
Publ. Math. Debrecen

48 / 1-2 (1996), 45–64

Generalized solutions for linear systems governed
by operators beyond Hille-Yosida type

By N. U. AHMED (Ottawa)

Abstract. In this paper we study a class of evolution equations where the infin-
itesimal generators are not of Hille-Yosida type. These are the generators of m-times
integrated semigroups and m-times integrated solution family covering the so called
distribution semigroups of Lion. After a brief review of classical results in this area, we
present a new concept of generalized solutions of such equations in order to cover both
deterministic and stochastic evolution equations and applications to control theory. We
prove existence of generalized solutions for deterministic as well as stochastic systems.

1. Introduction

Let X be a Banach space and let A be a linear operator with domain,
D(A), and range, R(A), in X. Let %(A) ⊂ C, denote the resolvent set
of the operator A and for λ ∈ %(A), R(λ,A) ≡ (λJ − A)−1 denote the
resolvent of A corresponding to λ where J denotes the identity operator.
Consider the abstract Cauchy problem

(1.1)
(d/dt)x(t) = Ax(t), t ≥ 0

x(0) = ξ ∈ X.

It is by now classical that if A is closed, densely defined and there exist
real numbers ω and M ≥ 1 such that (ω,∞) ⊂ %(A), and

(1.2) ‖Rn(λ,A)‖L(X) ≤ M/(λ− ω)n, λ ∈ %(A), n ∈ N
Mathematics Subject Classification: 34G10, 35A05, 35D05, 45N05, 60G20, 60H15,
60H99.
Key words and phrases: Semigroups, m-times integrated semigroups, m-times inte-
grated solution family, Integro Differential Equations, Banach spaces. Existence, Gen-
eralized Solutions.
This work was supported in part by the National Science and Engineering Research
Council of Canada under grant No. A7109.



46 N. U. Ahmed

then A is the infinitesimal generator of a C0-semigroup, T (t), t ≥ 0, of
bounded linear operators in X and the Cauchy problem (1.1) has a unique
solution given by x(t) = T (t)ξ, t ≥ 0. If ξ ∈ D(A), this is a classical
solution, that is, x ∈ C1((0,∞), X) and x(t) ∈ D(A) for all t ≥ 0 and
x satisfies (1.1). On the other hand x given by x(t) ≡ T (t)ξ, t ≥ 0, is a
mild solution if ξ is only an element of X. Here, in general, x(t) does not
belong to the domain of A and hence the equation (1.1) is not satisfied.
However, since D(A) is dense in X, it is easy to verify that a mild solution
is the uniform limit of classical solutions. In fact the density assumption
in the Hille–Yosida theorem [1, Theorem 2.3.3, p. 46] is not necessary for
the existence of solution of the Cauchy problem (1.1). In recent years,
theory of Laplace transforms for vector valued functions, specially Wid-
der’s theorem [1], has played a crucial role in a substantial generalization
of semigroup theory. Let G(X) denote the class of infinitesimal generators
of C0-semigroups of bounded linear operators {T (t), t ≥ 0} in X satisfying
‖T (t)‖L(X) ≤ Meωt, t ≥ 0 for some ω ∈ R and M ≥ 1. In terms of Laplace
transform the Hille–Yosida theorem can be restated as follows.

Theorem 1.1. The operator A ∈ G(X) if, and only if, there exists an

ω ∈ R such that (ω,∞) ⊂ %(A) and the resolvent R(λ,A) is a Laplace

transform.

Proof. See [1, Theorem 2.5.8, p. 56].

Note that the assertion that R(λ,A) be a Laplace transform means
that there exists a strongly continuous operator valued function, T (t),
t ≥ 0, in X such that for each ζ ∈ X,

(1.3) R(λ,A)ζ =
∫ ∞

0

e−λtT (t)ζdt, λ > ω.

The overriding reason for interest in semigroup theory originates from
the question of existence and uniqueness of solutions of differential equa-
tions on Banach space, for example, the Cauchy problem (1.1). For this,
however, it is not essential that R(λ,A) be a Laplace transform, as re-
quired by the Hille–Yosida theorem. In fact it is now known that the
Cauchy problem (1.1) has a solution if, for some m ∈ N0 ≡ {0, 1, 2, . . . },
R(λ,A)/λm is a Laplace transform. The class of operators {A} for which
this property holds are called the infinitesimal generators of m-times inte-
grated semigroups.
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2. m-times integrated semigroups

It is well known that in a general Banach space the dual semigroup,
T ∗(t), t ≥ 0, corresponding to a C0-semigroup T (t), t ≥ 0, is a not a
C0-semigroup. It is only w∗ continuous and the dual Cauchy problem

(2.1) (d/dt)x∗ = A∗x∗, x∗(0) = z∗

has a unique mild solution given by x∗(t) = T ∗(t)z∗, t ≥ 0. The function
t → x∗(t) is only w∗ continuous. But we know that D(A∗) is not in
general dense in X∗ and hence the Hille–Yosida theorem does not apply,
even though the Cauchy problem stated above has a solution. Thus the
density assumption is not necessary for the existence of solutions. Further
we have seen [see Theorem 1.1] that Hille–Yosida theorem requires that
R(λ,A), λ ∈ %(A), be a Laplace transform. This is another limitation.
The introduction of the class of m-times integrated semigroups for m ∈ N0

overcomes both these limitations. In this section we shall briefly review
some important results in this area. First, we present the formal definition
of m-times integrated semigroups.

