L_{t}-Horn sentences and reduced products

By MILOŠ S. KURILIĆ (Novi Sad) and MILAN Z. GRULOVIĆ (Novi Sad)

Abstract

It is proved that under continuum hypothesis an L_{t}-sentence is preserved under reduced products of topological structures iff it is equivalent in basic structures to an L_{2}-Horn sentence. Specially, each L_{t}-Horn sentence is preserved under such products.

1. Introduction

The aim of the paper is to prove the topological version of the classical theorem of H. J. Keisler concerning Horn sentences and reduced products (see [2], Theorem 6.2.5 or [6]).

The language L_{t}, introduced by T. A. McKee in [7] and [8] and M. Ziegler in [9] is a sublanguage of the monadic second-order language L_{2} which (using weak structures as models) can be regarded as a twosorted first-order language.

For the coherence of the text firstly we introduce the notation and recall a few well known facts.

We consider the two-sorted language $L_{2}=L \cup \operatorname{CONST} \cup\{\in\}$, where L is a first-order language (with the sets of relations, functions and constants, respectively, Rel, Fnc and Const). CONST is the set of "set constants" ([4]) and \in is a "new" binary relation (not contained in Rel). $\operatorname{Var}^{1}=$ $\left\{v_{1}, v_{2}, \ldots\right\}$ and $\operatorname{Var}^{2}=\left\{V_{1}, V_{2}, \ldots\right\}$ are the sets of individual and set variables. As usual we use meta variables x, y, z, \ldots and X, Y, Z, \ldots For the sake of convinience, the sets of terms $\left(\operatorname{Term}_{L_{2}}\right)$ and formulas $\left(\operatorname{Form}_{L_{2}}\right)$ are defined as follows. The terms of L_{2} are exactly the terms of L, i.e.

[^0]$\operatorname{Term}_{L_{2}}=\operatorname{Term}_{L}$. The set of atomic L_{2}-formulas, $A t_{L_{2}}$, contains atomic L-formulas and formulas of the shape $t \in X$ and $t \in C$, where $t \in \operatorname{Term}_{L}$, $X \in \operatorname{Var}^{2}$ and $C \in$ CONST. The set of L_{2}-formulas is obtained from atomic L_{2}-formulas by a finite application of connectives \wedge, \vee and \neg and quantifiers $\exists x$ and $\exists X(\Longrightarrow, \Longleftrightarrow, \forall x$ and $\forall X$ are defined in the standard way). The "unofficial" formulas $X=Y, X=C$ are to replace the formulas $\forall x(x \in X \Longleftrightarrow x \in Y), \forall x(x \in X \Longleftrightarrow x \in C)$. By $F v(\varphi)$ we denote the set of free variables of the formula $\varphi \in \operatorname{Form}_{L_{2}}$. $\operatorname{Sent}_{L_{2}}$ is the set of L_{2}-sentences.

A model of L_{2} is a quadruple $\mathcal{A}=\langle\mathbf{A}, \mathcal{O}, \mathbf{C}, \varrho\rangle$, where \mathbf{A} is a model of (the first-order language) L with domain $A, \mathbf{C} \subseteq \mathcal{O}$ and $\varrho \subseteq A \times \mathcal{O}$ is the interpretation of the relation \in. We say that a model \mathcal{A} is weak if $\emptyset \neq \mathcal{O} \subseteq P(A)$ and ϱ is the membership relation (we will write again \in). Of course, there is no restriction at all if we consider just weak models (any model is isomorphic to some such model). Thus, from now on, a model will mean a weak model and we will simply write $\mathcal{A}=\langle\mathbf{A}, \mathcal{O}, \mathbf{C}\rangle$. A valuation in \mathcal{A} is an union $\tau=\tau^{1} \cup \tau^{2}$, where $\tau^{1}: \operatorname{Var}^{1} \longrightarrow A$ and $\tau^{2}: \operatorname{Var}^{2} \longrightarrow \mathcal{O}$. The value of a term and the satisfaction relation (for the given valuation) are defined naturally; the individual variable v_{i} is interpreted as (an element of A) $\tau^{1}\left(v_{i}\right)$, the set variable V_{j} as (an element of $\mathcal{O}) \tau^{2}\left(V_{j}\right)$ (and, we repeat, \in is the set-theoretic membership relation).

Weak L_{2}-structures \mathcal{A} and \mathcal{B} are L_{2}-elementary equivalent, in notation $\mathcal{A} \equiv_{L_{2}} \mathcal{B}$, iff:

$$
\mathcal{A} \vDash \varphi \quad \text { iff } \quad \mathcal{B} \vDash \varphi, \quad \text { for all } \quad \varphi \in \operatorname{Sent}_{L_{2}} .
$$

Let $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ be a family of weak L_{2}-models, Ψ a filter on I, \sim the equivalence relation on $\prod_{i \in I} A_{i}$ given by: $f \sim g$ iff $\left\{i \in I \mid f_{i}=g_{i}\right\} \in \Psi$, $[f]$ the equivalence class of the element $f \in \prod_{i \in I} A_{i}$ and $q: \prod_{i} A_{i} \longrightarrow$ $\prod_{i} A_{i} / \sim$ the natural mapping. By $\prod_{\Psi} \mathbf{A}_{i}$ we denote the reduced product of first-order parts of $\mathcal{A}_{i}, i \in I$, by $\prod \mathcal{O}_{i}$ the family of sets of shape $\prod_{i \in I} U_{i}$, where, for each $i \in I, U_{i} \in \mathcal{O}_{i}$ and by $\prod_{\Psi} \mathcal{O}_{i}$ the collection of sets $q\left(\prod_{i \in I} U_{i}\right)$, where $\prod_{i \in I} U_{i} \in \prod \mathcal{O}_{i}$. For $C \in$ CONST we define $C^{\mathcal{A}}=q\left(\prod_{i \in I} C^{\mathcal{A}_{i}}\right)$. Then

$$
\mathcal{A}=\left\langle\prod_{\Psi} \mathbf{A}_{i}, \prod_{\Psi} \mathcal{O}_{i},\left\{C^{\mathcal{A}} \mid C \in \mathrm{CONST}\right\}\right\rangle
$$

is a weak L_{2}-structure called the reduced product of the family $\left\{\mathcal{A}_{i} \mid i \in I\right\}$, in notation $\prod_{\Psi} \mathcal{A}_{i}$.

It is easy to imitate the proofs of some of the most important theorems of the classical model theory. More precisely, the logic L_{2} satisfies, for instance, the Łoś theorem, the compactness theorem and the LöwenheimSkolem theorem.

Theorem 1.1 (Loś). Let $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ be a family of weak L_{2}-structures and Ψ an ultrafilter on I. Then for each $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ $\in \operatorname{Form}_{L_{2}}$, each $f^{1}, \ldots, f^{p} \in \prod A_{i}$ and each $U^{1}, \ldots, U^{q} \in \prod \mathcal{O}_{i}$ it holds:

$$
\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi\left[\left[f^{1}\right], \ldots,\left[f^{p}\right], q\left(U^{1}\right), \ldots, q\left(U^{q}\right)\right]
$$

iff

$$
\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi\left[f_{i}^{1}, \ldots, f_{i}^{p}, U_{i}^{1}, \ldots, U_{i}^{q}\right]\right\} \in \Psi
$$

Specially, if $\mathcal{A}_{i}=\mathcal{A}$ for all $i \in I$, then $\mathcal{A} \equiv_{L_{2}} \prod_{\Psi} \mathcal{A}$.
Theorem 1.2 (Compactness). A theory $T \subseteq \operatorname{Sent}_{L_{2}}$ has a weak model iff each its finite subset has a weak model.

Theorem 1.3 (Löwenheim-Skolem). Let κ be an infinite cardinal and $\mathcal{B}=\left\langle\mathbf{B}, \mathcal{O}_{\mathcal{B}}, \mathbf{C}_{\mathcal{B}}\right\rangle$ a weak L_{2}-model. If $\left|L_{2}\right| \leq \kappa \leq\left|B \cup \mathcal{O}_{\mathcal{B}}\right|, X \subseteq B$, $\mathcal{U} \subseteq \mathcal{O}_{\mathcal{B}}$ and $|X \cup \mathcal{U}| \leq \kappa$, then there exists a weak model $\mathcal{A}=\left\langle\mathbf{A}, \mathcal{O}_{\mathcal{A}}, \mathbf{C}_{\mathcal{A}}\right\rangle$ satisfying $X \subseteq A, \mathcal{U} \subseteq \mathcal{O}_{\mathcal{A}}, \mathcal{A} \equiv_{L_{2}} \mathcal{B}$ and $\left|A \cup \mathcal{O}_{\mathcal{A}}\right| \leq \kappa$.

