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Filling of a domain by isoperimetric discs.
' By L. FEJES TOTH in Budapest.

In D’ArRcy W. THOMPSON’s book On growth and form (Vol. Il., second
edition, Cambridge 1952, p. 471) we read the following:

“In the succulent, or parenchymatous, tissue of a vegetable, the cells
have their internal corners rounded off (Fig. 156). ... Where the angles are
rounded off the cell-walls tend to split apart from one another, and each
cell seems tending to withdraw, as far as it can, into a sphere; and this
happens, not when the tissue is young and the cell-
walls tender and quasi fluid, but later on, when cel-
lulose is forming freely at the surface of the cell. The
cell-walls no longer meet as fluid films, but are
stiffening into pellicles; the cells, which began as an
association of bubbles, are now so many balls, in
solid contact or partial detachment; and flexibility and
elasticity have taken the place of the capillary forces Fig. 1.
of an earlier and more liquid phase.“

We have reproduced the Fig. 156 in question as Fig. 1 of the present
paper; it shows a section of the parenchyma of maize with intercellular
“spaces“’).

it may be supposed that the pressure in the cells strains them to occupy
a possibly large room, as far as the surface area of the cell-walls and the
whole available space allow it. What kind of shape and arrangement the
cells will assume under these conditions? Instead of the hopelessly difficult
problems in space suggested by the above considerations, we descend from
3 to 2 dimensions considering the following

Problem. Find the upper bound of the total area 7 of n isoperi-
metric convex discs, each of perimeter 2, which can be placed in a given
domain D without mutual overlapping.

!) In reality the space between the cells is connected; only the sections of it fall to
isolated pieces.
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Dealing with this problem we shall encounter domains arising from a
convex polygon by rounding off each corner by arcs which can be put
together to form one circle. We shall call such a domain a smooth polygon.

First of all, we give a rough description of the extremal configuration
for great values of n (Fig. 2). This is the case in which the main interest

of the problem lies.
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Fig. 2.

To begin with, suppose that 2 is so small that the discs are not hin-
dered by each other to assume separately the largest possible area. Then,
in view of the isoperimetric property of the circle, the discs will be equal

circles. For a certain value?)
4
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of 4 the circles get into close-packing, in which case “almost every“ circle

is touched by six other ones.
Increasing 4 further, the circles will turn into smooth hexagcns, untill,

for a certain value
Py {4 5
L~2) 12V—-
n

of Z, the discs will swell to common regular hexagons filling entirely the
domain D.

For 4 > 4, neither the shape nor the arrangement of the discs are uni-
quely determined and for values of 4 equal to or greater than the double
diameter of D the problem becomes meaningless.

As we see, the interest of the problem is restricted to the case
Ay =2 =14. In the extreme cases A=24, and 2=14, our problem turns into
the problem of the densest packing of circles and the problem of the short-
est net of isoperimetric stitches, respectively °).

?) We shall denote a domain and its area by the same symbol.
%) A range of analogous problems can be found in the book of the author Lagerun-
gen in der Ebene, auf der Kugel und im Raum (Berlin—Gottingen—Heidelberg, 1953).
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Since the asymptotic behaviour of the packing density 7/D, obviously,
does not depend on the special shape of D, we shall restrict ourselves to
polygons having at most six sides, e. g. to a square. We shall call such a
polygon shortly a hexagon. After these remarks we enunciate the following

Theorem. Let T be the total area of n convex discs, each of perimeter
4, lying in a convex hexagon H so that no two of them overlap. Introducing
the notation 2:to= i) n/H, we have

:frp” for ¢ < I/V_ 0537
/4
H= V_—— (2]/129 7T —rr] Jor I/V_":@{V—/ﬂ

for o >V12/n_-0,592....
Equality holds only it the discs are either circles (7/H = m¢®), or they
cover completely the hexagon (7/H=1), or H is a regular hexagon contain-
ing one single disc, namely a corresponding smooth hexagon. For great
values of n our inequality yields, in each case, an exact asymptotic estimation.
o may be interpreted as the radius of a circle of perimeter 4, choosing
as unit of area H/n. Fig. 3 shows our above bound for 7/H as function of o-
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Fig. 3.

The main steps of the proof of our theorem are as follows.