Definition 2.1. Let m ∈ N0 and A a linear (generally unbounded)
operator with domain and range in a Banach space X. The operator A is
said to be the generator of an m-times integrated semigroup S(t), t ≥ 0,
of strongly continuous bounded linear operators in X if there exists an
ω ∈ R and M ≥ 0 such that ‖S(t)‖L(X) ≤ Meωt, t ≥ 0, and for all λ > ω
the resolvent R(λ,A) exists and for each ζ ∈ X,

(2.2) Rm(λ,A)ζ =
∫ ∞

0

e−λtS(t)ζ dt,

where Rm(λ,A) ≡ R(λ, A)/λm.

In this case the classical solution of the Cauchy problem (1.1) is given
by

x(t) = (dm/dtm)S(t)ζ, for ζ ∈ D(Am+1).

For m ∈ N0, let Gm(X) denote the infinitesimal generators of m-times
integrated semigroups in X. It is clear that

(2.3) G0(X) ⊂ G`(X) ⊂ Gm(X) for 0 ≤ ` ≤ m.

The following result gives the characterization of strongly continuous
(m + 1)-times integrated semigroups.
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Theorem 2.2. A ∈ Gm+1(X) if, and only if, there exist an M ≥ 0
and ω ∈ R and β ≥ ω ∨ 0 such that (β,∞) ⊂ %(A) and

‖((λ− ω)k+1/k!)R(k)
m (λ,A)‖L(X) ≤ M for all λ > β(2.4)

and k ∈ N0,

where Rm(λ, A) ≡ R(λ,A)/λm and R
(k)
m (λ,A) denotes its k-th derivative

with respect to λ.

Proof. For proof see [1, Theorem 2.5.12, p. 59].

For m = 0, (2.4) is precisely the Hill–Yosida inequality [1, Theo-
rem 2.3.3, p. 46]. Thus in this case, even though A is not densely defined,
it is the generator of a 1-time integrated semigroup, S(t), t ≥ 0, that is,
A ∈ G1(X) and, for each initial state ξ ∈ D(A2), the Cauchy problem (1.1)
has a unique classical solution x(t) = (d/dt)S(t)ξ. If the density assump-
tion is added, it immediately follows from [1, Theorem 2.3.3, p. 46] that
A is the generator of a C0-semigroup, T (t), t ≥ 0, that is A ∈ G0 and the
solution is given by x(t) = (d/dt)S(t)ξ ≡ T (t)ξ, t ≥ 0.

The impact of density assumption can be appreciated through the
following result. Define Y ≡ D(A) = strong closure of D(A) in X. Let
AY denote the part of A in Y , that is

D(AY ) ≡ {x ∈ X : Ax ∈ Y }, and AY ζ = Aζ for ζ ∈ D(AY ).

Theorem 2.3. (a): If A ∈ Gm+1(X), for some m ∈ N0, then AY ∈
Gm(Y ). (b): If A ∈ Gm+1(X) and further it is densely defined then A ∈
Gm(X).

It is known that if A is densely defined then R(λ,A∗) = R∗(λ,A) see
[1, Lemma 2.4.2, p. 48]. Thus A∗ satisfies the estimate (2.4) whenever A
does. Thus if A ∈ Gm+1(X) then A∗ ∈ Gm+1(X∗) also. But since A is
also densely defined it belongs to Gm(X). Thus we can state the following
result.

Theorem 2.4. If A is densely defined and A ∈ Gm(X) for some m ∈
N0, then A∗ ∈ Gm+1(X∗).

Proof. See [1, 2].

From this result it follows that if A ∈ G0(X), then A∗ ∈ G1(X∗). We
have already mentioned that, in general T ∗(t), t ≥ 0, is not a C0-semigroup.
But according to the above theorem, A∗ is the generator of 1-time inte-
grated semigroup. That is S(t) =

∫ t

0
T ∗(s)ds, t ≥ 0, and R(λ,A∗)/λ is

the Laplace transform of S(.) for λ ∈ %(A∗). Thus for z∗ ∈ D((A∗)2), the
dual Cauchy problem (2.1) has a classical solution x∗(t) = T ∗(t)z∗, t ≥ 0.
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Theorem 2.5. Consider the Cauchy problem

(2.5)
(d/dt)x = Ax + f,

x(0) = ζ.

Suppose A ∈ Gm(X) with S(t), t ≥ 0, being the corresponding m-times
integrated semigroup, ζ ∈ D(Am+1), f ∈ Cm+1(I, X), and f (k)(0) ∈
D(Am−k), 0 ≤ k ≤ m − 1. Then the Cauchy problem (2.5) has a unique
classical solution x(t) = Dmy(t), t ∈ I ≡ [0, T ], T < ∞ where

y(t) ≡ S(t)ζ +
∫ t

0

S(t− r)f(r)dr.