In particular, if a theory T of a countable language L_{2} has a weak model, then it has a countable weak model.

A weak L_{2}-model \mathcal{A} realizes a set of L_{2}-formulas $\Sigma\left(x^{1}, \ldots, x^{p}, X^{1}\right.$, \ldots, X^{q}) iff there exist $a^{1}, \ldots, a^{p} \in A$ and $U^{1}, \ldots, U^{q} \in \mathcal{O}_{\mathcal{A}}$ such that
$\mathcal{A} \vDash \varphi\left[a^{1}, \ldots, a^{p}, U^{1}, \ldots, U^{q}\right] \quad$ for each $\quad \varphi \in \Sigma\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$. $\Sigma\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ is a type over \mathcal{A} iff there exists a weak L_{2}-model \mathcal{M} satifying: (1) $\mathcal{M} \vDash \operatorname{Th}(\mathcal{A})$ and (2) \mathcal{M} realizes $\Sigma\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots\right.$, X^{q}).

A weak L_{2}-model \mathcal{A} is saturated iff for each $X \subseteq A$ and $\mathcal{U} \subseteq \mathcal{O}$ satisfying $|X \cup \mathcal{U}|<|A \cup \mathcal{O}|$, every type $\Sigma\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ of the language $L_{X \cup \mathcal{U}}=L_{2} \cup\left\{c_{a} \mid a \in X\right\} \cup\left\{C_{V} \mid V \in \mathcal{U}\right\}$ over $\mathcal{A}_{X \cup \mathcal{U}}=$ $\langle\mathcal{A}, a, V\rangle_{a \in X, V \in \mathcal{U}}$ is realized in $\mathcal{A}_{X \cup \mathcal{U}}$.

By the compactness theorem it holds the statement analogous to Theorem 6.1.1 from [2].

Theorem $1.4(\mathrm{CH})$. Let $\left\{\mathcal{A}_{i} \mid i \in \omega\right\}$ be a family of weak models of a countable language L_{2} such that, for all $i \in \omega,\left|A_{i} \cup \mathcal{O}_{\mathcal{A}_{i}}\right| \leq \omega_{1}$ and let Ψ be a nonprincipal ultrafilter on ω. Then the ultraproduct $\prod_{\Psi} \mathcal{A}_{i}$ is a saturated weak L_{2}-model of cardinality $\leq \omega_{1}$.

The theorems from this paragraph can also be obtained by "translation" of L_{2} in the corresponding (one-sorted) first-order language, but this way is more expensive.

2. Prenex forms of formulas

In the sequel the sequences like $x^{1}, \ldots, x^{p} ; X^{1}, \ldots, X^{q} ; f^{1}, \ldots, f^{p}$; $f_{i}^{1}, \ldots, f_{i}^{p},\left[f^{1}\right], \ldots,\left[f^{p}\right] ; U^{1}, \ldots, U^{q} ; U_{i}^{1}, \ldots, U_{i}^{q} ; q\left(U^{1}\right), \ldots, q\left(U^{q}\right)$ will be shortly denoted by $\bar{x}, \bar{X}, \bar{f}, \overline{f_{i}}, \overline{[f]}, \bar{U}, \overline{U_{i}}, \overline{q(U)}$, whenever the confusion is impossible.

For all definitions and facts in connection with L_{t}-formulas and $L_{t^{-}}$ language we refer to the book of M. Ziegler and J. Flum ([3]).

Definition 2.1. A weak L_{2}-structure $\mathcal{A}=\langle\mathbf{A}, \mathcal{O}, \mathbf{C}\rangle$ is a covering (basic, topological) structure iff $\cup \mathcal{O}=A(\mathcal{O}$ is a base for some topology on A, \mathcal{O} is a topology on A).

For an L_{2}-formula $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$, shortly denoted by $\varphi(\bar{x}, \bar{X})$ we write: $\vDash_{w} \varphi(\bar{x}, \bar{X})\left(\vDash_{c} \varphi(\bar{x}, \bar{X}), \vDash_{b} \varphi(\bar{x}, \bar{X}), \vDash_{t} \varphi(\bar{x}, \bar{X})\right)$ iff for each weak (covering, basic, topological) L_{2}-structure \mathcal{A}, each $a^{1}, \ldots, a^{p} \in$ A and each $U^{1}, \ldots, U^{q} \in \mathcal{O}$ it holds: $\mathcal{A} \vDash \varphi[\bar{a}, \bar{U}]$.

If $\varphi, \psi \in \operatorname{Form}_{L_{2}}$, then $\varphi \stackrel{w}{\Longleftrightarrow} \psi(\varphi \stackrel{c}{\Longleftrightarrow} \psi, \varphi \stackrel{b}{\Longleftrightarrow} \psi, \varphi \stackrel{t}{\Longleftrightarrow} \psi)$ iff $\vDash_{w} \varphi \Longleftrightarrow \psi\left(\vDash_{c} \varphi \Longleftrightarrow \psi, \vDash_{b} \varphi \Longleftrightarrow \psi, \vDash_{t} \varphi \Longleftrightarrow \psi\right)$.

Clearly, for an L_{2}-structure \mathcal{A} we have: \mathcal{A} is topological $\longrightarrow \mathcal{A}$ is basic $\longrightarrow \mathcal{A}$ is covering $\longrightarrow \mathcal{A}$ is weak. Thus, for $\varphi, \psi \in \operatorname{Form}_{L_{2}}$ it holds: $\varphi \stackrel{w}{\Longleftrightarrow} \psi \longrightarrow \varphi \stackrel{c}{\Longleftrightarrow} \psi \longrightarrow \varphi \stackrel{b}{\Longleftrightarrow} \psi \longrightarrow \varphi \stackrel{t}{\Longleftrightarrow} \psi$.

Definition 2.2. An L_{2}-formula φ is in L_{2}-prenex form $\operatorname{iff} \varphi \equiv Q_{1} \ldots$ $Q_{n} \psi$, where $Q_{i}, i=1, \ldots n$, is one of the quantifiers $\exists x, \forall x, \exists X, \forall X$ and ψ is a quantifier free L_{2}-formula.

An L_{t}-formula φ is in L_{t}-prenex form iff $\varphi \equiv Q_{1} \ldots Q_{n} \psi$, where Q_{i}, $i=1, \ldots, n$, is one of the quantifiers $\exists x, \forall x, \exists X \ni t, \forall X \ni t, t$ being a term, and ψ is a quantifier free L_{t}-formula.

Lemma 2.3. (A) Let φ and ψ be L_{2}-formulas and $X \notin F v(\varphi)$. Then it holds:
(1) $\neg \exists X \psi \stackrel{w}{\Longleftrightarrow} \forall X \neg \psi$;
(2) $\neg \forall X \psi \stackrel{w}{\Longleftrightarrow} \exists X \neg \psi$;
(3) $\quad(\varphi \Longrightarrow \exists X \psi) \stackrel{w}{\Longleftrightarrow} \exists X(\varphi \Longrightarrow \psi)$;
(4) $(\forall X \psi \Longrightarrow \varphi) \stackrel{w}{\Longleftrightarrow} \exists X(\psi \Longrightarrow \varphi)$;
(5) $\quad(\varphi \Longrightarrow \forall X \psi) \stackrel{w}{\Longleftrightarrow} \forall X(\varphi \Longrightarrow \psi)$;
(6) $\quad(\exists X \psi \Longrightarrow \varphi) \stackrel{w}{\Longleftrightarrow} \forall X(\psi \Longrightarrow \varphi)$.
(B) Let φ and ψ be L_{2}-formulas and $x \notin F v(\varphi)$. Then (1)-(6) holds if we replace X by x.

Lemma 2.4. Let $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ and $\psi\left(x^{1}, \ldots, x^{p}, X^{1}\right.$, $\left.\ldots, X^{q}, Y\right)$ be L_{2}-formulas and let $t\left(x^{1}, \ldots, x^{p}\right) \in \operatorname{Term}_{L_{2}}$. Then it holds:
(1) $\neg \exists Y \ni t \psi \stackrel{w}{\Longleftrightarrow} \forall Y \ni t \neg \psi$;
(2) $\neg \forall Y \ni t \psi \stackrel{w}{\Longleftrightarrow} \exists Y \ni t \neg \psi$;
(3) $(\varphi \Longrightarrow \exists Y \ni t \psi) \stackrel{c}{\Longleftrightarrow} \exists Y \ni t(\varphi \Longrightarrow \psi)$;
(4) $\quad(\forall Y \ni t \psi \Longrightarrow \varphi) \stackrel{c}{\Longleftrightarrow} \exists Y \ni t(\psi \Longrightarrow \varphi)$;
(5) $\quad(\varphi \Longrightarrow \forall Y \ni t \psi) \stackrel{w}{\Longleftrightarrow} \forall Y \ni t(\varphi \Longrightarrow \psi)$;
(6) $\quad(\exists Y \ni t \psi \Longrightarrow \varphi) \stackrel{w}{\Longleftrightarrow} \forall Y \ni t(\psi \Longrightarrow \varphi)$.

