Publ. Math. Debrecen 47 / 3-4 (1995), 329–333

Triangular systems on discrete subgroups of simply connected nilpotent Lie groups

By DANIEL NEUENSCHWANDER (Biel-Bienne)

Abstract. We show that for discrete subgroups Γ of simply connected nilpotent Lie groups, limit laws of commutative infinitesimal triangular systems of probability measures on Γ are infinitely divisible (and thus embeddable into a Poisson semigroup).

1. Introduction

In [4] we proved that for discrete subgroups Γ of simply connected step 2-nilpotent Lie groups G limit laws of commutative infinitesimal triangular systems of probability measures on Γ are infinitely divisible. This assertion (for not necessarily discretely supported measures) is a classical theorem for $G = \mathbb{R}$ and \mathbb{R}^d . See the introduction of [4] for the history of its carrying over; recently, also RIDDHI SHAH [7] treated the problem. The purpose of this note is to get rid of the step 2-assumption. The method will be (as in [4]) to verify the conditions of WEHN [9] and SIEBERT [8]. But here we will use the fact that limit theorems for convolution semigroups on G are equivalent to limit theorems for their generating distributions.

2. Preliminaries

Throughout this work we use the notation of HAZOD, SCHEFFLER [2] in general. [2] and the literature cited there can be consulted for further information and background material. For a locally compact group G with neutral element e let $\mathcal{U}(e)$ be the system of Borel neighbourhoods

Mathematics Subject Classification: 60B15.

Key words and phrases: Triangular systems, infinitely divisible laws, Poisson semigroups, nilpotent Lie groups, discrete subgroups.

of e. A Poisson measure is a probability measure $\mu \in M^1(G)$ of the form $\mu = \exp \lambda(\nu - \varepsilon_e) \ (\nu \in M^1(G), \ \lambda \ge 0).$

Let G be a simply connected nilpotent Lie group. Via the exponential map G may be identified with its Lie algebra \mathcal{G} , the product on G being given by the Campbell-Hausdorff-formula

$$x \cdot y = x + y + \frac{1}{2}[x, y] + \frac{1}{12}\{[[x, y], y] + [[y, x], x]\} + \dots,$$

where due to the nilpotency only the terms up to some fixed order m arise. G is then called step m-nilpotent.

3. Triangular systems

A commutative infinitesimal triangular system (c.i.t.s.) on the locally compact group G is a double array $\Delta = \{\mu_{n,j}\}_{n\geq 1; 1\leq j\leq k(n)} \subset M^1(G)$ $(k(n)\to\infty \ (n\to\infty))$ of probability measures on G such that

$$\mu_{n,i} * \mu_{n,j} = \mu_{n,j} * \mu_{n,i} \quad (n \ge 1; \ 1 \le i, \ j \le k(n)) \quad (commutativity),$$
$$\min_{1 \le j \le k(n)} \mu_{n,j}(U) \to 1 \quad (n \to \infty) \quad (U \in \mathcal{U}(e)) \qquad (infinitesimality).$$

The c.i.t.s. Δ is said to converge resp. to be relatively compact if the sequence of "row" products

$$\{\mu_{n,1} * \mu_{n,2} * \cdots * \mu_{n,k(n)}\}_{n \ge 1}$$

has this property (with respect to the weak topology). For a c.i.t.s. Δ the *accompanying Poisson system* is defined as the c.i.t.s.

$$\Delta := \{ \exp(\mu_{n,j} - \varepsilon_e) \}_{n \ge 1; 1 \le j \le k(n)}$$

(cf. SIEBERT [8], Section 8; note that in contrast to the classical case no additional centering is performed). Now one can show (cf. SIEBERT [8], Remarks 1 and 4 on pp. 148 f.) that for a Lie group $G \Delta$ converges to $\mu \in M^1(G)$ iff $\tilde{\Delta}$ converges to μ provided Wehn's conditions

(W1)
$$\limsup_{n \to \infty} \sum_{j=1}^{k(n)} \int_{G} \Phi(x) \mu_{n,j}(dx) < \infty,$$

(W2)
$$\limsup_{n \to \infty} \sum_{j=1}^{k(n)} \left| \int_{G} \xi_{\ell}(x) \mu_{n,j}(dx) \right| < \infty, \quad (1 \le \ell \le \ell)$$

(W2)
$$\limsup_{n \to \infty} \sum_{j=1}^{\infty} \left| \int_G \xi_\ell(x) \mu_{n,j}(dx) \right| < \infty \quad (1 \le \ell \le d)$$