Proof. See [Arendt 2, Ahmed 1].

3. m-times integrated solution family

Let us consider the following integro-differential equation

(3.1)
(d/dt)x =

∫ t

0

da(s)Ax(t− s)ds, t ≥ 0,

x(0) = ζ,

where A is generally an unbounded linear operator in a Banach space X.

Definition 3.1. A strongly continuous operator valued function S(t),
t ≥ 0, in X is said to be the solution operator of the Cauchy problem (3.1)
if

(i) S(0) = J (identity operator)
(ii) there exist constants ω ∈ R and M ≥ 1 such that

‖S(t)‖L(X) ≤ Meωt, for t ≥ 0.

(iii): For ζ ∈ D(A), S(.)ζ ∈ C([0, T ], X) ∩ C1((0, T ), X), S(t)
commutes with A on D(A) and satisfies equation (3.1) for
all t ∈ I. Thus the solution of equation (3.1) is given by
x(t) = S(t)ζ, t ≥ 0.

Definition 3.2. The pair (A, a) is said to be the (infinitesimal) gen-
erator of a strongly continuous solution family S(t), t ≥ 0, if it generates
the solution operator for the homogeneous Cauchy problem (3.1).

A result characterizing the generators of solution operators for integro-
differential equations of the form (3.1), generalizing Hille–Yosida theorem,
is due to Da Prato and Ianelli [4].
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Lemma 3.3. Suppose the following assumptions hold:

(a1): A is a closed densely defined linear operator in X

(a2): a ∈ BVloc(R+),
∫∞
0

e−ωt|da(t)| < ∞, for some ω ∈ R.

Then the necessary and sufficient conditions for the pair (A, a) to be the
generator of a solution (or transition) operator, S(t), t ≥ 0, are

(1):
∫∞
0

e−λtda(t) = â(λ) 6= 0, (λ/â(λ)) ∈ %(A), for λ > ω.

(2): R(λ) ≡ (λI − â(λ)A)−1 exists for all λ > ω and the Hille–
Yosida inequality holds:

‖R(n)(λ)/n!‖ ≤ M/(λ− ω)n+1, for all λ > ω, n ∈ N0,

where R(n) denotes the n-th derivative of R.

Note that if a(t) ≡ 1, for t ≥ 0; and a(t) ≡ 0 for t < 0, then the
system (3.1) reduces to a differential equation and S(t), t ≥ 0, is a C0-
semigroup with infinitesimal generator given by A. If a(t) = t, then the
system (3.1) is equivalent to a second order evolution equation

(d2/dt2)y = Ay, t ≥ 0, y(0) = 0, ẏ(0) = ζ.

Using the solution operator corresponding to the generator, (A, a), one
can then construct the mild solution of the non homogeneous equation:

(3.2)
ẋ(t) =

∫ t

0

da(s)Ax(t− s) + f(t), t ∈ I,

x(0) = ζ,

as

(3.3) x(t) = S(t)ζ +
∫ t

0

S(t− s)f(s)ds, t ∈ I,

exactly as in the case of differential equations. If ζ ∈ D(A) and f ∈
C1((0, T ), X), then x, given by expression (3.3), is a classical solution
satisfying the equation (3.2).

Recently Arendt and Kellermann [5] has generalized this result to
m-times integrated solution family. This is in the same spirit as the gen-
eralization of the theory of classical C0-semigroups to m-times integrated
semigroups.

For convenience of notation define

Rm(λ) ≡ R(λ)/λm ≡ (λ− â(λ)A)−1/λm, m ∈ N0, λ > ω.
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Definition 3.4. A family of strongly continuous operator valued func-
tions, S(t), t ≥ 0, in X is said to be an m-times integrated solution family
for the Cauchy problem (3.1), for some m ∈ N0, if

(i): There exist M ≥ 0, ω ∈ R such that ‖S(t)‖ ≤ Meωt,

for all t ≥ 0,

(ii): S(0) = J for m = 0, S(0) = 0 for m > 0,

(iii): Rm(λ)ξ =
∫∞
0

e−λtS(t)ξ dt for all λ > ω and ξ ∈ X.

Lemma 3.5. The necessary and sufficient conditions for the pair

(A, a) to be the generator of an (m + 1)-times integrated solution fam-

ily S(t), t ≥ 0, are

(1): A is a closed operator with domain and range in X and

a ∈ BVloc(R+) satisfying condition (a2) of Lemma 3.3,

(2): There exists a number M > 0 and ω ∈ R, such that for

λ > ω,

‖(λ− ω)n+1R
(n)
m (λ)/n!‖ ≤ M for all n ∈ N.

Proof. Under the given assumptions, the operator valued function,
Rm(λ) is in C∞((ω,∞),L(X)) and hence by Widder’s theorem it is the
Laplace transform of a unique strongly continuous L(X)-valued function
S(t), t ≥ 0, which is the solution operator for the Cauchy problem (3.1).