Moreover, if the formulas from the left side are L_{t}-formulas so are the formulas on the right side.

Proof. (1) and (2) follow from the previous lemma.
(3) Let \mathcal{A} be a covering structure, $a^{1}, \ldots, a^{p} \in A$ and $U^{1}, \ldots, U^{q} \in \mathcal{O}$. (\Longrightarrow) Let $\mathcal{A} \vDash(\varphi \Longrightarrow \exists Y \ni t \psi)[\bar{a}, \bar{U}]$, that is if $\mathcal{A} \vDash \varphi[\bar{a}, \bar{U}]$, then there is $V \in \mathcal{O}$ such that $t^{\mathcal{A}}[\bar{a}] \in V$ and $\mathcal{A} \vDash \psi[\bar{a}, \bar{U}, V]$. Suppose $\mathcal{A} \not \models \exists Y \ni$ $t(\varphi \Longrightarrow \psi)[\bar{a}, \bar{U}]$. Then for each $V \in \mathcal{O}$, if $t^{\mathcal{A}}[\bar{a}] \in V$ then $\mathcal{A} \vDash \varphi[\bar{a}, \bar{U}]$ and $\mathcal{A} \not \models \psi[\bar{a}, \bar{U}, V]$. Since $\bigcup \mathcal{O}=A$ there is V_{0} containing $t^{\mathcal{A}}[\bar{a}]$, hence $\mathcal{A} \vDash \varphi[\bar{a}, \bar{U}]$ and $\mathcal{A} \not \vDash \psi\left[\bar{a}, \bar{U}, V_{0}\right]$. It follows that there exists some $V_{1} \in \mathcal{O}$ such that $t^{\mathcal{A}}[\bar{a}] \in V_{1}$ and $\mathcal{A} \vDash \psi\left[\bar{a}, \bar{U}, V_{1}\right]$, a contradiction.
(\Longleftarrow) Let $\mathcal{A} \vDash \exists Y \ni t(\varphi \Longrightarrow \psi)[\bar{a}, \bar{U}]$. Thus there is $V_{0} \in \mathcal{O}$ such that $t^{\mathcal{A}}[\bar{a}] \in V_{0}$ and $\mathcal{A} \not \vDash \varphi[\bar{a}, \bar{U}]$ or $\mathcal{A} \vDash\left[\bar{a}, \bar{U}, V_{0}\right]$. Suppose that $\mathcal{A} \not \vDash(\varphi \Longrightarrow$ $\exists Y \ni t \psi)[\bar{a}, \bar{U}]$. Then we have $\mathcal{A} \vDash \varphi[\bar{a}, \bar{U}]$ and, for all $V \in \mathcal{O}, t^{\mathcal{A}}[\bar{a}] \in V$ implies $\mathcal{A} \not \models \psi[\bar{a}, \bar{U}, V]$. But then $\mathcal{A} \vDash \psi\left[\bar{a}, \bar{U}, V_{0}\right]$ and $\mathcal{A} \not \models \psi\left[\bar{a}, \bar{U}, V_{0}\right]$.
(4) follows from (3) and the proofs of (5) and (6) are direct as well.

Remark. The item (3) of the preceeding theorem does not hold for weak L_{2}-structures. For example, formulas $(x \neq x \Longrightarrow \exists Y \ni x x=x)$ and $\exists Y \ni x(x \neq x \Longrightarrow x=x)$ are not weak equivalent.

Corollary 2.5. For each L_{2}-formula φ there exists an L_{2}-formula ψ in L_{2}-prenex form such that $\varphi \stackrel{w}{\Longleftrightarrow} \psi$.

For each L_{t}-formula φ there exists an L_{t}-formula ψ in L_{t}-prenex form such that $\varphi \stackrel{c}{\Longleftrightarrow} \psi$.

3. Horn sentences and reduced products

Definition 3.1 (Horn L_{2}-formulas). An L_{2}-formula φ is a basic Horn L_{2}-formula iff $\varphi \equiv \vartheta_{1} \vee \ldots \vee \vartheta_{m}$, where at most one of the formulas ϑ_{i} is an atomic L_{2}-formula and the rest being negations of atomic L_{2}-formulas.

Horn L_{2}-formulas are the formulas obtained from basic Horn $L_{2^{-}}$ formulas by a finite number of applications of use of conjunction (\wedge) and the quantifiers $\exists x, \forall x, \exists X$ and $\forall X$.

The set of Horn L_{2}-formulas and the set of Horn L_{2}-sentences will be denoted, respectively, by $H F_{L_{2}}$ and $H S_{L_{2}}$.
(Horn L_{t}-formulas)
(1) Basic Horn L_{2}-formulas are (basic) Horn L_{t}-formulas.
(2) If φ and ψ are Horn L_{t}-formulas, so are the formulas $\varphi \wedge \psi, \exists x \varphi$, $\forall x \varphi$.

If φ is a Horn L_{t}-formula, $t \in \operatorname{Term}_{L_{2}}$ and φ is positive (negative) in X, then the formula $\forall X \ni t \varphi(\exists X \ni t \varphi)$ is a Horn L_{t}-formula.
(3) An L_{t}-formula is a Horn L_{t}-formula iff it is obtained by finite use of (1) and (2).

The set of Horn L_{t}-formulas and the set of Horn L_{t}-sentences will be denoted, respectively, by $H F_{L_{t}}$ and $H S_{L_{t}}$.

Lemma 3.2. (a) For each Horn L_{2}-formula φ there exists a Horn L_{2}-formula ψ in L_{2}-prenex form such that $\varphi \stackrel{w}{\Longleftrightarrow} \psi$.
(b) For each Horn L_{t}-formula φ there exists a Horn L_{t}-formula ψ in $L_{t^{-}}$ prenex form such that $\varphi \stackrel{c}{\Longleftrightarrow} \psi$ and $F v(\varphi)=F v(\psi), F v^{+}(\varphi)=F v^{+}(\psi)$, $F v^{-}(\varphi)=F v^{-}(\psi)$, where $F v^{+}(\varphi)\left(F v^{-}(\varphi)\right)$ is the set of free set variables of the formula φ in which it is positive (negative).

Proof. (a) The induction follows the construction of φ as a Horn L_{2}-formula.
(1) If φ is a basic Horn L_{2}-formula then $\psi \equiv \varphi$;
(2) If $\varphi \equiv \varphi_{1} \wedge \varphi_{2}$, where $\varphi_{1}, \varphi_{2} \in H F_{L_{2}}$, then, by inductive hypothesis, for some Horn L_{2}-formulas ψ_{1}, ψ_{2} in L_{2}-prenex form it holds: $\varphi_{i} \stackrel{w}{\Longleftrightarrow} \psi_{i}, i=1,2$, whence $\varphi \stackrel{w}{\Longleftrightarrow} \psi_{1} \wedge \psi_{2}$. Let $\psi_{1} \equiv Q_{1}^{1} \ldots Q_{k}^{1} \eta_{1}$ and $\psi_{2} \equiv Q_{1}^{2} \ldots Q_{l}^{2} \eta_{2}$. Without loss of generality we can assume that the bounded variables of ψ_{1} do not appear in ψ_{2} and vice-versa. Then $\varphi \stackrel{w}{\Longleftrightarrow} Q_{1}^{1} \ldots Q_{k}^{1} Q_{1}^{2} \ldots Q_{l}^{2}\left(\eta_{1} \wedge \eta_{2}\right)$.
(3) If $\varphi \equiv \exists x \varphi_{1}$ where $\varphi_{1} \in H F_{L_{2}}$, then, for some Horn L_{2}-formula ψ in L_{2}-prenex form $\varphi_{1} \stackrel{w}{\Longleftrightarrow} \psi$, thus $\varphi \stackrel{w}{\Longleftrightarrow} \exists x \psi$.

The cases when φ is of the form $\forall x \varphi_{1}, \exists X \varphi_{1}$ and $\forall X \varphi_{1}$ are obvious as well.
(b) Still one induction. Let us just consider the case: $\varphi \equiv \exists X \ni$ $t \varphi_{1}\left(\ldots, X^{-}, \ldots\right)$, where $\varphi_{1} \in H F_{L_{t}}$. By assumption, there is a Horn $L_{t^{-}}$ formula $\psi\left(\ldots, X^{-}, \ldots\right)$ in L_{t}-prenex form such that $\varphi_{1} \stackrel{c}{\Longleftrightarrow} \psi$, whence $\varphi \stackrel{c}{\Longleftrightarrow} \exists X \ni t \psi$.

