Publ. Math. Debrecen 47 / 3-4 (1995), 311–313

Bands of right simple semigroups

By PETAR V. PROTIĆ (Niš)

Dedicated to Professor Stojan Bogdanović on his 50th birthday

Abstract. M. S. Putcha in [5] described semigroups which are bands of right Archimedean semigroups. The author in [4] described some special bands of right Archimedean semigroups and for some related results according to bands of t-Archimedean semigroups we refer to [1]. In [2] semigroups which are semilattice of left (right) simple semigroups were described. In this paper we give a description of semigroups which are bands of right simple semigroups and we characterize some special bands of right simple semigroups.

A semigroup B is a band if for each $x \in B$, $x^2 = x$ holds.

A semigroup S is right simple if it has no proper right ideals, which is equivalent with $a \in bS$ for every $a, b \in S$.

A semigroup S is a band Y of semigroups S_{α} if $S = \bigcup_{\alpha \in Y} S_{\alpha}$, Y is a band, $S_{\alpha} \cap S_{\beta} = \emptyset$ for $\alpha, \beta \in Y$ with $\alpha \neq \beta$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$.

A congruence ρ on S is called *band congruence* if S/ρ is a band.

For undefined notions and notations we refer to [2] and [3].

Theorem 1. A semigroup S is a band of right simple semigroups if and only if

(1)
$$(\forall a \in S)(\forall x, y \in S^1) xay \in xa^2yS, xa^2y \in xayS.$$

PROOF. Let S be a band Y of right simple semigroups S_{α} and $a \in S$, $x, y \in S^1$. Then xay, $xa^2y \in S_{\alpha}$ for some $\alpha \in Y$ and so (1) holds.

Conversely, let statement (1) hold on a semigroup S. We define on S the relation ρ by

(2)
$$a\rho b \iff (\forall x, y \in S^1) xay \in xbyS^1, xby \in xayS^1.$$

Supported by Grant 0401A of RFNS through Math. Inst. SANU.

Clearly, ρ is a reflexive and symmetric relation. Let $a\rho b$, $b\rho c$, then xay = xbyu for some $u \in S^1$. Now

$$xay = xb(yu) \in xc(yu)S^1 \subseteq xcyS^1$$

Similarly, $xcy \in xayS^1$ and so ρ is a transitive relation. Hence, ρ is an equivalence relation.

Let $a\rho b$ and $c \in S$, then

$$x(ac)y = xa(cy) \in xb(cy)S^1 = x(bc)yS^1$$

Similarly, $x(bc)y \in x(ac)yS^1$, $x(ca)y \in x(cb)yS^1$, $x(cb)y \in x(ca)yS^1$ and we have that ρ is a congruence relation on S. By (1) we conclude that ρ is a band congruence relation.

Now let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a band and S_{α} are ρ -classes. Let $a, b \in S_{\alpha} \iff a\rho b$, then $a^{2}\rho b$ and for x = y = 1 we have $b \in a^{2}S^{1}$, whence $b = a^{2}t$ for some $t \in S^{1}$. Since $at\rho a^{2}t = b$ we have $at\rho b$ and $at \in S_{\alpha}$. Now $b = a(at) \in aS_{\alpha}$ and so S_{α} is a right simple semigroup. Hence, the semigroup S is a band of right simple semigroups. \Box

Recall that a band B is a *left normal band* if efg = egf for every $e, f, g \in B$.

Theorem 2. A semigroup S is a left normal band of right simple semigroups if and only if

(3)
$$(\forall u, v, w \in S) \ uvw \in uwvS, \ u \in u^2S.$$

PROOF. Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a left normal band and S_{α} are right simple semigroups for each $\alpha \in Y$. If $u \in S_{\alpha}$, $v \in S_{\beta}$, $w \in S_{\gamma}$, then $uvw \in S_{\alpha\beta\gamma} = S_{\alpha\gamma\beta}$. Since $uwv \in S_{\alpha\gamma\beta}$ and since $S_{\alpha\gamma\beta}$ is a right simple semigroup we have that $uvw \in uwvS_{\alpha\gamma\beta} \subseteq uwvS$. Since $u, u^2 \in S_{\alpha}$ we have $u \in u^2S$. Hence, statement (3) holds.

Conversely, let statement (3) hold on a semigroup S and let $a \in S, x, y \in S^1$. By (3) we have $xa^2y = xaay \in xa(ay)^2S = xaayayS$. Now by (3) for u = xa, v = a, w = yay we have $xa^2y = xaayayS \in xayayaSS \subseteq xayS$. Similarly, since from $u \in u^2S$ it follows that $u \in u^nS$ for every $n \in \mathbb{N}$ we have $xay \in x(ay)^3S$. By (3) for u = xa, v = yay, w = ay we have $xay \subseteq xayayayS \subseteq xaayyaySS \subseteq xa^2yS$. Now by Theorem 1 it follows that semigroup S is a band of right simple semigroups.

Let $a, b, c \in S$, $x, y \in S^1$ then by (3) we have

$$\begin{aligned} x(abc)y &= (xa)b(cy) \in xacybS \subseteq xacyb^2SS = (xac)(yb)bS \\ &\subseteq xacbybSS \subseteq x(acb)yS. \end{aligned}$$

Similarly, $x(acb)y \in x(abc)yS$. By Theorem 1 it follows that $abc\rho acb$ and so the semigroup S is left normal band of right simple semigroups. \Box

Remark. Similar characterisations can be proved for rectangular (left zero, right regular, right seminormal, right quasi-normal) bands of right simple semigroups.

Acknowledgement. We would like to thank the referee of this paper for suggestions.

References

- S. BOGDANOVIĆ and M. ĆIRIĆ, Semigroups of Galbiati-Veronesi IV (Bands of nil-extensions of groups), Facta Univ. (Niš), Ser. Math. Inform. 7 (1992), 23–35.
- [2] M. PETRICH, Introduction to semigroups, Merrill, Columbus, 1973.
- [3] M. PETRICH, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
- [4] P. V. PROTIĆ, On some band decompositions of semigroups, Publ. Math. Debrecen 45 1-2 (1994), 205–211.
- [5] M. S. PUTCHA, Band of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232–239.

PETAR V. PROTIĆ FACULTY OF CIVIL ENGINEERING BEOGRADSKA 14, 18000 NIŠ YUGOSLAVIA

(Received August 30, 1994; revised January 20, 1995)