψpi(xi)−1.
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If AN+1 is given by (3.12a) then B and h are given by

B(X) =
∑

σ1,...,σk=±1

[
S(B)

σ1,...,σk
(xp1 , ..., xpN−k

) + ασ1,...,σk

]
×

×
N−k∏

i=1

ψpi
(xpi

)
k∏

j=1

ψrj
(xrj

)σj + γ,

1
2

h(Y ) = γ
[
2N − g(Y )

]
.

In this case, defining pN−k+1 := N + 1, ψN+1 = 1, and

Sσ1,...,σk
(xp1 , ..., xpN+1−k

) := S(A)
σ1,...,σk

(xp1 , ..., xpN−k
;xN+1)+

+α(A)
σ1,...,σk

(xN+1) + S(B)
σ1,...,σk

(xp1 , ..., xpN−k
),

we deduce from (3.4) that f has the form given by in (3.3a), with n = N+1.
We see that g and h are as given in (3.3a) also.

The other possibility is that AN+1 is given by (3.12b). In the same
manner as the previous case, we find that the solution is of the form (3.3b)
for n = N + 1.

Case 2. Substituting (3.5) for f into (GRE) and simplifying, using
the fact that ψN+1 is nonzero exponential, we find that

(3.14)

∑
σ1,...,σN=±1

[A(x1y
σ1
1 , ..., xNyσN

N )ψN+1(xN+1)

+B(x1y
σ1
1 , ..., xNyσN

N )ψN+1(xN+1)−1] [ψN+1(yN+1)+

+ψN+1(yN+1)−1] + 2N+1 γ = [A(x1, ..., xN ) ψN+1(xN+1)+

+B(x1, ..., xN )ψN+1(xN+1)−1 + γ] g(Y ) + h(Y ).

Since ψN+1(x) 6≡ ψN+1(x)−1, it follows that ψN+1(·), ψN+1(·)−1 and 1
are linearly independent. Thus, we deduce from (3.14) that

∑
σ1,...,σN=±1

A(x1y
σ1
1 , ..., xNyσN

N )×(3.15)

×[ψN+1(yN+1) + ψN+1(yN+1)−1] = A(x1, ..., xN ) g(Y )
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∑
σ1,...,σN=±1

B(x1y
σ1
1 , ..., xNyσN

N )×(3.16)

×[ψN+1(yN+1) + ψN+1(yN+1)−1] = B(x1, ..., xN ) g(Y )

(3.17) 2N+1 γ = γ g(Y ) + h(Y ).

Furthermore, as we have supposed that f is nonconstant, (3.5) shows
that at least one of A or B is nonzero. Suppose, without loss of generality,
that A 6= 0. Then (3.15) (with yN+1 = eN+1) yields

∑
σ1,...,σN=±1

A(x1y
σ1
1 , ..., xNyσN

N ) =(3.18a)

= A(x1, ..., xN )
1
2

g(y1, ..., yN , eN+1)

(3.18b) g(Y ) =
1
2

g(y1, ..., yN , eN+1)
[
ψN+1(yN+1) + ψN+1(yN+1)−1

]
.

By the induction hypothesis, all solutions of (3.18a) must be of the
form (3.1), (3.2), or (3.3). The solution can be of the form (3.1) with A 6= 0
and no h-term only if (cf. (3.15)) 1

2g(y1, ..., yN , eN+1) ≡ 2N . But then by
(3.18b) this solution is a special case of (3.3). Similarly, the solution can be
of the form (3.2) with A 6= 0 and no h-term only if Qi = 0 (i = 1, 2, .., N),
and again such a solution is a special case of (3.3).

Therefore, the solution of (3.18a) must be of the form (3.3) with no
h-term. That is, either

(3.19a)

A(x1, ..., xN ) =

=
∑

σ1,...,σk=±1

[
S(A)

σ1,...,σk
(xp1 , ..., xpN−k

) + α(A)
σ1,...,σk

]
×

×
N−k∏

i=1

ψpi
(xpi

)
k∏

j=1

ψrj (xrj )
σj + γ,

or

(3.19b)

A(x1, ..., xN ) =

=
[
S(A)(x1, ..., xN ) + α(A)

] N∏

i=1

ψi(xi) + γ ψi(·) = ψi(·)−1 ;
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and
1
2

g(y1, ..., yN , eN+1) =
N∏

i=1

[
ψi(yi) + ψi(yi)−1

]
.