For m ∈ N0, let

Fm(X) ≡ {(A, a) : (A, a) is the generator

of an m-times integrated solution family}.
Similar to the result of Theorem 2.2 for m-times integrated semigroups,
one can prove the following result for m-times integrated solution family.

Theorem 3.6. If the pair (A, a) satisfies the conditions (1) and (2)
of Lemma 3.5, then (A, a) ∈ Fm+1(X). If A is also densely defined then

(A, a) ∈ Fm(X).

Exactly as in the case of m-times integrated semigroups, the impli-
cation of Theorem 3.6 is: if A is also densely defined, then the solution
family of Lemma 3.5 is an m-times, instead of (m + 1) times, integrated
solution operator for (3.1).
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Theorem 3.7. Consider the system (3.2) and suppose the pair (A, a)
is the generator of an m-times integrated solution family S(t), t ≥ 0.
Define

(3.4) y(t) ≡ S(t)ζ +
∫ t

0

S(t− s)f(s)ds, t ∈ I.

Then, the system (3.2) has a classical solution if, and only if,
y ∈ Cm+1(I, X) and in that case the solution x is given by, x = Dmy,
where Dm denotes the m-th derivative with respect to t ∈ I.

Proof. For detailed proof see [5, Theorem 1.2]. We give here an
outline. For ζ ∈ D(A) and t ≥ 0, we have

(3.5) S(t)ζ =

{
(tm/m!)ζ +

∫ t

0

(∫ s

0
da(r)AS(s− r)ζ

)
ds, m ≥ 1,

ζ +
∫ t

0

(∫ s

0
da(r)AS(s− r)ζ

)
ds, m = 0.

Hence S(.)ζ ∈ C1((0, T ), X) and

(3.6) (d/dt)S(t)ζ =

{
(tm−1/(m− 1)!)ζ +

∫ t

0
da(s)S(t− s)Aζ, m ≥ 1

∫ t

0
da(s)S(t− s)Aζ, m = 0.

For the necessary condition, consider the expression S(t−s)x(s), s ∈ [0, t],
0 ≤ t ≤ T . Differentiating this with respect to s and integrating over the
interval [0, t] and using (3.5) and (3.6), one can verify that

∫ t

0

{
(t− s)m−1/(m− 1)!

}
x(s)ds(3.7)

= S(t)ζ +
∫ t

0

S(t− s)f(s)ds, for m ≥ 1,

and

x(t) = S(t)ζ +
∫ t

0

S(t− s)f(s)ds, for m = 0.(3.8)

In other words, given that the pair (A, a) is the generator of an m-times
integrated solution family for m ≥ 1, and x a solution of the Cauchy
problem (3.2), the solution x is related to the given data (ζ, f) through
equation (3.7). According to the definition of y, this is equivalent to the
convolution relation:

(3.9) y(t) =
∫ t

0

{
(t− s)m−1/(m− 1)!

}
x(s)ds, t ≥ 0.
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On the other hand, for m = 0, the solution x is given by the formula
(3.8) which is the well known variation of constants formula (see equations
3.2–3.3). Since x is a classical solution, that is, x ∈ C1((0, T ), X), it follows
from (3.9) that y ∈ Cm+1(I, X). This proves the necessary condition. For
the sufficient condition, one can verify that

(3.10) y(t) = (tm/m!)ζ + A

(∫ t

0

da(s)
(∫ t−s

0

y(r)dr

))

+
∫ t

0

{(t− s)m/m!}f(s)ds.

Differentiating this expression m + 1 times and using the hypothesis that
A is closed, one finds that

y(m+1)(t) = A

(∫ t

0

da(s)y(m)(t− s)
)

+ f(t).(3.11)

Setting x = y(m) ≡ Dmy, we have

ẋ(t) =
∫ t

0

da(s)Ax(t− s) + f(t), t ≥ 0.

This shows that x ≡ Dmy is the solution of the Cauchy problem (3.1).
This completes the outline of our proof.

A set of sufficient conditions that guarantee the smoothness require-
ment of y, given by the expression (3.4), and hence the existence of a
classical solution of the Cauchy problem (3.1), is given in the following
theorem.

Theorem 3.8. Consider the Cauchy problem (3.2) and suppose that

the pair (A, a) is the generator of an m-times integrated solution family

S(t), t ≥ 0. Then, the system (3.2) has a unique classical solution, x ∈
C(I, X) ∩ C1((0, T ), X), if ζ ∈ D(Am+1) and f ∈ Cm+1(I, X) satisfying
the condition f (k)(0) ∈ D(Am−k) for 0 ≤ k ≤ m− 1.

Proof. Using relation 3.5 one obtains (3.6) for k = 1. Then the
result follows from induction argument based on (3.6).
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4. Generalized solutions

Note that for existence of solution of equation (3.2), according to
Theorem 3.7, the smoothness requirement of the data (ζ, f) is rather too
severe and therefore very limited for application. For applications to con-
trol theory and stochastic systems, we would like to consider solutions of
(3.2) for more general data like ζ ∈ X and f ∈ L1(I,X). For this we
must generalize the notion of solution. We introduce here a concept of
generalized solution for the Cauchy problem (3.2) as follows.

