A theorem on abstract linear dependence relations

By K. G. JOHNSON (New Orleans, Louisiana)

In the preceding paper [I] M. N. BLEICHER and G. B. PRESTON study
a certain definition of an abstract linear dependence relation on a set. In the
present paper, the same definition (Definition 1) is considered and some other
results are obtained. The Corollary to the Theorem in section 3 below settles
affirmatively a conjecture of G. B. PRESTON’S regarding a strong form of Ste-
initz Exchange Theorem.

§ 1. Terminology

In this paper 0 denotes the empty set, AN B the set of elements in A,
but not in B. Here x, instead of {x}, will be used to denote the set whose
only element is x if no confusion is likely.

Definition 1. A relation < between subsets of a set A (X<VY will be
written and X will be said to be < dependent on Y) is called a linear de-
pendence relation on A, or briefly a dependence relation on A if it satisfies
the following four laws:

1.L1. If XcV then X<V where X, YCA.

1.2. If X,<Y forall ¢ in any index set 7 then (U{X: t¢€ T})<Y, where

Xr, i i ety B

1.3. If X<V and Y<Z then X<Z.

1.4. If y<X and y<4« X x then x< (X \x)Uy for any elements x, y

in AV

In this paper < is used exclusively in the sense of Definition 1. For
the purpose of well ordering a set the symbol —< is used.

Set theoretic inclusion is a dependence relation on A. Other examples
are given by dependence in vector spaces. Hence all results proved apply to
these important examples.

1) Compare 1.1, 1.3, and 1.4 with the well-known axioms of abstract linear depen-
dence in [2] pp. 65—66 and [3] § 36.
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The following are definitions where it is considered that everything ta-
kes place in a fixed set A on which < is a dependence relation. X is a <
independent set if for all x€ X, x4« X\ x. If X is not independent then it
is a < dependent set. If X<¥ and Y< X then X is < equivalent to ¥. We
write /(X) for the class of all independent subsets of X and M(X) for the
class of all maximal (relative to inclusion) independent subsets of X. S(X)
will denote the class of all subsets of X. If A<Bc A, then we say B € G(A).
We say < is of finite character in A if for all Bc A, B is < independent
if and only if every finite subset of B is < independent. By well known
results on properties of finite character any < independent subset is contai-
ned in a maximal such.

§ 2. Properties of linear dependence relations

The following result is well known [2].

Lemma 2.1. /f X€I(A) and XUy&I(A) then y<X.

From Lemma 2.1. we obtain the following.

Lemma 2.2. M(A)c G(A).

PrROOF. Let M € M(A), and suppose a € A, a< M. Then by Lemma 2. 1.
Muaé€ I(A). Hence M was not maximal which contradicts M € M(A).

In the remainder of this paper < will be considered to be of finite
character.

§ 3. A function theorem

Theorem. Let < be a dependence relation of finite character on a set A.
Let B € G(A). Then there exists a function Ig: S(A)— I(B) such that

(1) CU 115(C) € G(A) for each C e S(A).

(2) If xe€C, x<0, then x<Ilz(C), and if ye€lIllz(C) then

y < (Cu Ix(C))\y.

Q) If G, C,€8(A), Ci<C, then ITx(C,) < ITg(C,).

(4) Cn IIx(C)=0, for each C € S(A).

(5) If C,, C,€S(A) are < equivalent, then Il;(C,)= I1:(C,).

(6) If D€ G(A) then IIy(D)=0.

(7) 1Ix(0) € M(A).

ProOF. Well order B with respect to <. Let C € S(A). Form I15(C)
as follows. Inspect each element of B in succession with respect to < and
if b€ B and all elements of B less than b have already been checked, do
as follows with b: If b4 CuU {those elements of B both less than & and al-
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ready placed in /75(C)}, then place b in I15(C). Otherwise leave b out of
115 (C).
That I is into /(B) will follow when (2) is proved below.

Proof of (1). By construction of Cullx(C), if x€A then either
{x} cCullz(C) or x<KcCullz(C). Hence by 1.1. of Definition 1,
x<CuU H(C). (1) then follows from 1.1. and 1. 2. of Definition 1.