Lemma 3.3. For each $\varphi \in H F_{L_{t}}$ there exists $\vartheta \in H F_{L_{2}}$ such that $\varphi \stackrel{c}{\Longleftrightarrow} \vartheta$.

Proof. By the previous lemma we can consider just Horn L_{t}-formulas in L_{t}-prenex form. As usual, the proof is by induction on the number of quantifiers, n, in formula φ.

If $n=0, \varphi$ is a conjunction of basic Horn L_{t} formulas.
Suppose that the statement holds for formulas with $\leq n$ quantifiers and let $\varphi \equiv Q_{1} \ldots Q_{n} Q_{n+1} \varphi_{1}$. By inductive hypothesis there is $\vartheta_{1} \in H F_{L_{2}}$ such that $Q_{2} \ldots Q_{n} Q_{n+1} \varphi_{1} \stackrel{c}{\Longleftrightarrow} \vartheta_{1}$. We distinguish the following cases:
(a) Q_{1} is $\exists X \ni t$. Then $\varphi \stackrel{c}{\Longleftrightarrow} \exists X\left(t \in X \wedge \vartheta_{1}\right)$ and $\exists X\left(t \in X \wedge \vartheta_{1}\right) \in$ $H F_{L_{2}}$.
(b) Q_{1} is $\forall X \ni t$. According to 2.5 , we can assume that ϑ_{1} is in L_{2}-prenex form, let $\vartheta_{1} \equiv Q_{1}^{\prime} \ldots Q_{k}^{\prime} \eta$. Then, by Lemma 2.3, we have: $\varphi \equiv \forall X \ni t Q_{2} \ldots Q_{n} Q_{n+1} \varphi_{1} \stackrel{c}{\Longleftrightarrow} \forall X \ni t Q_{1}^{\prime} \ldots Q_{k}^{\prime} \eta \stackrel{w}{\Longleftrightarrow} \forall X(t \in X \Longrightarrow$ $\left.Q_{1}^{\prime} \ldots Q_{k}^{\prime} \eta\right) \stackrel{w}{\Longleftrightarrow} \forall X Q_{1}^{\prime} \ldots Q_{k}^{\prime}(t \in X \Longrightarrow \eta)$. Now $\eta \equiv \eta_{1} \wedge \ldots \wedge \eta_{k}$, where $k \geq 1$ and η_{i} are basic Horn L_{2}-formulas, so $t \in X \Longrightarrow \eta \stackrel{w}{\Longleftrightarrow} \neg t \in$ $X \vee\left(\eta_{1} \wedge \ldots \wedge \eta_{k}\right) \stackrel{w}{\Longleftrightarrow}\left(\neg t \in X \vee \eta_{1}\right) \wedge \ldots \wedge\left(\neg t \in X \vee \eta_{k}\right) \stackrel{\text { def }}{\equiv} \psi$, but this is a Horn L_{2}-formula again. Finally, $\varphi \stackrel{c}{\Longleftrightarrow} \forall X Q_{1}^{\prime} \ldots Q_{k}^{\prime} \psi \stackrel{\text { def }}{=} \vartheta \in H F_{L_{2}}$.

The cases when Q_{1} is $\exists x$ or $\forall x$ are still more obvious.
Definition 3.4. An L_{2}-formula $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right)$ is preserved under reduced products of weak structures iff for each family of weak $L_{2^{-}}$ structures $\left\{\mathcal{A}_{i} \mid i \in I\right\}$, each filter Ψ on I, each $f^{1}, \ldots, f^{p} \in \prod A_{i}$ and each $U^{1}, \ldots, U^{q} \in \prod \mathcal{O}_{i}$ there holds:
if $\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi\left[\overline{f_{i}}, \overline{U_{i}}\right]\right\} \in \Psi \quad$ then $\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi[\overline{[f]}, \overline{q(U)}]$.
The set of such formulas will be denoted by $R P F_{L_{2}}^{w}$ and the corresponding set of sentences by $R P S_{L_{2}}^{w}$.

In a similar manner we define when an L_{t}-formula $\left(\varphi\left(x^{1}, \ldots, x^{p}\right.\right.$, $\left.X^{1}, \ldots, X^{q}\right)$) is preserved under reduced product of basic structures, in notation $\varphi \in R P F_{L_{t}}^{b}$, that is $\varphi \in R P S_{L_{t}}^{b}$ if φ is a sentence. Of course, now only the reduced products of families of basic structures are considered.

Now we prove an L_{2}-version of Keisler's Lemma 6.2.4. from [2].

Lemma 3.5. Let α be an infinite cardinal, L_{2} the defined language, $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ a family of weak L_{2}-models and \mathcal{B} a saturated weak model of the language L_{2} such that the following conditons are satisfied:
(1) $2^{\alpha}=\alpha^{+}$;
(2) $\left|L_{2}\right| \leq|I|=\alpha$;
(3) for each $i \in I,\left|A_{i} \cup \mathcal{O}_{i}\right| \leq \alpha^{+}$;
(4) \mathcal{B} is either a finite model or a model of cardinality α^{+};
(5) For any $\varphi \in H S_{L_{2}}$ it holds: if $\left|\left\{i \in I \mid \mathcal{A}_{i} \not \models \varphi\right\}\right|<\alpha$ (in other words, if the Horn sentence φ is satisfied in almost all models of the given family) then $\mathcal{B} \vDash \varphi$.
Then there exists a filter Ψ on I such that $\mathcal{B} \cong \prod_{\Psi} \mathcal{A}_{i}$.
Proof. We follow the proof given in [2] (using the same notation as much as possible). Let $A \stackrel{\text { def }}{=} \prod_{i \in I} A_{i}$ and $\mathcal{O} \stackrel{\text { def }}{=} \prod \mathcal{O}_{i}$. Clearly, $|A \cup \mathcal{O}| \leq$ $2^{\alpha}=\alpha^{+}$. Firstly we are to define an onto mapping $h: A \cup \mathcal{O} \longrightarrow B \cup \mathcal{O}_{\mathcal{B}}$, where $\left.h\right|_{A}$ maps A onto B and $\left.h\right|_{\mathcal{O}}$ maps \mathcal{O} onto $\mathcal{O}_{\mathcal{B}}$, which satifies the following:
$(*)$ for any $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right) \in H F_{L_{2}}$, for any $a^{1}, \ldots, a^{p} \in A$ and any $U^{1}, \ldots, U^{q} \in \mathcal{O}$ it holds: if $\mid\left\{i \in I \mid \mathcal{A}_{i} \not \models \varphi\left[a_{i}^{1}, \ldots, a_{i}^{p}, U_{i}^{1}, \ldots\right.\right.$, $\left.\left.U_{i}^{q}\right]\right\} \mid<\alpha$ then $\mathcal{B} \vDash \varphi\left[h\left(a^{1}\right), \ldots, h\left(a^{p}\right), h\left(U^{1}\right), \ldots, h\left(U^{q}\right)\right]$.

Let $A=\left\{a^{\xi} \mid \xi<\alpha^{+}\right\}, \mathcal{O}=\left\{U^{\xi} \mid \xi<\alpha^{+}\right\}, B=\left\{b^{\xi} \mid \xi<\alpha^{+}\right\}$ and $\mathcal{O}_{\mathcal{B}}=\left\{V^{\xi} \mid \xi<\alpha^{+}\right\}$. We are looking for the new enumerations of these sets, respectively, $\left\{\underline{a}^{\xi} \mid \xi<\alpha^{+}\right\},\left\{\underline{U}^{\xi} \mid \xi<\alpha^{+}\right\},\left\{\underline{b}^{\xi} \mid \xi<\alpha^{+}\right\}$and $\left\{\underline{V}^{\xi} \mid \xi<\alpha^{+}\right\}$such that there holds:
$(* *)$ for any $\nu<\alpha^{+}$and any L_{2}-Horn sentence φ of the expanded L_{2}-language obtained by adding to the initial language the set of new constants (of both sorts) $\left\{c^{\xi} \mid \xi<\nu\right\} \cup\left\{C^{\xi} \mid \xi<\nu\right\}$ (for this occasion simply denoted by L_{2}^{ν}):

$$
\text { if }\left|\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \not \models \varphi\right\}\right|<\alpha \quad \text { then }\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash \varphi .
$$

Because of (5), for $\nu=0$ the condition ($* *$) is automaticaly satisfied.
Let us suppose that we have already defined $\underline{a}^{\xi}, \underline{U}^{\xi}, \underline{b}^{\xi}$ and \underline{V}^{ξ} for all $\xi<\nu$. Further we distinguish the next cases.
(I) $\nu=\beta+2 k$, where β is either 0 or a limit ordinal.