It follows from (3.18b) that

(3.20) g(Y ) =
N+1∏

i=1

[
ψi(yi) + ψi(yi)−1

]
.

Moreover, either γ = 0 or g(y1, ..., yN , eN+1) ≡ 2N+1. In the latter case,
(3.20) shows that ψi = 1 (i = 1, 2, .., N). Hence, (3.19a) is impossible and
(3.19b) reduces to A(X) = S(A)(X) + α(A) + γ. Thus (absorbing γ into
α(A) if needed) we may drop γ from (3.19) in either case and write

(3.21a)

A(x1, ..., xN ) =

=
∑

σ1,...,σk=±1

[
S(A)

σ1,...,σk
(xp1 , ..., xpN−k

) + α(A)
σ1,...,σk

]
×

×
N−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj ,

or

(3.21b) A(X) =
[
S(A)(X) + α(A)

] N∏

i=1

ψi(xi), ψi(·) = ψi(·)−1.

Note that we know that g has the form (3.20) with determined nonzero
exponentials ψ1, ..., ψN+1. Assuming that A has the form (3.21a), it follows
from (3.16) and the inductive hypothesis that

(3.22)

B(x1, ..., xN ) =

=
∑

σ1,...,σk=±1

[
S(B)

σ1,...,σk
(xp1 , ..., xpN−k

) + α(B)
σ1,...,σk

]
×

×
N−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj ,

for the same {p1, ..., pN−k} and {r1, ..., rk} as in (3.21a). Recalling that
ψN+1(x) 6≡ ψN+1(x)−1, we define rk+1 := N + 1. Then (3.5), (3.21a),
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(3.22), (3.20) and (3.17) give (3.3a) for n = N + 1, as soon as we define

Sσ1,...,σk,1 := S(A)
σ1,...,σk

, Sσ1,...,σk,−1 := S(B)
σ1,...,σk

,

ασ1,...,σk,1 := α(A)
σ1,...,σk

, ασ1,...,σk,−1 := α(B)
σ1,...,σk

.

Similarly, if A is given by (3.21b), we get a solution of the form (3.3b).

Case 3. Suppose finally that f has the form (3.6). Substituting (3.6)
into (GRE) and simplifying, using the additivity of AN+1 in its last vari-
able and the fact that ψN+1(x) ≡ ψN+1(x)−1 6≡ 1, we deduce that

(3.23)

2
∑

σ1,...,σN=±1

[AN+1(x1y
σ1
1 , ..., xNyσN

N , xN+1)+

+ B(x1y
σ1
1 , ..., xNyσN

N )] ψN+1(xN+1) ψN+1(yN+1) + 2N+1γ =

=
{

[AN+1(x1, ..., xN+1)+

+ B(x1, ..., xN )]ψN+1(xN+1) + γ
}

g(Y ) + h(Y ).

Again, considerations of linear independence lead to

(3.24)

∑
σ1,...,σN=±1

AN+1(x1y
σ1
1 , ..., xNyσN

N , xN+1) =

= AN+1(X) g(Y ) (2ψN+1(yN+1))
−1

.

Suppose that AN+1 6= 0. Applying the induction hypothesis, we con-
clude similar to Case 2 that

(3.25) g(Y ) =
N∏

i=1

[ψi(yi) + ψi(yi)−1] [2ψN+1(yN+1)]

and that either

(3.26a)

AN+1(x1, ..., xN+1) =

=
∑

σ1,...,σk=±1

[
S(A)

σ1,...,σk
(xp1 , ..., xpN−k

;xN+1 )+

+ α(A)
σ1,...,σk

(xN+1)
] N−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj ,
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or

AN+1(X) =(3.26b)

=
[
S(A)(x1, ..., xN ; xN+1) + α(A)(xN+1)

] N∏

i=1

ψi(xi), ψi(·) = ψi(·)−1,

where each S
(A)
σ1,...,σk is a SMAF of order N − k in the first N − k variables

and additive in the last variable, S(A) is a SMAF of order N in the first
N variables and additive in the last variable, and α(A) and each α

(A)
σ1,...,σk

are additive.
Since ψN+1 6= 1, then linear independence, (3.23), and (3.25) draw

also

∑
σ1,...,σN=±1

B(x1y
σ1
1 , ..., xNyσN

N ) =(3.27)

= B(x1, ..., xN )
N∏

i=1

[ψi(yi) + ψi(yi)−1],

(3.28) h(Y ) = γ{2N+1 − g(Y )}.