Proof of (2). A. lf x€ C, x <« 0, then x< Il5(C). For suppose x< I1(C).
Then x<Sc IIx(C) where S is finite and of minimal cardinal (for < is of
finite character). Hence by 1.4. of Definition 1 there is a y €S such that
y<(S »)Uux. But this contradicts the construction of I/z(C) in view of
Lemma 2.1. Hence x « I1x(C) if x€C.

B. If y€ II;(C), then y«(C u I1x(C))\y. The proof of B is similar
to that of A and is omitted. Note: In view of B the fact that /7 is into /(B)
follows at once.

Proof of (3). Suppose (3) false. Then let C,= IIx(C)N\1Ix(C,)+ 0.
Let x be the first element of C, with respect to <. Then x<C,U{y|y€ B,
y=<x, and y € lI5(C,)}. Otherwise x would be in I7x(C,). But C,U{y|y € B,
y=<x,and y€ g(C)}<Cu{y|ly€B, y=<x,and y € I13z(C,)} because C,<C,
while {y|y € B, y<x, and y€ Ilx(C)}<{y|y€B and y=<x}<CuU{y|ly€B,
y=<x, and y € Il5(C,)} by 1.1. of Definition 1 and the way /75(C.) is cons-
tructed. Then x<((C,) U I15(C.))\x because of 1.3. of Definition 1. Hence
by (2), x¢ I15(C;). But x€ G, I1x(C;). This is a contradiction. Hence x
does not exist and consequently C, has no first element. Since C; is well
ordered it follows that C,=@. Thus we have that /Tx(C.))\11x(C,)= 0.
This implies 115(C.) < I1,(C)).

Proof of (4). This is immediate from the construction of I1x(C).

Proof of (5). By (3) if C, and C, are < equivalent then I/;(C)c
c I(C,) < Hx(C,). Hence 11;(C,)= Hy(C,).

Proof of (6). If D€ G(A) then II5(D)= 0 by construction.

Proof of (7). This is immediate from (1) and (2).

Corollary. Let A be a set and let < be a linear dependence relation

of finite character on A. Then there exists a function II: I(A)— I(A) such
that if S, S,, S, € I(A) then

(¢) SUII(S) is a maximal < independent subset of A.

(@) If S,<S8., then 1I(S.,)c II(S,).

) SnlI(S)=0.

PrROOF. It is clear that 77, in the Theorem induces a function I7:
I(A)— I(B)c I(A) defined by [I— I1x|I(A). Then (8) of this corollary fol-
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lows from (3) of the Theorem and (y) of this corollary follows from (4) of
the Theorem.

To show («) observe that if S € /(A) then by definition of /I and (1)
of the Theorem, SuU ZI(S)€ G(A). Hence, Su lI(S) will be maximal inde-
pendent if it is independent. Suppose S U //(S) is not independent. Then
there is an x € SU /1(S) such that x<(Su 7/(S))~x. Then by virtue of (3)
of the Theorem x € S. By the finite character of <, x<{x,,..., x.} =K, Kis
of minimal cardinal (i. e. there is no set L<(Su //(S))~x such that x<L
and Card L is less than Card K), Kc(Sull(S))»x, and KnlI(S)+ 0
since S is < independent. Hence there is a y € K'n I1(S) such that x<< K\ .
Hence y<(K\»)Ux by 1.4. of Definition 1. Therefore y<(Su 7I1(S)) .y by
1.3 of Definition 1. This contradicts (3) of the Theorem. Hence Su ZI(S) is
independent and the Corollary is true.

Remark on (5) of the Theorem: The question arises, ,Is the converse
of (5) true, that is, if I1x(C,)= II3(C,), are C, and C, necessarily < equi-
valent?” That the answer is negative is shown by example. Let A= {q, b, ¢, d}.
Let any subset with at least two elements be in G(A). But let no subset of
only one element be in G(A). It is easily seen that Definition 1 is satisfied
and < is of finite character. Then if one lets B of the Theorem be {a, b},
well ordered so that a < b, it is seen that I1;({c})= {a} = ITx({d}). But {c}
and {d} are not < equivalent because of the construction of G(A).

A. KerTesz and G. B. PRESTON (independently of each other) have
pointed-out to me that the Corollary above implies the Theorem 2 of BLEICHER
and PRESTON [1].
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