We put $\underline{a}^{\nu}=a^{\beta+k}, \underline{U}^{\nu}=U^{\beta+k}$. Let

$$
\begin{aligned}
\Sigma(x, X) & \stackrel{\text { def }}{=}\left\{\varphi(x, X) \in H F_{L_{2}^{\nu}} \mid\right. \\
& \left.\left|\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \not \models \varphi\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]\right\}\right|<\alpha\right\} .
\end{aligned}
$$

This set of formulas is a type over $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu}$. For let $\varphi_{1}, \ldots, \varphi_{n} \in$ $\Sigma(x, X)$ and

$$
I_{k}=\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \not \models \varphi_{k}\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]\right\}, \quad k=1, \ldots, n .
$$

Then $\left|\bigcup_{k=1}^{n} I_{k}\right|<\alpha$ and for $i \notin \bigcup_{k=1}^{n} I_{k}$ it holds $\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \vDash$ $\bigwedge_{k=1}^{n} \varphi_{k}\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]$, that is $\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \vDash \exists x \exists X \bigwedge_{k=1}^{n} \varphi_{k}(x, X)$. By $(* *)$ (for ν), $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash \exists x \exists X \bigwedge_{k=1}^{n} \varphi_{k}(x, X)$. Now, since \mathcal{B} is a saturated model, $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu}$ realizes the type $\Sigma(x, X)$; let $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash$ $\Sigma[b, V]$. We define: $\underline{b}^{\nu}=b, \underline{V}^{\nu}=V$ and check that $(* *)$ holds for $\nu+1$. Let $\varphi \in H S_{L_{2}^{\nu+1}},\left|\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi \leq \nu} \not \models \varphi\right\}\right|<\alpha$ and let $\varphi(x, X)$ be the formula obtained from φ by replacing the constants c^{ν}, C^{ν} by the suitable variables, respectively, x, X (clearly, if these constants do not appear in the sentence φ, the case is trivial). By the assumption, $\left|\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \nvdash \varphi(x, X)\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]\right\}\right|<\alpha$, whence $\varphi(x, X) \in \Sigma(x, X)$ and, furthermore, $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash \varphi(x, X)\left[\underline{b}^{\nu}, \underline{V}^{\nu}\right]$, i.e. $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi \leq \nu} \vDash \varphi$.
(II) $\nu=\beta+2 k+1$, where, again, β is either 0 or a limit ordinal.

We put $\underline{b}^{\nu}=b^{\beta+k}, \underline{V}^{\nu}=V^{\beta+k}$. Let

$$
\Sigma(x, X) \stackrel{\text { def }}{=}\left\{\varphi(x, X) \in H F_{L_{2}^{\nu}} \mid\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash \neg \varphi\left[\underline{b}^{\nu}, \underline{V}^{\nu}\right]\right\}
$$

For any $\varphi(x, X) \in \Sigma(x, X)$ it holds: the set $I_{\varphi} \stackrel{\text { def }}{=}\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu}\right.$ $\not \models \forall x \forall X \varphi(x, X)\}$ is of cardinality α; otherwise, by ($* *$) it would follow $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\nu} \vDash \forall x \forall X \varphi(x, X)$, a contradiction. By the known result from set theory, the sets $I_{\varphi}, \varphi(x, X) \in \Sigma(x, X)$, contain subsets J_{φ} of cardinality α which are mutually disjoint. Now, for all $i \in I$, we pick $\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}$ in the following way: if $i \in J_{\varphi}$ we choose elements, $\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}$, such
that $\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \vDash \neg \varphi\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]$; if $i \notin \bigcup_{\varphi \in \Sigma} J_{\varphi}$, we choose elements $\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}$ arbitrarily. So we obtain the "wanted" elements: $\underline{a}^{\nu}=\left\langle\underline{a}_{i}^{\nu} \mid i \in I\right\rangle$, $\underline{U}^{\nu}=\prod_{i \in I} \underline{U}_{i}^{\nu}$.

Again the validity of the condition $(* *)$ for $\nu+1$ must be checked. For the sentence $\varphi \in H S_{L_{2}^{\nu+1}}$ let $\left|\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi \leq \nu} \not \models \varphi\right\}\right|<\alpha$. Suppose $\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi \leq \nu} \vDash \neg \varphi$. Then the formula $\varphi(x, X)$ (obtained from the sentence φ as above) is in $\Sigma(x, X)$, hence, for all $i \in J_{\varphi},\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\nu} \vDash$ $\neg \varphi\left[\underline{a}_{i}^{\nu}, \underline{U}_{i}^{\nu}\right]$, that is $\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi \leq \nu} \not \models \varphi$, a contradiction $\left(\left|J_{\varphi}\right|=\alpha\right)$.

By the very construction of the new enumeration we have: $A=\left\{\underline{a}^{\xi} \mid\right.$ $\left.\xi<\alpha^{+}\right\}, B=\left\{\underline{b}^{\xi} \mid \xi<\alpha^{+}\right\}, \mathcal{O}=\left\{\underline{U}^{\xi} \mid \xi<\alpha^{+}\right\}$and $\mathcal{O}_{\mathcal{B}}=\left\{\underline{V}^{\xi} \mid \xi<\right.$ $\left.\alpha^{+}\right\}$.

Finally we are able to define h : let, for all $\xi<\alpha^{+}, h\left(\underline{a}^{\xi}\right)=\underline{b}^{\xi}$ and $h\left(\underline{U}^{\xi}\right)=\underline{V}^{\xi}$. The mapping h is well-defined; for if, for instance, $\underline{U}^{\beta}=\underline{U}^{\gamma}$ and $\beta<\gamma<\delta\left(<\alpha^{+}\right)$, then $\left\{i \in I \mid\left\langle\mathcal{A}_{i}, \underline{a}_{i}^{\xi}, \underline{U}_{i}^{\xi}\right\rangle_{\xi<\delta} \vDash \forall x\left(x \in C^{\beta} \Longleftrightarrow\right.\right.$ $\left.\left.x \in C^{\gamma}\right)\right\}=I$, thus, by $(* *),\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\delta} \vDash \forall x\left(x \in C^{\beta} \Longleftrightarrow x \in C^{\gamma}\right)$ (for it is a Horn sentence in question) and so $h\left(\underline{U}^{\beta}\right)=\underline{V}^{\beta}=\underline{V}^{\gamma}=h\left(\underline{U}^{\gamma}\right)$.

The condition $(*)$ also holds. For let $\varphi\left(x^{1}, \ldots, x^{p}, X^{1}, \ldots, X^{q}\right) \in$ $H F_{L_{2}}, \underline{a}^{\xi_{1}}, \ldots, \underline{a}^{\xi_{p}} \in A$ and $\underline{U}^{\nu_{1}}, \ldots, \underline{U}^{\nu_{q}} \in \mathcal{O}$ and let us suppose that the set $I_{0} \stackrel{\text { def }}{=}\left\{i \in I \mid \mathcal{A}_{i} \not \models \varphi\left[\underline{a}_{i}^{\xi_{1}}, \ldots, \underline{a}_{i}^{\xi_{p}}, \underline{U}_{i}^{\nu_{1}}, \ldots, \underline{U}_{i}^{\nu_{q}}\right]\right\}$ is of cardinality less than α. Then, according to $(* *)$, if $\xi_{1}, \ldots, \xi_{p}, \nu_{1}, \ldots, \nu_{q}<\delta\left(<\alpha^{+}\right)$,

$$
\left\langle\mathcal{B}, \underline{b}^{\xi}, \underline{V}^{\xi}\right\rangle_{\xi<\delta} \vDash \varphi\left(c^{\xi_{1}}, \ldots, c^{\xi_{p}}, C^{\nu_{1}}, \ldots, C^{\nu_{q}}\right)
$$

that is

$$
\mathcal{B} \vDash \varphi\left[\underline{b}^{\xi_{1}}, \ldots, \underline{b}^{\xi_{p}}, \underline{V}^{\nu_{1}}, \ldots, \underline{V}^{\nu_{q}}\right],
$$

that is

$$
\mathcal{B} \vDash \varphi\left[h\left(\underline{a}^{\xi_{1}}\right), \ldots, h\left(\underline{a}^{\xi_{p}}\right), h\left(\underline{U}^{\nu_{1}}\right), \ldots, h\left(\underline{V}^{\nu_{q}}\right)\right] .
$$