Similar to Case 2, (3.27) leads to the form (3.22) for B with the same
{p1, ..., pN−k} and {r1, ..., rk} as in (3.26). From (3.22), (3.26), (3.6), (3.25)
and (3.28), we arrive at solution (3.3) again for n = N + 1, as soon as we
define pN−k+1 := N + 1,

Sσ1,...,σk
(xp1 , ..., xpN−k+1) := S(A)

σ1,...,σk
(xp1 , ..., xpN−k

;xN+1)+

+α(A)
σ1,...,σk

(xN+1) + S(B)
σ1,...,σk

(xp1 , ..., xpN−k
),

and ασ1,...,σk
:= α

(B)
σ1,...,σk , for each σ1, ..., σk = ±1.

The only other possibility is that AN+1 = 0. Now (3.6) takes the form

(3.29) f(x1, ..., xN+1) = B(x1, ..., xN ) ψN+1(xN+1) + γ,

with ψN+1(·) = ψN+1(·)−1 6= 1. Here we know that B 6= 0, since f is
nonconstant. We show that the solution of (GRE) is of the form (3.3).
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Consider (3.23) with AN+1 = 0. Since ψN+1 and 1 are linearly indepen-
dent, we find that

∑
σ1,...,σN=±1

B (x1y
σ1
1 , ..., xNyσN

N ) =(3.30)

= B(x1, ..., xN ) g(Y ) (2 ψN+1(yN+1))
−1

,

and that
h(Y ) = γ

[
2N+1 − g(Y )

]
,

the latter of which is in agreement with a solution of type (3.3) for n =
N + 1. Applying the induction hypothesis to (3.30), we deduce that the
solution must be among three possible forms.

The first possibility is that B is a nonzero constant α and
g(Y ) [2 ψN+1(yN+1)]

−1 ≡ 2N . In this case, (3.29) shows that we have
f(X) = α ψN+1(xN+1) + γ, a solution of type (3.3).

The second possibility is that B(X) = S(x1, ..., xN ) + α and
g(Y ) [2 ψN+1(yN+1)]−1 ≡ 2N . By (3.29), we again have a solution of the
form (3.3).

The third and final possibility is that either

B(X) =
∑

σ1,...,σk=±1

[
S(B)

σ1,...,σk

(
xp1 , ..., xpN−k

)
+ α(B)

σ1,...,σk

]
×

×
N−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj

or

B(X) =
[
S(B)(x1, ..., xN ) + α

] N∏

i=1

ψi(xi) ψi(·) = ψi(·)−1,

and

g(Y ) [2 ψN+1(yN+1)]
−1 =

N∏

i=1

[
ψi(yi) + ψi(yi)−1

]
.

Again, (3.29) shows that f and g have the form specified in (3.3) for
n = N + 1.

This exhausts all possible cases. Since the converse is easy to check,
this concludes the proof of the theorem.
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4. General solution of (GRH)

We solve (GRH) by showing first that any f satisfying (GRH) satisfies
also (GRE).

Lemma 2. If f, p, q : G1 × · · · ×Gn → K satisfy (GRH), then f, g, h
satisfy (GRE) with g, h given by

(4.1a) g(Y ) =
n∏

k=1

{p[yk]− 2 (n− 1)}

(4.1b) h(Y ) =
n∑

k=1

2n−k q[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)} ,

where [yk] represents (e1, e2, ..., ek−1, yk, ek+1, ..., en).