Let X be a separable reflexive Banach space with dual X∗. Let

Wm,1(X∗) ≡ {φ ∈ L1(I,X∗) : Dkφ ∈ L1(I,X∗), 0 ≤ k ≤ m}.(4.1)

The space Wm,1(X∗), furnished with the norm topology given by

‖φ‖W m,1(X∗) ≡
m∑

k=0

‖Dkφ‖L1(I,X∗),

is a Banach space. Let ∂I ≡ {0, T} denote the two end points of the
interval I and

Wm,1
0 (X∗) ≡ {φ ∈ Wm,1(X∗) : Dkφ|∂I = 0, 0 ≤ k ≤ m− 1}

denote the completion in the topology of Wm,1(X∗) of the vector space
Cm

0 ((0, T ), X∗) of m-times differentiable functions on (0, T ) with compact
supports. Clearly the dual of the Banach space Wm,1

0 (X∗) is given by
W−m,∞(X). Note that the space W−m,∞(X) equipped with norm topol-
ogy

‖φ‖W−m,∞ ≡ sup{|(φ, e∗)|, e∗ ∈ Wm,1
0 (X∗) : ‖e∗‖W m,1

0
≤ 1}

is a Banach space. This is just the standard Sobolev space with the so
called “negative” norm which can also be viewed as distributions on (0, T )
of order m with values in X.

Consider the Cauchy problem (3.2) and suppose ζ ∈ X and f ∈
L1(I, X). Suppose the pair (A, a) is the generator of an m-times integrated
solution family, S(t), t ≥ 0. Define

(3.4’) y(t) = S(t)ζ +
∫ t

0

S(t− s)f(s)ds
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Definition 4.1. A (generalized) function x mapping I to X is said to
be a generalized solution of the Cauchy problem (3.2) if

(i): x(0) = ζ and
(ii):

∫
I
〈x(t), φ(t)〉X,X∗dt = (−1)m

∫
I
〈y(t),Dmφ(t)〉X,X∗dt, for all

φ ∈ Wm,1
0 (X∗), where Dm denotes the distributional deriv-

ative of order m with respect to time t ∈ I.

Theorem 4.2. Consider the system (3.2) and suppose the pair
(A, a) ∈ Fm(X) for some m ∈ N0 with the corresponding solution op-

erator S(t), t ≥ 0. Suppose D(Am+1) = X. Then, for each ζ ∈ X
and f ∈ L1(I, X), the system (3.2) has a unique generalized solution
x ∈ W−m,∞(X).

Proof. Since D(Am+1) is dense in X, there exists a sequence ζn ∈
D(Am+1) such that ζn

s−→ ζ in X. By use of molifiers, one can easily verify
that Cm+1(I, X) is also dense in L1(I, X). Thus we can choose a sequence
{fn} ∈ Cm+1(I, X) satisfying f

(k)
n (0) ∈ D(Am−k), 0 ≤ k ≤ m − 1 such

that fn
s−→ f in L1(I, X). Consider the system (3.2) with data (ζn, fn)

satisfying the properties as stated above. Define

(4.2) yn(t) ≡ S(t)ζn +
∫ t

0

S(t− s)fn(s)ds.

It follows from Theorem 3.8, that the system

(4.3)
ż(t) =

∫ t

0

da(s)Az(t− s) + fn(t), t ∈ I,

z(0) = ζn,

has a unique classical solution z = xn, xn ∈ C(I,X) ∩ C1((0, T ), X). By
Theorem 3.7, xn = Dmyn, xn(0) = ζn, for all n ≥ 1, where yn is given
by the expression (4.2). Define the sequence of linear functionals {`n} on
Wm,1

0 (X∗) as follows:

(4.4) `n(φ) ≡
∫ T

0

〈xn(t), φ(t)〉X,X∗dt.

Clearly it follows from the properties of the sequence {yn} and the defini-
tion of classical solution that

(4.5)
`n(φ) =

∫ T

0

〈Dmyn(t), φ(t)〉X,X∗dt

= (−1)m

∫ T

0

〈yn(t), Dmφ(t)〉X,X∗dt.
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Since S is an m-times integrated solution family, there exists a finite num-
ber MT such that

Sup
t∈I

‖yn(t)‖X ≤ MT

(‖ζ‖X + ‖f‖L1(I,X)

)
.

Hence, it follows from equation (4.5) that there exists a constant

C ≡ C(MT , ‖ζ‖X , ‖f‖L1(I,X))

such that

|`n(φ)| ≤ C‖φ‖W m,1
0 (X∗) = C‖Dmφ‖L1(I,X∗),

for all φ ∈ Wm,1
0 (X∗). The last equality easily follows from the end condi-

tions. In other words, in Wm,1
0 (X∗), ‖φ‖W m,1

0 (X∗) = ‖Dmφ‖L1(I,X∗). Thus

the sequence of linear functionals {`n} defined on Wm,1
0 (X∗) is uniformly

bounded. Further, it follows from (4.2) that

(4.6) yn(t) s−→ y(t) in X uniformly on I.