330

hold, where $d = \dim \mathcal{G}, \{\xi_1, \xi_2, \ldots, \xi_d\} \subset C^{\infty}(G)$ is a system of canonical coordinates with compact support such that $\xi_{\ell}(x^{-1}) = -\xi_{\ell}(x)$ $(1 \leq \ell \leq d, x \in G)$ and Φ is a co-called *Hunt function*, i.e. $\Phi \in C^{\infty}(G), \Phi(x) = \Phi(-x) \geq 0$ $(x \in G), \Phi(x) = \sum_{\ell=1}^{d} \xi_{\ell}(x)^2$ $(x \in U_0), \Phi(x) \equiv 1$ $(x \in cpl U_1)$ for some $U_0, U_1 \in \mathcal{U}(e)$ with $\overline{U_0} \subset$ int U_1 . Our method will be to verify (W1) and (W2) in order to get our result. A *continuous convolution* semigroup (c.c.s.) $\{\mu_t\}_{t>0}$ on G is a continuous monoid homomorphism

$$([0,\infty[,+,0)\ni t\mapsto \mu_t\in (M^1(G),*,\stackrel{w}{\to},\varepsilon_e).$$

Theorem 1. Let G be a simply connected nilpotent Lie group, $\Gamma \subset G$ a discrete subgroup. Assume $\Delta = {\{\mu_{n,j}\}_{n \geq 1; 1 \leq j \leq k(n)} \text{ is a c.i.t.s. on } \Gamma$ converging to $\mu \in M^1(\Gamma)$. Then also $\tilde{\Delta}$ converges to μ and μ is embeddable into a Poisson semigroup on Γ .

PROOF. It suffices to prove (W1) and (W2), for in this case (by SIEBERT [8], Remarks 1 and 4 on pp. 148 f.) $\tilde{\Delta}$ converges to μ and then the embeddability in a c.c.s. follows from the aperiodicity, the strong root compactness of G (cf. NOBEL [5], 2.2; HEYER [3], Theorem 3.1.17), and NOBEL [5], Theorem 1; that the c.c.s. has to be Poisson follows from the aperiodicity and HEYER [3], 3.1.11 and Theorems 3.1.13, 6.1.10. W.l.o.g. we may assume that the canonical coordinates $\xi_1, \xi_2, \ldots, \xi_d$ are adapted to a Jordan-Hölder basis of $G \cong \mathcal{G}$. (W2) holds trivially by the discreteness. Now (W1) is verified by induction on the step of nilpotency m: For m = 1(W1) follows from the classical convergence conditions for infinitesimal triangular systems on \mathbb{R} (cf. GNEDENKO, KOLMOGOROV [1], Theorem 23.2) and the discreteness. Now assume (W1) holds for m. We show that it holds also for m + 1. Assume G is step (m + 1)-nilpotent. Consider the quotient group $\bar{G} \cong \bar{\mathcal{G}} : \cong \mathcal{G}/\mathcal{G}_m$, where

$$\mathcal{G} := \mathcal{G}_0 \supseteq [\mathcal{G}_0, \mathcal{G}] := \mathcal{G}_1 \supseteq [\mathcal{G}_1, \mathcal{G}] := \mathcal{G}_2 \supseteq \cdots \supseteq [\mathcal{G}_m, \mathcal{G}] := \mathcal{G}_{m+1} = \{0\}$$

is the descending central series and let $M :\cong \mathcal{G}_m$, i.e.

(1)
$$G \cong G \oplus M.$$

The notation $(y, z) \in G$ and so on will be understood with respect to (1), i.e. $y \in \overline{G}, z \in M$. Consider the projections

$$\begin{aligned} \pi: G &\cong \bar{G} \oplus M \ni (y,z) \mapsto y \in \bar{G}, \\ p: G &\cong \bar{G} \oplus M \ni (y,z) \mapsto z \in M. \end{aligned}$$

Clearly, \bar{G} is a simply connected step *m*-nilpotent Lie group and π is the canonical homomorphism. Observe that by RAGHUNATHAN [6], Theorem II.2.10 Γ is finitely generated; so it is easy to see that by the

nilpotency it follows that also $\pi(\Gamma)$ and $p(\Gamma)$ are discrete. Since $\pi(\Delta)$ converges to $\pi(\mu)$, we then have by the induction hypothesis that (W1) holds on \overline{G} , hence

(2)
$$\limsup_{n \to \infty} \sum_{j=1}^{k(n)} \int_{\bar{G}} \Phi(y,0) \pi(\mu_{n,j})(dy) < \infty.$$