In addition, for any atomic formula $\varphi\left(x_{1}, \ldots, x_{p}, X_{1}\right)$ of the language L_{2} and any valuation τ in the model \mathcal{A} we define:

$$
K_{\varphi, \tau} \stackrel{\text { def }}{=}\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi\left[\left(\tau^{1}\left(x_{1}\right)\right)_{i}, \ldots,\left(\tau^{1}\left(x_{p}\right)\right)_{i},\left(\tau^{2}\left(X_{1}\right)\right)_{i}\right]\right\}
$$

and, as well:

$$
E \stackrel{\text { def }}{=}\left\{K_{\varphi, \tau} \mid \mathcal{B} \vDash \varphi\left[h\left(\tau^{1}\left(x_{1}\right)\right), \ldots, h\left(\tau^{1}\left(x_{p}\right)\right), h\left(\tau^{2}\left(X_{1}\right)\right)\right]\right\} .
$$

From the above it follows that if $K_{\varphi, \tau} \in E$ then $\left|K_{\varphi, \tau}\right|=\alpha$ (basic formulas are Horn formulas). In fact, we have more: every finite intersection of
elements of E is of cardinality α (thus, in particular, E has the finite intersection property). For any given finite set of atomic formulas $\varphi_{1}, \ldots, \varphi_{n}$ we can assume, without loss of generality, that they do not have common variables, consequently that just one valuation is in question (let it be τ). The assumption that $\left|\bigcap_{k=1}^{n} K_{\varphi_{k}, \tau}\right|<\alpha$ would imply that for the corresponding valuation in \mathcal{B} this model satisfies the disjunction of the negations of given atomic formulas (for it is a Horn formula) and if, for example, \mathcal{B} satisfies the formula $\neg \varphi_{j}, 1 \leq j \leq n$, it follows $K_{\varphi_{j}, \tau} \notin E$, a contradiction.

Let Ψ be the (proper) filter generated by E. In the end we claim that one isomorphic mapping of the model $\prod_{\Psi} \mathcal{A}_{i}$ onto the model \mathcal{B} is given by: $f([a])=h(a), f(q(U))=h(U)$ (clearly, $a \in A,[a]=\{b \in A \mid\{i \in I \mid$ $\left.\left.a_{i}=b_{i}\right\} \in \Psi\right\}, U \in \mathcal{O}$ and $\left.q(U)=\{[a] \mid a \in U\}\right)$.

Firstly we show that f is well-defined. Let us suppose that for $a, b \in A$, $[a]=[b]$. Then if τ is the valuation mapping x onto a and y onto b we have $K_{x=y, \tau} \in \Psi$, whence for some finite family of elements from E, let it be $K_{\varphi_{1}, \tau_{1}}, \ldots, K_{\varphi_{n}, \tau_{n}}$, it holds: $\bigcap_{k=1}^{n} K_{\varphi_{k}, \tau_{k}} \subseteq K_{x=y, \tau}$. As in the previous consideration we can assume that the formulas $\varphi_{k}, k=1, \ldots, n$, and $x=y$ do not have common variables and that all valuations $\tau_{k}, k=1, \ldots, n$, are equal to τ. Let $\psi \equiv \varphi_{1} \wedge \ldots \wedge \varphi_{n} \Longrightarrow x=y$. Obviosly, the formula ψ is satisfied in all models $\mathcal{A}_{i}, i \in I$, for the corresponding valuations determined by τ. If $i \in \bigcap_{k=1}^{n} K_{\varphi_{k}, \tau}$ then both the antecedent and consequence of ψ are satisfied, and if $i \notin \bigcap_{k=1}^{n} K_{\varphi_{k}, \tau}$, then the antecedent is not satisfied. By $(*)$ and the definition of E both the formula ψ and its antecedent are satisfied in the model \mathcal{B} for the valuation $h \circ \tau$. Thus the consequence is satisfied as well (for the same valuation) which just means that $f([a])=h(a)=h(b)=f([b])$.

Suppose now that $q(U)=q(V)$, i.e that $\left\{i \in I \mid U_{i}=V_{i}\right\} \in \Psi$, or, in other words that $K \xlongequal{\text { def }}\left\{i \in I \mid \mathcal{A}_{i} \vDash \forall x(x \in X \Longleftrightarrow x \in Y)\left[U_{i}, V_{i}\right]\right\} \in \Psi$. Again, with the same notation and assumptions as a moment ago, we have $\bigcap_{k=1}^{n} K_{\varphi_{k}, \tau} \subseteq K$. The formula $\psi \equiv \varphi_{1} \wedge \ldots \wedge \varphi_{n} \Longrightarrow \forall x(x \in X \Longleftrightarrow x \in Y)$ is equivalent to the Horn formula $\vartheta \equiv \forall x\left(\left(\bigvee_{k=1}^{n} \neg \varphi_{k} \vee \neg x \in X \vee x \in Y\right) \wedge\right.$ $\left(\bigvee_{k=1}^{n} \neg \varphi_{k} \vee x \in X \vee \neg x \in Y\right)$). Again ψ holds in all models $\mathcal{A}_{i}, i \in I$, and again it and its antecedent are satisfied in \mathcal{B} for the valuation $h \circ \tau$. Thus $f(q(U))=h(U)=h(V)=f(q(V))$.

Obviously, f is a surjection. But f is an injection too. For let $h(a)=$ $f([a])=f([b])=h(b)$. Then $\mathcal{B} \vDash(x=y)[h(a), h(b)]$ and, consequently, $K_{x=y, \tau} \in E(\subseteq \Psi)$, where, of course, we assume: $\tau(x)=a, \tau(y)=b$. Thus $\left\{i \in I \mid \mathcal{A}_{i} \vDash(x=y)\left[a_{i}, b_{i}\right]\right\} \in \Psi$ and $[a]=[b]$.

Further we prove: for any $U \in \mathcal{O}$, it holds: $f^{\prime \prime}(q(U)) \stackrel{\text { def }}{=}\{f([a]) \mid[a] \in$ $q(U)\}=f(q(U))$.
(\subseteq) Let $[a] \in q(U)$. Then $\left\{i \in I \mid a_{i} \in U_{i}\right\}=\left\{i \in I \mid \mathcal{A}_{i} \vDash\right.$ $\left.(x \in X)\left[a_{i}, U_{i}\right]\right\} \in \Psi$. As in the proof of well-definability of f, we obtain $\mathcal{B} \vDash(x \in X)[h(a), h(U)]$, that is $h(a)=f([a]) \in f(q(U))=h(U)$.
(\supseteq) Let $b \in f(q(U))=h(U)$ and $b=h(a)=f([a])$. Thus, by definition of $E, K_{x \in X, \tau} \in E(\subseteq \Psi)$ (surely, $\left.\tau(x)=a, \tau(X)=U\right)$ and so $\left\{i \in I \mid \mathcal{A}_{i} \vDash(x \in X)\left[a_{i}, U_{i}\right]\right\} \in \Psi$, that is $[a] \in q(U)$, which proves: $b=f([a]) \in f^{\prime \prime}(q(U))$.

Now if $f(q(U))=f(q(V))$, i.e. $f^{\prime \prime}(q(U))=f^{\prime \prime}(q(V))$, then $f^{-1}\left(f^{\prime \prime}(q(U))\right)=f^{-1}\left(f^{\prime \prime}(q(V))\right)$ and, since the restriction of f on the set $\Pi A_{i} / \sim$ is a bijection, we have $q(U)=q(V)$.

The homomorphic property of f follows from the analogous result for first order logic, while it is already proved for the relation \in.

Theorem 3.6 (CH). An L_{2}-sentence φ is preserved under reduced products of weak structures iff there is a Horn L_{2}-sentence ϑ such that $\varphi \stackrel{w}{\Longleftrightarrow} \vartheta$.