Thus the expression on the right hand side of (4.5) has a limit as n →∞.
Hence the left hand side also has the same limit and we conclude, by virtue
of uniform boundedness principle, that there exists a linear functional ` ∈(
Wm,1

0 (X∗)
)∗

= W−m,∞(X) such that `n → ` pointwise on Wm,1
0 (X∗).

Hence by duality, there exists an x ∈ W−m,∞(X) such that

`(φ) =
∫ T

0

〈x(t), φ(t)〉X,X∗dt = (−1)m

∫ T

0

〈y(t), Dmφ(t)〉X,X∗dt,

for all φ ∈ Wm,1
0 (X∗). For uniqueness, note that if x̃ ∈ W−m,∞(X) is

another solution, then
∫ T

0

〈x(t)− x̃(t), φ(t)〉X,X∗dt = 0, for all φ ∈ Wm,1
0 (X∗).

Hence x and x̃ must be one and the same X-valued distribution. It remains
to show that x(0) = ζ. For this we introduce the following regularizing se-
quence of C∞-functions {%n} ∈ C∞0 (0, T ) with compact support satisfying
the following properties:

%n(t) ≥ 0, supp(%n) ⊂ [an, bn], 0 < an < bn < T, bn → 0

and
∫ T

0

%n(t)dt = 1.
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Let z ∈ X∗ and define φn(t) ≡ %n(t)z. Clearly, it follows from the preced-
ing result that

(4.7)
Lim
n→∞

`(φn) = Lim
n→∞

∫ T

0

〈x(t), z〉%n(t)dt

= 〈x(0), z〉.
On the other hand for smooth data (ζn, fn) we have, Dmyn(t) = xn(t),

t ∈ I, and Dmyn(0) = xn(0) = ζn; where ζn
s−→ ζ. Thus

(4.8)
lim

k→∞
`n(φk) = lim

k→∞

∫ T

0

〈xn(t), φk(t)〉dt

= 〈ζn, z〉.

Using (4.7) and (4.8) and the fact that `n → ` pointwise on Wm,1
0 (X∗)

one can verify that

〈x(0)− ζ, z〉X,X∗ = 0 for all z ∈ X∗.

Hence x(0) = ζ. This completes the proof.

Remark. Theorem 4.1 can be easily extended to admit f ∈ Lp(I,X),
1 ≤ p ≤ ∞, and the Sobolev spaces Wm,q

0 (X∗),W−m,p(X) where 1/p +
1/q = 1 and 1 < p, q < ∞. Again these are standard Sobolev spaces
of vector valued generalized functions defined on (0, T ) and their corre-
sponding duals.

5. Stochastic systems

In this section we consider application to stochastic systems. Let
(Ω,F ⊃ Ft ↑, P ) be a filtered probability space. Let H,K be two separable
Hilbert spaces and w ≡ {w(t), t ≥ 0} a K-valued Ft-adapted Brownian
motion with P{w(0) = 0} = 1. Let Q ∈ L(K) denote the incremental
covariance operator of the process w. We consider the stochastic system
given by

(5.1)
dx(t) =

(∫ t

0

da(r)Ax(t− r)
)

dt + f(t)dt + σ(t)dw(t), t ∈ I,

x(0) = ζ.

We shall assume that the pair (A, a) ∈ Fm(H) for some m ∈ N0 and σ
is a suitable L(K, H)-valued Ft-adapted random process. More precise
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hypothesis is given later. Our objective here is to prove the existence of
generalized solutions of equation (5.1) in the sense defined below. As in
section 4, we introduce the Sobolev spaces: Let I0 ≡ (0, T ) and

Wm,2(H) ≡ {φ ∈ L2(I0,H) : Dkφ ∈ L2(I, H), 0 ≤ k ≤ m}
and

Wm,2
0 (H) ≡ {φ ∈ Wm,2(H) : Dkφ|∂I0 = 0, 0 ≤ k ≤ m− 1}.

Note that the dual of Wm,2
0 (H) is given by W−m,2(H).

Definition 5.1. A stochastic process x considered as a map from Ω to
W−m,2(H) is said to be w∗-measurable if for every φ ∈ Wm,2

0 (H),

ω −→
∫ T

0

〈x(ω, t), φ(t)〉dt

is F-measurable and it is said to be w∗-progressively measurable if for every
t ∈ I, and φ ∈ Wm,2

0 (H) with supp φ ⊂ (0, s), for any s < t,
∫ T

0
〈x(ω, θ),

φ(θ)〉dθ ∈ Ft.

Now we are prepared to introduce the notion of generalized solution
for the system (5.1).

Definition 5.2. A process x ≡ {x(t), t ∈ I} is said to be a generalized
solution of equation (5.1) if x ∈ L2(Ω,W−m,2(H)), is measurable in the
sense of Definition 5.1, x(0) = ζ P -a.s and it satisfies the following equality

(5.2)
∫

I

〈x(t), φ(t)〉Hdt = (−1)m

∫

I

〈y(t), Dmφ(t)〉. P-a.s,

where the process y is given by

(5.3)
y(t) = S(t)ζ +

∫ t

0

S(t− s)f(s)ds + z(t),

z(t) ≡
∫ t

0

S(t− s)σ(s)dw(s), t ∈ I.