Proof. First, assuming that f, p, q satisfy (GRH), put yi = ei (i 6= k)
to get

∑
σk=±1

f(x1, ..., xk−1, xkyσk

k , xk+1, ..., xn) =(4.2)

= f(x1, ..., xn) {p[yk]− 2 (n− 1)}+ q[yk],

for each fixed k ∈ {1, ..., n}.
Next, we establish by induction on j that

(4.3)

∑
σ1,...,σn=±1

f (x1y
σ1
1 , ..., xnyσn

n ) =

=
∑

σj ,...,σn=±1

f
(
x1, ..., xj−1, xjy

σj

j , ..., xnyσn
n

)×

×
j−1∏

i=1

{p[yi]− 2 (n− 1)}+
j−1∑

k=1

2n−kq[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)},

for each j = 1, .., n. For j = 1, (4.3) is an identity. Suppose that (4.3)
holds for j = J ∈ {1, ..., n − 1}. Applying (4.2), we find the right side of
(4.3) can be written as

∑
σJ+1,...,σn=±1

∑
σJ=±1

f (x1, ..., xJ−1, xJyσJ

J , ..., xnyσn
n )

J−1∏

i=1

{p[yi]−2 (n− 1)}
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+
J−1∑

k=1

2n−k q[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)}

=
∑

σJ+1,...,σn=±1

{
f

(
x1, ..., xJ , xJ+1y

σJ+1
J+1 , ..., xnyσn

n

) {p[yJ ]− 2 (n− 1)}

+ q [yJ ]}
J−1∏

i=1

{p[yi]−2 (n− 1)}+
J−1∑

k=1

2n−kq[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)}

=
∑

σJ+1,...,σn=±1

f
(
x1, ..., xJ , xJ+1y

σJ+1
J+1 , ..., xnyσn

n

) J∏

i=1

{p[yi]− 2 (n− 1)}

+2n−Jq[yJ ]
J−1∏

i=1

{p[yi]−2 (n− 1)}+
J−1∑

k=1

2n−kq[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)},

which gives (4.3) for j = J + 1. Thus (4.3) is valid for j = 1, .., n.
Finally, observe that (4.3) for j = n is

∑
σ1,...,σn=±1

f (x1y
σ1
1 , ..., xnyσn

n ) =

=
∑

σn=±1

f (x1, ..., xn−1, xnyσn
n )

n−1∏

i=1

{p[yi]− 2 (n− 1)}+

+
n−1∑

k=1

2n−kq[yk]
k−1∏

i=1

{p[yi]− 2 (n− 1)}.

Applying (4.2) once more (for k = n) on the right hand side of this equa-
tion, and defining g, h by (4.1a) and (4.1b), we have (GRE). This finishes
the proof.

Now we are ready for the second main result, which is the following.

Theorem 2. The general solution f, p, q : G1 × · · · × Gn → K of
(GRH), with f satisfying the factorization condition (FC) in each variable,
is given by

(4.4) f(X) = γ, p arbitrary, q(Y ) = γ[2n− p(Y )],

(4.5) f(X) = S(X)+α+
n∑

i=1

Qi(xi), p(Y ) = 2n, q(Y ) = 2
n∑

i=1

Qi(yi),
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(4.6a)





f(X) =
∑

σ1,...,σk=±1

[
Sσ1,...,σk

(xp1 , ..., xpn−k
)+

+ασ1,...,σk
]
n−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj + γ

p(Y ) =
n∑

i=1

[
ψi(yi) + ψi(yi)−1

]
, q(Y ) = γ [2n− p(Y )]

(4.6b)





f(X) = [S(X) + α]
n∏

i=1

ψi(xi) + γ,

p(Y ) = 2
n∑

i=1

ψi(yi) 6≡ 2n,

q(Y ) = γ [2n− p(Y )] , ψi(·) = ψi(·)−1

where k is a fixed integer (1 ≤ k ≤ n), α, γ and ασ1,...,σk
(σ1, ..., σk = ±1)

are arbitrary constants, S and Sσ1,...,σk
(σ1, ..., σk = ±1) are SMAF’s of

order n and n− k, respectively, Qi is quadratic and ψi is a nonzero expo-
nential (1 ≤ i ≤ n), ψpi (i = 1, 2, ..., n−k) satisfies also ψpi(x) ≡ ψpi(x)−1,
ψrj (j = 1, 2, ..., k) satisfies also ψrj (x) 6≡ ψrj (x)−1, and {1, 2, ..., n} is the
(disjoint) union of the sets {p1, ..., pn−k} and {r1, ..., rk}.

Here again we have adopted the convention (C1) in (4.6a) (cf. Theo-
rem 1).

Proof. If f satisfies (GRH), then Lemma 2 shows that it also satisfies
an equation of the form (GRE). Since f also satisfies (FC), we may apply
Theorem 1 to obtain the possible forms of f . We consider the three forms
of f case by case.

