Bands of right simple semigroups

By PETAR V. PROTIĆ (Niš)
Dedicated to Professor Stojan Bogdanović on his 50th birthday

Abstract

M. S. Putcha in [5] described semigroups which are bands of right Archimedean semigroups. The author in [4] described some special bands of right Archimedean semigroups and for some related results according to bands of t-Archimedean semigroups we refer to [1]. In [2] semigroups which are semilattice of left (right) simple semigroups were described. In this paper we give a description of semigroups which are bands of right simple semigroups and we characterize some special bands of right simple semigroups.

A semigroup B is a band if for each $x \in B, x^{2}=x$ holds.
A semigroup S is right simple if it has no proper right ideals, which is equivalent with $a \in b S$ for every $a, b \in S$.

A semigroup S is a band Y of semigroups S_{α} if $S=\bigcup_{\alpha \in Y} S_{\alpha}, Y$ is a band, $S_{\alpha} \cap S_{\beta}=\emptyset$ for $\alpha, \beta \in Y$ with $\alpha \neq \beta$ and $S_{\alpha} S_{\beta} \subseteq S_{\alpha \beta}$.

A congruence ρ on S is called band congruence if S / ρ is a band.
For undefined notions and notations we refer to [2] and [3].
Theorem 1. A semigroup S is a band of right simple semigroups if and only if

$$
\begin{equation*}
(\forall a \in S)\left(\forall x, y \in S^{1}\right) x a y \in x a^{2} y S, x a^{2} y \in x a y S \tag{1}
\end{equation*}
$$

Proof. Let S be a band Y of right simple semigroups S_{α} and $a \in$ $S, x, y \in S^{1}$. Then xay, $x a^{2} y \in S_{\alpha}$ for some $\alpha \in Y$ and so (1) holds.

Conversely, let statement (1) hold on a semigroup S. We define on S the relation ρ by

$$
\begin{equation*}
a \rho b \Longleftrightarrow\left(\forall x, y \in S^{1}\right) x a y \in x b y S^{1}, x b y \in x a y S^{1} . \tag{2}
\end{equation*}
$$

Supported by Grant 0401A of RFNS through Math. Inst. SANU.

Clearly, ρ is a reflexive and symmetric relation. Let $a \rho b, b \rho c$, then $x a y=$ xbyu for some $u \in S^{1}$. Now

$$
x a y=x b(y u) \in x c(y u) S^{1} \subseteq x c y S^{1}
$$

Similarly, $x c y \in x a y S^{1}$ and so ρ is a transitive relation. Hence, ρ is an equivalence relation.

Let $a \rho b$ and $c \in S$, then

$$
x(a c) y=x a(c y) \in x b(c y) S^{1}=x(b c) y S^{1} .
$$

Similarly, $x(b c) y \in x(a c) y S^{1}, x(c a) y \in x(c b) y S^{1}, x(c b) y \in x(c a) y S^{1}$ and we have that ρ is a congruence relation on S. By (1) we conclude that ρ is a band congruence relation.

Now let $S=\bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a band and S_{α} are ρ-classes. Let $a, b \in S_{\alpha}(\Longleftrightarrow a \rho b)$, then $a^{2} \rho b$ and for $x=y=1$ we have $b \in a^{2} S^{1}$, whence $b=a^{2} t$ for some $t \in S^{1}$. Since at $\rho a^{2} t=b$ we have at ρb and $a t \in S_{\alpha}$. Now $b=a(a t) \in a S_{\alpha}$ and so S_{α} is a right simple semigroup. Hence, the semigroup S is a band of right simple semigroups.

Recall that a band B is a left normal band if efg $=\operatorname{egf}$ for every $e, f, g \in B$.

Theorem 2. A semigroup S is a left normal band of right simple semigroups if and only if

$$
\begin{equation*}
(\forall u, v, w \in S) u v w \in u w v S, u \in u^{2} S \tag{3}
\end{equation*}
$$

Proof. Let $S=\bigcup_{\alpha \in Y} S_{\alpha}$ where Y is a left normal band and S_{α} are right simple semigroups for each $\alpha \in Y$. If $u \in S_{\alpha}, v \in S_{\beta}, w \in S_{\gamma}$, then $u v w \in S_{\alpha \beta \gamma}=S_{\alpha \gamma \beta}$. Since $u w v \in S_{\alpha \gamma \beta}$ and since $S_{\alpha \gamma \beta}$ is a right simple semigroup we have that $u v w \in u w v S_{\alpha \gamma \beta} \subseteq u w v S$. Since $u, u^{2} \in S_{\alpha}$ we have $u \in u^{2} S$. Hence, statement (3) holds.

Conversely, let statement (3) hold on a semigroup S and let $a \in$ $S, x, y \in S^{1}$. By (3) we have $x a^{2} y=x a a y \in x a(a y)^{2} S=x a a y a y S$. Now by (3) for $u=x a, v=a, w=y a y$ we have $x a^{2} y=x a a y a y S \in x a y a y a S S \subseteq$ xayS. Similarly, since from $u \in u^{2} S$ it follows that $u \in u^{n} S$ for every $n \in \mathbb{N}$ we have $x a y \in x(a y)^{3} S$. By (3) for $u=x a, v=y a y, w=a y$ we have xay $\subseteq x a y a y a y S \subseteq x a a y y a y S S \subseteq x a^{2} y S$. Now by Theorem 1 it follows that semigroup S is a band of right simple semigroups.

Let $a, b, c \in S, x, y \in S^{1}$ then by (3) we have

$$
\begin{aligned}
x(a b c) y & =(x a) b(c y) \in x a c y b S \subseteq x a c y b^{2} S S=(x a c)(y b) b S \\
& \subseteq x a c b y b S S \subseteq x(a c b) y S .
\end{aligned}
$$

Similarly, $x(a c b) y \in x(a b c) y S$. By Theorem 1 it follows that abcpacb and so the semigroup S is left normal band of right simple semigroups.

Remark. Similar characterisations can be proved for rectangular (left zero, right regular, right seminormal, right quasi-normal) bands of right simple semigroups.

Acknowledgement. We would like to thank the referee of this paper for suggestions.

References

[1] S. Bogdanović and M. Ćirić, Semigroups of Galbiati-Veronesi IV (Bands of nil-extensions of groups), Facta Univ. (Niš), Ser. Math. Inform. 7 (1992), 23-35.
[2] M. Petrich, Introduction to semigroups, Merrill, Columbus, 1973.
[3] M. Petrich, Lectures in semigroups, Akad. Verlag, Berlin, 1977.
[4] P. V. Protić, On some band decompositions of semigroups, Publ. Math. Debrecen 45 1-2 (1994), 205-211.
[5] M. S. Putcha, Band of t-Archimedean semigroups, Semigroup Forum 6 (1973), 232-239.

PETAR V. PROTIĆ
FACULTY OF CIVIL ENGINEERING
BEOGRADSKA 14, 18000 NIŠ
YUGOSLAVIA
(Received August 30, 1994; revised January 20, 1995)