First we present some properties of the process y. Let L2(F0,H) de-
note the L2-space of H-valued, F0-measurable random variables; Le

2(H) ≡
Le

2(I, H) the Hilbert space of H-valued, Ft adapted, processes satisfying

E

∫ T

0

|f(t)|2Hdt < ∞;
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and let Le
2(LQ(K,H)) denote the Hilbert space of operator valued pro-

cesses {σ} satisfying

E

∫

I

Tr(σ(t)Qσ∗(t))dt < ∞,

where Q is a positive symmetric bounded linear operator in K. The scalar
product in this space is given by

〈〈σ, β〉〉 ≡ E

∫

I

Tr(σ(t)Qβ∗(t))dt,

and the Hilbert space mentioned above is obtained by completion of the
pre Hilbert space with respect to this scalar product.

Lemma 5.3. Consider the process y and suppose the pair (A, a) ∈
Fm(H) for some m ∈ N0, with the corresponding solution operator S(t),
t ≥ 0, ζ ∈ L2(F0,H), f ∈ Le

2(H) and the operator valued process σ is

Ft-adapted and satisfies

(5.4) E

∫

I

Tr

(
σ(s)Qσ∗(s)

)
ds < ∞.

Then the process y has the following properties:

(i): There exists a constant CT depending on M, ω and T such that

(5.5) E|y(t)|2H

≤ CT

{
E|ζ|2H + E

∫ T

0

|f(t)|2Hdt + E

∫ T

0

Tr
(
σ(t)Qσ∗(t)

)
dt

}
;

(ii): y ∈ Le
2(H) and hence P{∫

I
|y(t)|2Hdt < ∞} = 1;

(iii): y is mean square continuous.

Proof. The first conclusion follows from straight forward computa-
tion using the exponential bound of the solution operator S(t), t ≥ 0, and
the basic assumptions on the data ζ, f and σ. The second follows trivially
from the first. The third property follows from strong continuity of S and
Lebesgue dominated convergence theorem.

Now we are prepared to prove the existence of solution of equation
(5.1).
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Theorem 5.4. Consider the system (5.1) and suppose the assump-
tions of Lemma 5.3 hold and the pair (A, a) ∈ Fm(H) for some m ∈ N0

with the corresponding solution operator S(t), t ≥ 0. Suppose D(Am+1) =
H. Then, for each ζ ∈ L2(F0,H) and f ∈ Le

2(H), the system (5.1) has a
unique generalized solution x ∈ L2(Ω,W−m,2(H).

Proof. Since the proof is based on similar arguments as given in
the proof of Theorem 4.2, we shall only present an outline. By assump-
tion D(Am+1) is dense in H and ζ ∈ L2(F0, H) and hence there exists a
sequence {ζn} such that ζn ∈ D(Am+1)-P-a.s and

ζn
s−→ ζ, in L2(F0,H).

Since f ∈ Le
2(H), by Fubini’s theorem f ∈ L2(I, H) P-a.s and hence,

by virtue of density of Cm+1(I, H) in L2(I, H), there exists a sequence
{fn} such that fn ∈ Cm+1(I, H) P-a.s and Dkfn(0) ∈ D(Am−k), k =
0, 1, 2, . . . , m− 1 P-a.s and

fn
s−→ f in Le

2(H).

By virtue of (5.4), z ∈ Le
2(H) and hence for any η ∈ L2(F , R) the func-

tional

(5.6)
`1,η(φ) ≡ E

{
η

∫

I

〈Dmz(t), φ(t)〉dt

}

= (−1)mE

{
η

∫

I

〈z(t), Dmφ(t)〉dt

}

is well defined on Wm,2
0 (H) and there exists a constant d(η) dependent on

the norm of η, that is,
√

E|η|2H , and independent of φ such that

(5.7) |`1,η(φ)| ≤ d(η)‖φ‖W m,2
0 (H).

Since η ∈ L2(F , R) is arbitrary, this shows that z has distributional deriva-
tives (with respect to t ∈ I) and z ∈ L2(Ω,W−m,2(H)). Now define

(5.8)
ỹn(t) ≡ S(t)ζn +

∫ t

0

S(t− s)fn(s)ds, t ∈ I;

yn(t) = ỹn(t) + z(t), t ∈ I.

Clearly ỹn ∈ Cm+1(I, H) P-a.s and note that by Lemma 5.3,

ỹn
s−→ (y − z) in Le

2(H).
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Define x̃n ≡ Dmỹn. Then clearly, for φ ∈ Wm,2
0 (H),

(5.9)
`n
2,η(φ) ≡ E

{
η

∫

I

〈x̃n(t), φ(t)〉dt

}

= (−1)mE

{
η

∫

I

〈ỹn(t), Dmφ(t)〉dt

}
.