First, suppose f is constant, as in (3.1). Substituting f(X) = γ
into (GRH), we get 2nγ = γ g(Y ) + h(Y ), which gives solution (4.4).
Henceforth, we assume that f is nonconstant.

Secondly, suppose that f has the form given in (3.2). Inserting this
into (GRH) and simplifying, we arrive at

(4.7)

2n [S(X) + α +
n∑

i=1

Qi(xi)] + 2
n∑

i=1

Qi(yi) =

= [S(X) + α +
n∑

i=1

Qi(xi)]g(Y ) + h(Y ),
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where we have used the facts that S is a SMAF of order n and that Qi

(i = 1, 2, ..., n) is quadratic. Since f is nonconstant, at least one of the
functions S, Q1, ..., Qn must be nonzero. Thus, by a linear independence
argument, we obtain from (4.7) that g(Y ) = 2n and h(Y ) = 2

∑n
i=1 Qi(yi).

That is, we have solution (4.5).
Finally, suppose that f is as in (3.3). Substituting form of f from

(3.3a) into (GRH) and simplifying, we come to

∑
σ1,...,σk=±1

[
Sσ1,...,σk

(xp1 , ..., xpn−k
) +(4.8)

+ ασ1,...,σk
]
n−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj

{
n−k∑

i=1

2 ψpi(ypi) +

+
k∑

j=1

[ψrj (yrj ) + ψrj (yrj )
−1]



 + 2nγ

=

{ ∑
σ1,...,σk=±1

[
Sσ1,...,σk

(xp1 , ..., xpn−k
) +

+ ασ1,...,σk
]
n−k∏

i=1

ψpi(xpi)
k∏

j=1

ψrj (xrj )
σj + γ



 g(Y ) + h(Y ).

Here we have used the facts that Sσ1,...,σk
(σ1, ..., σk = ±1; 1 ≤ k ≤ n)

is a SMAF of order n − k, that ψpi(x) ≡ ψpi(x)−1 (i = 1, ..., n − k),
and that each ψi is nonzero exponential (i = 1, ..., n). Again using linear
independence considerations, we conclude from (4.8) that

g(Y ) =
n−k∑

i=1

2 ψpi(ypi) +
k∑

j=1

[ψrj (yrj ) + ψrj (yrj )
−1]

and that h(Y ) = 2nγ − γg(Y ).
Thus we have (4.6a). Similarly, if f has the form in (3.3b), then we

arrive at (4.6b). This completes the proof.
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5. Some further results

We complete the link between (GRE) and (GRH) with the following
converse to Lemma 2.

Lemma 3. If f, g, h : G1 ×G2 × · · · ×Gn → K satisfy (GRE) then
f, p, q satisfy (GRH) with p, q given by

(5.1a) p(Y ) = 21−n
n∑

i=1

g[yi],

(5.1b) q(Y ) = 21−n
n∑

i=1

h[yi],

where, as before, [yi] = (e1, ..., ei−1, yi, ei+1, ..., en).

Proof. For each fixed i ∈ {1, ..., n}, setting yj = ej for all j 6= i in
(GRE), we get

2n−1
∑

σi=±1

f(x1, ..., xi−1, xiy
σi
i , xi+1, ..., xn) = f(X) g[yi] + h[yi].

Summing over i, we have

2n−1
n∑

i=1

∑
σi=±1

f(x1, ..., xi−1, xiy
σi
i , xi+1, ..., xn) =

= f(X)
n∑

i=1

g[yi] +
n∑

i=1

h[yi],

which is (GRH) with p, q given by (5.1a), (5.1b).

This lemma provides a new way of proving Theorem 2. Namely, for
nonconstant f , we apply the formulas (5.1a), (5.1b) to (3.2)–(3.3), obtain-
ing thereby (4.5)–(4.6), respectively.

It is a straightforward job to work out the continuous solutions of
(GRE) and (GRH) on Rn, based on Theorems 1 and 2. Such continuous
quadratic, additive, and nonzero exponential functions from R into C (the
field of complex numbers) are of the forms

Q(x) = bx2, A(x) = ax, ψ(x) = ecx,
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respectively, for complex constants a, b, c. We call any function P : Rn→C
of the form

P (x1, ..., xn) = a12···n
n∏

i=1

xi + a12···n−1

n−1∏

i=1

xi + · · ·+

+a23···n
n∏

i=2

xi + · · ·+ anxn + a0

a sum of multilinear functions (SMULF) of degree n. It can be shown [4]
that if S : Rn → C is a regular SMAF of order n, then for any constant
α, S + α is a SMULF of degree n. Moreover, it is also true that f is
continuous in (3.2) and (3.3), (4.5) and (4.6) if and only if each SMAF,
each quadratic Qi, and each nonzero exponential ψi is continuous.