Proof. ($\Longleftarrow)$ We show that any Horn L_{2}-formula is preserved under reduced products of weak structures. Practically, there is no difference from the proof of the analogous statement of the first order logic. Let us consider just the case $\varphi \equiv \exists Y \psi(\bar{x}, \bar{X}, Y)$ (naturally, we use induction). Fix \bar{f}, \bar{U} and suppose $I_{\varphi}=\left\{i \in I \mid \mathcal{A}_{i} \vDash \exists X \psi\left[\overline{f_{i}}, \overline{U_{i}}\right]\right\} \in \Psi$. For $i \in I_{\varphi}$ let $V_{i} \in \mathcal{O}_{i}$ be such that $\mathcal{A}_{i} \vDash \psi\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]$, otherwise choose V_{i} arbitrary. Let $V=\prod V_{i}$. Then $I_{\varphi}=I_{\psi}=\left\{i \in I \mid \mathcal{A}_{i} \vDash \psi\left[\overline{f_{i}}, \overline{U_{i}}, V_{i}\right]\right\}$, thus, by inductive hypothesis $\prod_{\Psi} \mathcal{A}_{i} \vDash \psi[\overline{[f]}, \overline{q(U)}, \overline{q(V)}]$ and furthermore $\prod_{\Psi} \mathcal{A}_{i} \vDash \exists Y \psi[\overline{[f]}, \overline{q(U)}]$, i.e. $\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi[\overline{[f]}, \overline{q(U)}]$.
(\Longrightarrow) Let φ be an L_{2}-sentence preserved under reduced products of weak structures. If φ is inconsistent we simply put $\varphi \stackrel{w}{\Longleftrightarrow} \exists x \neg(x=x)$. So let φ be consistent. Without loss of generality we can assume that the language L_{2} is countable. Let $\Sigma \stackrel{\text { def }}{=}\left\{\psi \in H S_{L_{2}} \mid \vDash_{w} \varphi \Longrightarrow \psi\right\}$. Clearly, Σ is a nonempty set $(\exists x(x=x) \in \Sigma)$, closed under conjunction. We show $\Sigma \vDash_{w} \varphi$ (for then, certainly, we have for some finite subset of Σ, let us say $\Sigma_{1}, \Sigma_{1} \vDash \varphi$ and $\bigwedge \Sigma_{1}$ is the formula we are looking for). Let \mathcal{M} be a weak model of Σ. If it is a finite model $\left(\left|M \cup \mathcal{O}_{\mathcal{M}}\right|<\omega\right)$, thus saturated, we put
$\mathcal{B} \stackrel{\text { def }}{=} \mathcal{M}$. Otherwise, keeping in mind Löwenheim-Skolem theorem, we can assume that \mathcal{M} is (infinitely) countable. Then, if $\mathcal{B} \stackrel{\text { def }}{=} \prod_{\Psi} \mathcal{M}$, where Ψ is some nonprincipal ultrafilter over ω, it holds: $\mathcal{B} \equiv_{L_{2}} \mathcal{M}$ and \mathcal{B} is saturated model of cardinality ω_{1}. Let us now define $\Delta \stackrel{\text { def }}{=}\left\{\psi \in H S_{L_{2}} \mid \varphi \wedge \neg \psi\right.$ has a weak model $\}$. For any $\psi \in \Delta$ we choose a countable weak model \mathcal{A}_{ψ} of $\varphi \wedge \neg \psi$. Let $I \stackrel{\text { def }}{=} \omega \times \Delta$ and $\mathcal{A}_{(n, \psi)} \stackrel{\text { def }}{=} \mathcal{A}_{\psi}$. Now the conditions of the previous lemma are satisfied. For, if $\eta \in H S_{L_{2}}$ and $\left|\left\{i \in I \mid \mathcal{A}_{i} \not \models \eta\right\}\right|<\omega$, then $\eta \in \Sigma$ (since $\eta \in \Delta$ would imply $\omega \times\{\eta\} \subseteq\left\{i \in I \mid \mathcal{A}_{i} \not \models \eta\right\}$), thus, in particular, $\mathcal{B} \vDash \eta$. By the lemma, there exists a filter Φ on I such that $\mathcal{B} \cong \prod_{\Phi} \mathcal{A}_{i}$. But $\varphi \in R P S_{L_{2}}^{w}$, whence $\prod_{\Phi} \mathcal{A}_{i} \vDash \varphi$, consequently, $\mathcal{B} \vDash \varphi$ and $\mathcal{M} \vDash \varphi$.

Theorem 3.7. Each Horn L_{t}-formula is preserved under reduced products of basic structures $\left(H F_{L_{t}} \subseteq R P F_{L_{t}}^{b}\right)$.

Proof. Let $\varphi \in H F_{L_{t}}$ and let $\left\{\mathcal{A}_{i} \mid i \in I\right\}, \Psi, \bar{f}$ and \bar{U} be as in Definition 3.4. By Lemma 3.3, there is $\vartheta \in H F_{L_{2}}$ such that $\varphi \stackrel{c}{\Longleftrightarrow} \vartheta$, thus also $\varphi \stackrel{b}{\Longleftrightarrow} \vartheta$. Let $J=\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi\left[\overline{f_{i}}, \overline{U_{i}}\right]\right\} \in \Psi$. By the previous theorem, $\prod_{\Psi} \mathcal{A}_{i} \vDash \vartheta[\overline{[f]}, \overline{q(U)}]$. But $\prod_{\Psi} \mathcal{A}_{i}$ is a basic structure, so $\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi[\overline{[f]}, \overline{q(U)}]$.

Lemma 3.8. There is a sentence $\vartheta_{\text {bas }} \in H S_{L_{2}}$ such that for each weak L_{2}-structure \mathcal{A} there holds:

$$
\mathcal{A} \vDash \vartheta_{\text {bas }} \quad \text { iff } \mathcal{A} \text { is a basic structure. }
$$

Proof. If $\varphi_{\text {bas }} \equiv \varphi_{1} \wedge \varphi_{2}$, where $\varphi_{1} \equiv \forall x \exists X(x \in X)$ and $\varphi_{2} \equiv$ $\forall X \forall Y \forall x(x \in X \wedge x \in Y \Longrightarrow \exists Z(x \in Z \wedge \forall z(z \in Z \Longrightarrow z \in X \wedge z \in Y)))$, then for each weak structure \mathcal{A} we have: $\mathcal{A} \vDash \varphi_{\text {bas }}$ iff \mathcal{A} is a basic structure. Obviously, $\varphi_{1} \in H S_{L_{2}}$, while, by Lemma 2.3 and necessary tautologies, $\varphi_{2} \stackrel{w}{\Longleftrightarrow} \varphi_{2}^{\prime}$ where

$$
\begin{aligned}
\varphi_{2}^{\prime} \equiv & \forall X \forall Y \forall x \exists Z \forall z((\neg x \in X \vee \neg x \in Y \vee x \in Z) \\
& \wedge(\neg x \in X \vee \neg x \in Y \vee \neg z \in Z \vee z \in X) \\
& \wedge(\neg x \in X \vee \neg x \in Y \vee \neg z \in Z \vee z \in Y))
\end{aligned}
$$

So we can put: $\vartheta_{\text {bas }} \equiv \varphi_{1} \wedge \varphi_{2}^{\prime} \in H S_{L_{2}}$, for, surely, $\vartheta_{\text {bas }} \stackrel{w}{\Longleftrightarrow} \varphi_{\text {bas }}$.

Lemma 3.9. Let $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ be a family of weak L_{2}-structures, Ψ a filter on I and $I_{1} \in \Psi$. If $\Psi_{1}=\left\{F \cap I_{1} \mid F \in \Psi\right\}$, then we have:
(a) for each formula $\varphi(\bar{x}, \bar{X}) \in \operatorname{Form}_{L_{2}}$, each $\bar{f} \in \prod A_{i}$ and each $\bar{U} \in \prod \mathcal{O}_{i}$ it holds

$$
\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi[\overline{[f]}, \overline{q(U)}] \quad \text { iff } \prod_{\Psi_{1}} \mathcal{A}_{i} \vDash \varphi\left[\overline{\left[\left.f\right|_{I_{1}}\right]}, \overline{q_{1}\left(\left.U\right|_{I_{1}}\right)}\right]
$$

of course, the index set in the second product is I_{1};
(b) $\prod_{\Psi} \mathcal{A}_{i} \equiv_{L_{2}} \prod_{\Psi_{1}} \mathcal{A}_{i}$.

Proof. The proof of (a) is by the usual induction; it is a consequence of the classical result (for first-order parts) and the result concerning the reduced ideal products given in [5].

Theorem $3.10(\mathrm{CH})$. An L_{t}-sentence φ is preserved under reduced products of basic L_{2}-structures iff there exists a Horn L_{2}-sentence η satisfying $\varphi \stackrel{b}{\Longleftrightarrow} \eta$.