So by the discreteness of $\pi(\Gamma)$, (2) and SIEBERT [8], Remarks 1 and 4 on pp. 148 f. we have that $\pi(\tilde{\Delta})$ converges to $\pi(\mu)$, which, by the aperiodicity, the strong root compactness, NOBEL [5], Theorem 1 and Remark 2 (bottom), and HAZOD, SCHEFFLER [2], Theorem 2.1 a) implies in the obvious way that the sequence of generating distributions $\{\overline{A_n}\}_{n>1}$ on \overline{G} , where

$$\overline{A_n}(f) := \sum_{j=1}^{k(n)} \int_{\bar{G}} [f(y) - f(0)] \pi(\mu_{n,j})(dy) \qquad (f \in \mathcal{E}(\bar{G})),$$

is relatively compact with respect to the topology of convergence for every $f \in \mathcal{E}(\overline{G})$ (where $\mathcal{E}(G)$ is the space of bounded complex-valued C^{∞} functions on G). So the same holds for the sequence $\{A_n\}_{n\geq 1}$ of generating distributions on G, where

$$A_n(f) := \sum_{j=1}^{k(n)} \int_G [f(x) - f(0)](\pi, 0)(\mu_{n,j})(dx) \qquad (f \in \mathcal{E}(G)).$$

Hence again by (2), the discreteness of $\pi(\Gamma)$, SIEBERT [8], Remarks 1 and 4 on pp. 148 f., and HAZOD, SCHEFFLER [2], Proposition 2.1 the c.i.t.s. $\hat{\Delta}$, where

$$\hat{\Delta} := \{ (\pi, 0)(\mu_{n,j}) \}_{n \ge 1; 1 \le j \le k(n)} \subset M^1(G),$$

is relatively compact. Let $\{X_{n,j}\}_{n\geq 1; 1\leq j\leq k(n)}$ be a system of Γ -valued random variables with $\mathcal{L}(X_{n,j}) = \mu_{n,j}$ $(n \geq 1; 1 \leq j \leq k(n))$ such that $X_{n,1}, X_{n,2}, \ldots, X_{n,k(n)}$ are independent $(n \geq 1)$. Then the relative compactness and thus uniform tightness of Δ and $\hat{\Delta}$ implies that the sequence

$$\left\{ \mathcal{L}\left(\prod_{j=1}^{k(n)} X_{n,j} - \prod_{j=1}^{k(n)} (\pi(X_{n,j}), 0) \right) \right\}_{n \ge 1} = \left\{ \mathcal{L}\left(0, \sum_{j=1}^{k(n)} p(X_{n,j}) \right) \right\}_{n \ge 1}$$

is uniformly tight and thus weakly relatively compact, which implies, since $p(\Gamma)$ is discrete, as in the induction basis,

(3)
$$\limsup_{n \to \infty} \sum_{j=1}^{k(n)} \int_M \Phi(0, z) p(\mu_{n,j})(dz) < \infty.$$

332

Now (2), (3) imply (W1) on G.

Remark 1. The same proof works also if the $\mu_{n,j}$ are symmetric on G, yielding a result offered by RIDDHI SHAH [7], who refers to the theory of so-called Hun semigroups.

Acknowledgements. The author wishes to thank Prof. W. HAZOD for helpful discussions and remarks.

References

- B. V. GNEDENKO and A. N. KOLMOGOROV, Limit distributions for sums of independent random variables, Addison-Wesley, Cambridge (Mass.), 1954.
- [2] W. HAZOD and H.-P. SCHEFFLER, The domains of partial attraction of probabilities on groups and on vector spaces, *J. Theoret. Probab.* **6** no. 1 (1993), 175–186.
- [3] H. HEYER, Probability measures on locally compact groups, Springer, Berlin, 1977.
- [4] D. NEUENSCHWANDER, Limits of commutative triangular systems on simply connected step 2-nilpotent Lie groups, J. Theoret. Probab. 5 no. 1 (1992), 217–222.
- [5] S. NOBEL, Limit theorems for probability measures on simply connected nilpotent Lie groups, J. Theoret. Probab. 4 no. 2 (1991), 261–284.
- [6] M. S. RAGHUNATHAN, Discrete subgroups of Lie groups, Springer, Berlin, 1972.
- [7] RIDDHI SHAH, Limits of commutative triangular systems on real and *p*-adic groups (1993), (*preprint*).
- [8] E. SIEBERT, Fourier analysis and limit theorems for convolution semigroups on a locally compact group, Adv. Math. **39** (1981), 111–154.
- [9] D. WEHN, Probabilities on Lie groups, Proc. Nat. Acad. Sci. USA 48 (1962), 791–795.

DANIEL NEUENSCHWANDER INGENIEURSCHULE BIEL POSTFACH 1180 CH-2501 BIEL-BIENNE PHONE +41 32 26 62 47

(Received November 7, 1994)

 \square