By virtue of similar arguments as given in the proof of Theorem 4.1,
and letting n → ∞, it follows from (5.9) that there exists a unique
x̃ ∈ L2(Ω,W−m,2(H)) such that

(5.10)
`2,η(φ) ≡

{
η

∫

I

〈x̃(t), φ(t)〉dt

}

= (−1)mE

{
η

∫

I

〈y(t)− z(t), Dmφ(t)〉dt

}
.

Hence it follows from (5.6) and (5.10) that there exists a unique x ∈
L2(Ω,W−m,2(H)) such that

E

{
η

∫

I

〈x(t), φ(t)〉dt

}
= (−1)mE

{
η

∫

I

〈y(t), Dmφ〉dt

}
.(5.11)

Since this equation is valid for arbitrary η ∈ L2(F , R), we conclude that
∫

I

〈x(t), φ(t)〉dt = (−1)m

∫

I

〈y(t), Dmφ(t)〉dt P-a.s,(5.12)

for each φ ∈ Wm,2
0 (H). Since φ ∈ Wm,2

0 is otherwise arbitrary, it fol-
lows from the Ft-measurability of y(t) that the process x is also Ft-
measurable in the sense of Definition 5.1. Using molifiers as in Theo-
rem 4.2, Lebesgue dominated convergence theorem and arguments similar
to that in Theorem 4.2, one can justify that x(0) = ζ P-a.s. This proves
that x ∈ L2(Ω,W−m,2(H)) is the unique generalized solution, measur-
able in the sense of Definition 5.1, of the stochastic system (5.1). This
completes the proof.

Remark. It is clear from our existence results that the map

{ζ, f} −→ x(ζ, f)

from L2(F0,H)× Le
2(H) to L2(Ω,W−m,2(H)) is continuous.
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6. An example

In this section we present an example for an elastic system with struc-
tural damping subject to random perturbation. The model is given by a
second order evolution equation in a Hilbert space E

(6.1)

ξ̈ = Aξ̇ + (αA2 + βA + γJ)ξ + f̃ + σ̃0N0

ξ(0) = ξ1

ξ̇(0) = ξ2

where f̃ may represent a deterministic or a random force and N0 is a
distributed white noise. The deterministic version of this system was ex-
tensively studied by Neubrander [8]. By introducing the variables

z ≡
(

ξ

ξ̇

)
, f ≡

(
0
f̃

)
, σ ≡

(
0
σ̃0

)

and the operator

A0 ≡
(

0 J
(αA2 + βA + γJ) A

)

and replacing the distributed white noise by a corresponding abstract
Brownian motion W , defined on E, one can rewrite the second order equa-
tion as a first order stochastic evolution equation

(6.2) dz = A0zdt + fdt + σdW, z(0) = z0

on the Hilbert space H ≡ E × E equipped with natural scalar product
inherited from that of the original Hilbert space E where the second order
system is defined. For a closed operator A in E, the operator A0, in
general, is not a closed operator in H. However if %(A) is non empty, the
operator A0 admits a closure [see 8] and, for any µ ∈ %(A), it is given by
the composition

A ≡ Ā0 ≡
(

(µ−A)2 0
0 (µ−A)2

)

◦
(

0 R2(µ,A)
(αA2 + βA + γJ)R2(µ,A) AR2(µ,A)

)
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with the domain

D(A) = {z = (z1, z2) ∈ H :

(αA2 + βA + γJ)R2(µ, A)z1 + AR2(µ,A)z2 ∈ D(A2)}.

Replacing A0 by its closure A = Ā0 in equation (6.2) we have

(6.3.) dz = Azdt + fdt + σdW, z(0) = z0.

Then using the variation of constants formula one is able to prove the exis-
tence of solution of equation (6.1) in some generalized sense by proving the
existence of solution of equation (6.3). It was shown by Neubrander [8]
that for α 6= 0, A is not a generator of a C0-semigroup on H. However, for
β = γ = 0 and α 6= 0 and some additional assumptions on A, Neubrander
proved that A is the generator of a once integrated semigroup on H. Thus
if the operator valued process σ is assumed to satisfy the property (5.4) of
Lemma 5.3 and the Hilbert space K = E and a of Theorem 5.4 is taken
as the function which is zero for t < 0 and one for t ≥ 0, and m = 1,
our result of Theorem 5.4 will apply to the stochastic evolution equation
(6.3) as a special case. Neubrander also discussed general situations. For
example, if the resolvent of the operator A is nonempty and has a polyno-
mial growth then the resolvent of A also has a polynomial (a different one)
growth and in that case there exists an integer m, related to the order of
the later polynomial, so that A is the generator of an m-times integrated
semigroup. Recall that m-times integrated semigroups are equivalent to
the so called distribution semigroups introduced by Lions [see 3, 5, 8] and
the references therein. Again our result will cover this as a special case.

Remark. Theorem 5.4 can be extended to Banach spaces using the
notion of weak second order random processes. This broadens the field of
applications including stochastic partial differential equations where the
differential operators are defined on Lp spaces and do not generate C0-
semigroups on such spaces [see 3, 5, 8] but generate integrated semigroups.
This and its applications to Optimal control of systems described here are
currently under study.
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