Proof. (\Longrightarrow) Suppose $\varphi \in R P S_{L_{t}}^{b}$. Let us prove

$$
\begin{equation*}
\varphi \wedge \vartheta_{\text {bas }} \in R P S_{L_{2}}^{w} \tag{1}
\end{equation*}
$$

Let $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ be a family of weak L_{2}-structures, Ψ a filter on I and let $J \stackrel{\text { def }}{=}\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi \wedge \vartheta_{\text {bas }}\right\} \in \Psi$ and $I_{1} \stackrel{\text { def }}{=}\left\{i \in I \mid \mathcal{A}_{i} \vDash \vartheta_{\text {bas }}\right\}$. Since $J \subseteq I_{1}$, we have $I_{1} \in \Psi$ (and $J=J \cap I_{1}=\left\{i \in I_{1} \mid \mathcal{A}_{i} \vDash \varphi\right\} \in \Psi_{1}$). Now, $\left\{\mathcal{A}_{i} \mid i \in I_{1}\right\}$ is a family of basic structures and because of $\varphi \in R P S_{L_{t}}^{b}$, it follows:

$$
\begin{equation*}
\prod_{\mathbb{v}_{1}} \mathcal{A}_{i} \vDash \varphi . \tag{2}
\end{equation*}
$$

By Lemma 3.8, $\vartheta_{\text {bas }} \in H S_{L_{2}}$, thus $\vartheta_{\text {bas }} \in R P S_{L_{2}}^{w}$ and $\prod_{\Psi_{1}} \mathcal{A}_{i} \vDash \vartheta_{\text {bas }}$. By (2), $\prod_{\Psi_{1}} \mathcal{A}_{i} \vDash \varphi \wedge \vartheta_{\text {bas }}$ and by the previous lemma $\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi \wedge \vartheta_{\text {bas }}$ which proves (1). By Theorem 3.6, there is $\eta \in H S_{L_{2}}$ such that $\varphi \wedge \vartheta_{\text {bas }} \stackrel{w}{\Longleftrightarrow} \eta$, thus also $\varphi \wedge \vartheta_{\text {bas }} \stackrel{b}{\Longleftrightarrow} \eta$. But clearly, $\varphi \wedge \vartheta_{\text {bas }} \stackrel{b}{\Longleftrightarrow} \varphi$ and so $\varphi \stackrel{b}{\Longleftrightarrow} \eta$.
(\Longleftarrow) Let $\varphi \in \operatorname{Sent}_{L_{t}}, \eta \in H S_{L_{2}}, \varphi \stackrel{b}{\Longleftrightarrow} \eta$ and let $\left\{\mathcal{A}_{i} \mid i \in I\right\}$ be a family of basic structures. If Ψ is a filter on I and $I_{\varphi}=\left\{i \in I \mid \mathcal{A}_{i} \vDash \varphi\right\}$ $\in \Psi$, then, because of $\varphi \stackrel{b}{\Longleftrightarrow} \eta$, we have $I_{\varphi}=I_{\eta}\left(=\left\{i \in I \mid \mathcal{A}_{i} \vDash \eta\right\}\right)$. Again by Theorem 3.6, $\prod_{\Psi} \mathcal{A}_{i} \vDash \eta$ and being $\prod_{\Psi} \mathcal{A}_{i}$ a basic structure too we obtain $\prod_{\Psi} \mathcal{A}_{i} \vDash \varphi$.

Lemma 3.11. By the invariance of L_{t}-sentences, for an L_{t}-sentence φ holds:

$$
\varphi \in R P S_{L_{t}}^{b} \quad \text { iff } \quad \varphi \in R P S_{L_{t}}^{t}
$$

Example 3.12. The separation axioms T_{0}, T_{1}, T_{2} and the regular property of topologies are expressed by the formulas, respectively:

$$
\begin{aligned}
\varphi_{T_{0}} \equiv & \forall x \forall y(x=y \vee \exists X \ni x \neg y \in X \vee \exists Y \ni y \neg x \in Y) ; \\
\varphi_{T_{1}} \equiv & \forall x \forall y(x=y \vee \exists Y \ni y \neg x \in Y) ; \\
\varphi_{T_{2}} \equiv & \forall x \forall y(x=y \vee \exists X \ni x \exists Y \ni y \forall z(\neg z \in X \vee \neg z \in Y)) ; \\
\varphi_{\mathrm{reg}} \equiv & \forall x \forall X \ni x \exists Y \ni x \forall y(y \in X \vee \exists Z \ni y \forall z(\neg z \in Z \vee \neg z \in Y)) \\
& \wedge \varphi_{T_{1}} .
\end{aligned}
$$

By Lemma 2.4 we can find the prenex forms of these formulas:

$$
\begin{aligned}
& \varphi_{T_{0}} \stackrel{c}{\Longleftrightarrow} \forall x \forall y \exists X \ni x \exists Y \ni y(x=y \vee \neg y \in X \vee \neg x \in Y) ; \\
& \varphi_{T_{1}} \stackrel{c}{\Longleftrightarrow} \forall x \forall y \exists Y \ni y(x=y \vee \neg x \in Y) ; \\
& \varphi_{T_{2}} \stackrel{c}{\Longleftrightarrow} \forall x \forall y \exists X \ni x \exists Y \ni y \forall z(x=y \vee \neg z \in X \vee \neg z \in Y) ; \\
& \varphi_{\mathrm{reg}} \stackrel{c}{\Longleftrightarrow} \forall x \forall X \ni x \exists Y \ni x \forall y \exists Z \ni y \forall z(y \in X \vee \neg \in Y \vee \neg \in Z)
\end{aligned}
$$

All sentences on the right side are Horn L_{t}-sentences, thus preserved under reduced products of topological spaces. It holds as well for the separation axiom T_{3} (for $\varphi_{T_{3}} \equiv \varphi_{T_{1}} \wedge \varphi_{\mathrm{reg}}$ and a conjunction of Horn formulas is a Horn formula). More general result considering separation axioms and reduced ideal-products can be found in [5]. In connection with it let us note that a Horn L_{t}-sentence does not have to be preserved under reduced ideal-products, even if the condition $(\Lambda \Psi)$ is satisfied. For instance, the property discrete of topologies is expressed by Horn L_{t}-sentence:

$$
\varphi_{\mathrm{disc}} \equiv \forall x \exists X \ni x \forall y(y=x \vee \neg u \in X)
$$

which, however, is not preserved under Tychonoff products.
Following one part of the proof of Proposition 6.2.6. from [2] we obtain:
Lemma 3.13. A disjunction of Horn L_{t}-sentences is preserved under reduced powers of basic structures.

The above lemma does not hold for reduced products. One simple example gives the reduced product of the family of topological spaces $\left\{\mathcal{A}_{i}=\right.$ $\left.\left\langle A_{i}, \mathcal{O}_{i}\right\rangle \mid i \in \omega\right\}, \prod_{\Psi} \mathcal{A}_{i}$, where all spaces have the same "ground" set
$\{0,1\}$, and, for k even, topological space \mathcal{A}_{k} is discrete, for k odd, indiscrete while the filter Ψ is the Fréchet filter. If $\varphi_{\text {indisc }} \equiv \forall x \forall X \ni x \forall y(y \in X)$, then

$$
\left\{i \in \omega \mid \mathcal{A}_{i} \vDash \varphi_{\text {disc }} \vee \varphi_{\text {indisc }}\right\}=\omega \in \Psi
$$

but, obviously, $\prod_{\Psi} \mathcal{A}_{i}$ is neither Hausdorff nor indiscrete.

References

[1] J. L. Bell and A. B. Slomson, Models and Ultraproducts, North-Holland, Amsterdam - London, 1971.
[2] C. C. Chang and H. J. Keisler, Model Theory, North-Holland Publishing Company, Amsterdam, 1973.
[3] J. Flum and M. Ziegler, Topological Model Theory, Lecture Notes in Mathematics 769, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
[4] S. Garavaglia, Model theory of topological structures, Annals of Math. Logic 14 (1978), 13-37.
[5] M. Z. Grulović and M. S. Kurilić, On the preservation of separation axioms in products, Comment. Math. Univ. Carolinae 33 no. 4 (1992), 713-721.
[6] H. J. Keisler, Reduced products and Horn classes, Trans. Am. Math. Soc. 117 (1965), 307-328.
[7] T. A. McKee, Infinitary logic and topological homeomorphisms, Zeitschrift f. math. Logik und Grundlagen d. Math. 21 (1975), 405-408.
[8] T. A. McKee, Sentences preserved between equivalent topological bases, Zeitschrift f. math. Logik und Grundlagen d. Math. 22 (1976), 79-84.
[9] M. Ziegler, A language for topological structures wich satisfies a Lindström theorem, Bull. Amer. Math. Soc. 82 (1976), 586-570.

```
MILOŠ S. KURILIĆ
INSTITUTE OF MATHEMATICS
UNIVERSITY OF NOVI SAD
TRG. DOSITEJA OBRADOVICA 4
21000 NOVI SAD
YUGOSLAVIA
MILAN Z. GRULOVIĆ
INSTITUTE OF MATHEMATICS
UNIVERSITY OF NOVI SAD
TRG. DOSITEJA OBRADOVICA 4
21000 NOVI SAD
YUGOSLAVIA
```


[^0]: Mathematics Subject Classification: Primary 54B10, 54B15 03C85, Secondary 03C65. Key words and phrases: Reduced products, Horn sentences, Topological structures, L_{2}-language, L_{t}-language.