1. We increase the discs continuously without loss of the convexity and
of the properties that no two of them overlap and that none of them stretchas
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out of H. As final result we obtain n convex polygons P, ..., P, leaning
against one another or on the sides of A (Fig. 4). We have

P1+"'+Pﬂ g H
and, as a simple consequence of EULER's formula,
"+--+rn=6n,

denoting by »; the number of sides of P;.

2. We try to give an upper bound of the area of the disc 7; contained
in P; in dependence of the area P; and of »,. For this purpose we have to
solve the following maximum problem:

Find the maximal value of the area

of a convex domain 7 of given perimeter 4
contained in a convex »-gon P of given area.
Since among the »-gons of given area

P the regular one, P, has the least perime-
ter and the greatest incercle, we may suppose

fO that 2 lies between the perimeter of P and
that of the incercle of it, for otherwise the

maximum of = is given either by the trivial

O O inequality = =P or by the isoperimetric

inequality 4t = 4% We shall show that
for the values of 2 in question the area
Fig. 4. attains its maximum if P is regular and 7 is

a smooth r-gon belonging to it. It follows,

on the strength of an elementary computation, that = = F(P, »), where the

function F(P,v) is defined by

22
P for P< ———
4vtg£
j e ‘1 2
i) pria s — g —np . ¢
F(P,v)=1 fof e Pl
T T 47 A
r{g —— 71 41-'tg— ¥
. "
4 e 7T
'&-;(— for P;'Frz?tg—v-.

Hence we have the desired inequality
T = F(P.‘, l'.‘).
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3. It is easy to show that for P>0,»=3 F(P,») is a non-decreasing
function both of P and ». We shall show that, as function of two variables,
it is concave (of course, outside the critical domain defined by

lﬂ

{Pfa—rﬁ tg r=3

4rtgi_;-

only in a larger sense). Thus we have, in view of the above considerations
and JENSEN’s inequality,

T=jr;§jF(P;,v;)§nF( Pt >y ]_nF(HG)

1=l =1 =1

This is equivalent to the inequality to be proved.
The details are as follows.

I. Suppose that each disc tends to grow unbounded in all directions
(¢- g by means of a continuous set of similitudes with respect to an inner
point of the disc), but the growth is limited by certain “walls“. These walls
consist partly of the sides of H, partly of the supporting lines which sepa-
rate a disc, either in its original or increased state, from those other discs
which have common boundary points with it. Shortly, whenever two discs
collide, a wall comes into being, hindering the discs to overlap. Hereby each
disc =; will grow into a convex polygon P;. If the sides of two polygons
have a segment in common, we shall call the corresponding discs to be
neighbouring.

Fig. 5.

Represent each disc by an inner point and join the neighbouring ones
each by an “edge“ (i.e.a Jordan-arc) so that no edge should cross another
one (Fig. 5). We obtain a graph with n vertices and, say, e edges, decom-
posing the plane into, say, f “faces“, one of them being infinite. This face
may contain “exceptional“ sides, which do not separate the face from an-
other one, or “exceptional“ vertices, in which only one side or more than two
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sides of the face meet. But the number of the exceptional elements can be
diminished always either by joining to the graph one suitable edge and one
face or by omitting one edge and one vertex. Thus we obtain by a finite
number of steps either an EULERian graph or a graph consisting of one
single vertex. Since in both cases EULER’s formula is satisfied, the same can
be said of our original graph:

f+n=e+2

Denote by s the number of sides of the infinite face, counting the
exceptional edges twice. Then the number of sides of the polygons P, ..., P.
lying at the boundary of A does not exceed s+ 6. Therefore

Vit e+ v =2e+5+6,

with the sign of equality if H has 6 vertices, each belonging to one polygon
and any other boundary point of H at most to two ones. On the other hand,
we have, obviously

2e=3(f—1)+s.
Combining the two last inequalities with EULER’s formula, we obtain
V4o v, =6n—s.
This implies the inequality
M+e-+v.=6n

mentioned in 1. Equality holds only if the number of sides of H equals 6
and s=0, i. e. n=1.

