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An extremal distribution of great circles on a sphere.
By L. FEJES TOTH (Budapest).

Recently various extremum properties of the regular polyhedra had been
discovered. But very little is known in this direction about semi-regular
figures'). Therefore it seems to be of some interest to show that some of
the Archimedean tessellations can be characterised in an extremely simple
way by an extremum postulate.

A spherical tessellation is said to be face-regular if it has regular faces
and equal vertex figures®). If a vertex is surrounded in the proper cyclic
order by an i-gon, ..., k-gon, the tessellation is denoted by (i,..., k). The
same symbol is used for the corresponding polyhedron.

We turn our attention to the face-regular polyhedra the vertex figures
of which have central symmetry. These polyhedra of type (3, , 3, k), which
may be derived from the Platonic solids by considering the convex hull of
their edge-midpoints, are said to be quasi-regular. There are three such poly-
hedra (k=3, 4,5), from which the octahedron (3, 3, 3, 3) is itself Platonic
(i.e. both face-regular and vertex-regular). The polyhedra (3,4, 3, 4) and
(3,5,3,5) are known as cuboctahedron and icosidodecahedron®). (Fig. 1).

Consider ‘a spherical tessellation determined by n great circles. Our
problem is to find the distribution of the great circles for which the length
of the greatest edge of the tessellation will take its minimum (i. e. the distri-
bution in which the great circles will divide one another possibly finely and
uniformly). The following remark implies the solution for the values of
n=3 4 and 6.

1) Consider the distribution of n points on a sphere in which the least distance
between the points becomes maximal. K. Scutrte and B. L. van per Waerpen [Auf welcher
Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? Math. Ann. 123,
(1951) 96—124] showed that for n—= 8 the points are the vertices of an Archimedean anti-
prisma (3,3,3,4) and they enunciated the analogous conjecture for n=24 concerning the
solid (3, 3. 3, 3, 4) and for n = 32 concerning the (vertex-regular) dual tessellation of (3, 5, 3, 5).

%) The vertex figure is the polygon which arises by joining the midpoints of the
consecutive edges emanating from a vertex.

3) Cf. H. S. M. Coxeter, Regular polytopes, London, 1948.



80 L. Fejes Toth

If | denotes the length of the greatest edge of a spherical tessellation
determined by n > 2 great circles, then
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Equality holds only for the three quasi-regular tessellations.

Fig. 1a.

Fig. 1d. Fig. le. Fig. 1f.

The above inequality is obvious. For each great circle, being devided
by the other ones into at most 2(n—1) segments, does contain an edge of
length = 27/2(n—1). Thus we have only to discuss the case of equality,
i. e. the case in which each great circle is intersected by the other ones at
the vertices of a regular 2(n—1)-gon.

There is in the tessellation a least angle ABC formed by two adjacent
edges AB and BC. Let A" and B’ be the points cut out from the sides BA
and BC of this angle by the great circles passing through C and A, res-
pectively. None of the segments AC’ and CA’ can be greater then AB=
= BC = st/(n—1), since otherwise the angles AC’B and CA’B would be
smaller then the angle ABC, conifrary to our suprosition. Therefore we have
AC'= CA"==a/(n—1), on account of which the segments AC’ and CA’
cannot intersect. Consequently they must coincide, showing that the (equila-
teral) triangle ABC is a face of the tessellation. (Fig. 2).
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The vertex angles of this triangle being all minimal angles, at every
vertex a further triangle must join. Thus the whole tessellation can be built
up step by step to form a tessellation of type (3, &, 3, k). This completes
the proof of the correctness of our remark.

What can be said about the extremal figure for great values of n and
what is the value of liminfn/? Are these questions by some means con-

n+o

nected with the Euclidean tessellation (3, 6, 3,6) (Fig.3)? These questions
are still unsettled.
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Fig. 2. Fig. 3.

An analogous problem can be raised directly in Euclidean plane. We
define the (upper) density of a set of straight lines by d =1lim sup N(R)/27R,
B>

where N(R) denotes the number of lines of the set cutting the circle of
radius R centred at a fixed point O*). We consider a tessellation determined
by a set of lines no edge of which being greater than 1. The problem is to
find the lower bound of the densities of all line-sets of this property.

In the quadratic tessellation (4, 4, 4, 4) of edge-length 1 the density of
lines equals 2/7, while for (3,6, 3, 6) we have d — | 3/z. It may be conjec-
tured that this is the lower bound in question.

Further problems arise by considering instead of the edges the peri-
meter and area of the faces of the tessellation. It is easy to show that in a
spherical tessellation determined by n great circles there is a face of peri-

4) Note that 27t R is the integral geometrical measure of all lines intersecting our
circle, If N*(R) is the corresponding number for a new centre O*, we have

R—a N(R—a) _ N"(R){ R+a N(R-+a) s
R 2n(R—a)™ 2nR = R 2n(R+a)’
showing that d does not depend from the choice of O.
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meter = 2zzn/(n*—n-+2) and a face of area®) = 4:/(n®—n-+2). But these
estimations are only for n = 3 exact.

The problems of finding the thinnest distribution of lines which divide
the plane into parts the perimeter or area of which don’t exceed a prescribed
quantity seems to lead to the tessellation (4, 4, 4, 4).

(Received May 31, 1958.)

5) An inequality of opposite sense, expressing an extremum property of (3,4,3,4),
can be found by A. Heepes, An extremum property of the spherical net of the cubocta-

hedron, Publ. Math. Inst. Hung. Acad. Sci. 3 (1958), 97—99. (Hungarian with English and
Russian summary.)