Therefore, one obtains the continuous versions of Theorems 1 and 2
on Rn by replacing each SMAF by an appropriate SMULF, each Qi(x) by
bix

2, each ψpi by 1, and each ψrj (x) by ecrj
x (crj 6= 0).

It is also possible (but rather tedious) to work out explicit forms of
the real-valued solutions of (GRE) and (GRH) on Rn. Since R is not
quadratically closed, Theorems 1 and 2 do not immediately apply in this
case. One may proceed by screening the complex-valued solutions to obtain
those which are real-valued. As an illustration, we describe the process for
finding the continuous real-valued solutions of (GRE) for n = 2. It turns
out that the Qi’s and the SMULF’s have the same form as above, but with
real constants. From (3.1) and (3.2), we obtain respectively





f(x1, x2) = γ,

g arbitrary real-valued function

h(y1, y2) = γ [4− g(Y )] ;





f(x1, x2) = a12x1x2 + a1x1 + a2x2 + a0 + b1x
2
1 + b2x

2
2,

g(y1, y2) = 4,

h(y1, y2) = 4
(
b1x

2
1 + b2x

2
2

)
,

where all constants are real. Case (3.3b) is impossible, since each ψi = 1
but g(Y ) 6≡ 2n. The situation for (3.3a) is more complicated. Each ψpi

is equal to 1, but there are two alternatives for each ψrj . Because g must
be real-valued, when ψ(x) 6≡ ψ(x)−1, we have either ψ(x) = ebx for real
b ( 6= 0) or ψ(x) = cos bx + i sin bx for some real b (6= 0), where i is the
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imaginary unit. When k = 1, the solutions are given by




f(x1, x2) = (a1x2 + α1) ecx1 + (a2x2 + α2) e−cx1 + γ,

g(y1, y2) = 2
(
ecy1 + e−cy1

)
,

h(y1, y2) = γ [4− g(Y )] ;




f(x1, x2) = (a3x2 + α3) cos bx1 + (a4x2 + α4) sin bx1 + γ,

g(y1, y2) = 4 cos by1,

h(y1, y2) = γ [4− g(Y )] ,

where all constants are real, and two similar forms obtained by interchang-
ing x1 with x2 and y1 with y2. Finally, when k = 2 in (3.3a) there are
again four forms, since each of ψ1 and ψ2 can have either of the forms ebx

or eibx for some real b (6= 0).
We conclude the paper with an example illustrating the non-equival-

ence of (GRE) and (GRH) when charK = 2.

Example. Let G1 = (Z2, +), G2 = (R,+), K = Z2, and define f :
G1 ×G2 → K by

f(x1, x2) =
{

1 if x2 6= 0
0 if x2 = 0.

Then the left side of (GRE) is

f(x1 + y1, x2 + y2) + f(x1 − y1, x2 + y2)+

+ f(x1 + y1, x2 − y2) + f(x1 − y1, x2 − y2)

= 2 f(x1 + y1, x2 + y2) + 2 f(x1 + y1, x2 − y2) = 0,

so f satisfies (GRE) with g = h = 0. But f does not satisfy (GRH) at
all. Indeed, suppose that f did satisfy (GRH) with some p, q. Then, as
f(x1 +y1, x2)+f(x1−y1, x2) = 2 f(x1 +y1, x2) = 0, (GRH) would become

(5.2) f(x1, x2 + y2) + f(x1, x2 − y2) = f(x1, x2) p(y1, y2) + q(y1, y2).

Putting x2 = 0 in (5.2), we obtain q(y1, y2) = 0. Using this with y2 = 1 in
(5.2), we get

f(x1, x2 + 1) + f(x1, x2 − 1) = f(x1, x2) p(y1, 1).

But this equation yields, with x2 = 1, 2, respectively,

p(y1, 1) = 1 and p(y1, 1) = 0,

a contradiction.
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