II. In order to solve the maximum problem proposed in 2 we make
use of a result of BesicoviTcH!). Let U be a convex domain and U(r) the
union of the points of those circles of radius r which can be placed into U.
Then — this is the result of BEsicoviTcH we need — U(r) has among all
isoperimetric convex domains lying in U the greatest possible area.

First we suppose that the directions of the outer normals of the sides
of P are given. Then every side of P must have a point with = in common.
For, otherwise, we could displace this side inwards and the other ores out-
wards so that the area P remains invariant and that = should fall in the
interior of P. But then the area of = could be increased, unless = was ori-
ginally a circle. Thus, on account of the above mentioned result of BEesico-
VITCH, T must be a smooth polygon belonging to P.

4) A. S. Besicovitch, Variants of a classical isoperimetric problem, Quart. J. Math
Oxford (2) 3 (1952), 42—49.
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=0

Fig. 6.

Let r be the radius of the arcs of = and P, the inner parallel domain
of P at distance r (Fig. 6). Further, let L and L, be the perimeters of P and
P, and p the »-gon circumscribed about the unit circle with likewise oriented
outer normals as P. Then

L=L,+2pr, A=L,42nr,
P=P.+Lir+pr’, t=P,+Lr+nr,
whence
L—2A=2(p—n)r, P—t=(p—a)r
and consequently
v it
4 p—=m
We have now to examine the minimum of L among the convex »-gons
of given area and given outer normal-directions of the sides. But since,
according to a well-known theorem of LHUILIER, the minimum in question is
attained by a »-gon circumschribed about a circle, we may restrict ourselves
to such a polygon. Then the above formula for = holds for all values of 4
such that /=4 = L, where [ denotes the perimeter of the incercle of P.
Fig. 7 shows the maximal value of = as a function of 4 for an irre-
gular »-gon P and for a regular »-gon P of area P=P, incercle-perimeter
[ and perimeter L. In view of /> and L <L the points of abscissas i =1
and A= L of the diagram of P lie above the diagram of P. Since, further-
2
more, the parabola of equation T=P—% ol
p—r
responding parabola for P in two points for which /<A<l and L<i< L,
they cannot cut (nor touch) one another for / = 4 = L. Consequently the dia-
gram of P lies in the whole interval (/, L) abave the diagram of P. This
expresses just the desired extremum property of the regular polygon and the
smooth polygon pertaining to it.

, obviously, cuts the cor-
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Fig. 7.

I1l. Let us now turn to the proof of the concavity of the function
F(P, »). Since F(P,v) is linear outside the critical domain and for » = const =
= 3 a concave function of P (>0), we may restrict ourselves to the critical
domain.

Introducing the nofations

4o 7]
- Fas oS

vig ':}

the inequalities defining the critical domain will turn into

Gl | - i Tl
and we have in this domain for the function
2= 1——%1-“

the simple representation
(1—Vxyy
2=t
b=
We shall show ihe validity of the incqualiiies

5 d’y
2pe 2y =22y =0, Zrr ;:.J?g— =0
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in the critical domain. This will involve, in virtue of
2 47T | 0 2
FHP Fa'l"_FP*':"za_ Lv (z-ﬁr zw"_zry)'l'zﬂ Zy}'"]

the desired condition F,,F,, —Fy =0 of the concavity of F.
We obtain, by some computation

x(1 ""y).! (222 24y _zf*y) = (V%J’ . 1] (V;—V;)z,

which shows that 2.z, —zs, =0, whenever 0<y<1,0<xy=1. On the
other hand, we have

2/ (1 =YY 22, = —(x—V3) 1=V xy).

This yields for O<y<1 and y=x=1/y the inequality 2z..2, = 0. Thus.
all we need to show is that v' =0 for » = 3.

In consequence of

27 v 2 v

the inequality in question is equivalent to

TR I x 1 .2z #a _.,.n
o S R = e i Bl els ] A

sin2a T

1— = sin «, O< o=

This inequality is, in view of

sin 2« 2’
—'é'u— >1— T, « > 0
certainly satisfied if
-2;—2 =sine

holds. But since this last inequality is true for @ = /3, it holds also (by
elementary properties of the functions ¢’ and sin ) for 0 < @ = n/3.

This completes the proof of the concavity of F and therewith the proof
of our theorem.

(Received September 28, 1956.)



