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Special radicals in rings with involution

By G. L. BOOTH (Umtata, South Africa) and

N. J. GROENEWALD (Port Elizabeth)

Abstract. Special radicals were defined for rings with involution by Salavov�a.
In this paper we show that every special radical R in the variety of rings induces a
corresponding special radical R∗ in the variety of rings with involution, and R∗(R) ⊆
R(R) for any involution ring R. The reverse inclusion does not hold in general. This
theory gives new characterisations for certain concrete radicals.

1. Preliminaries

We recall that an involution on a ring R is a mapping x −→ x∗(x ∈ R)
such that (x+y)∗ = x∗+y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. If
x ∈ R and x∗ = x, then x is called a symmetric element of R. A ∗-ideal of
R is an ideal of the ring R which is closed with respect to the ∗ operation.
If R, S are rings with involution, and f : R −→ S is a ring homomorphism
(isomorphism) such that f(x∗) = (f(x))∗ for all x ∈ R, then f is called
a ∗-homomorphism (∗-isomorphism). Factor involution rings are defined
as for rings, and the usual isomorphism theorems may be proved. If R is
any ring and Rop is its antiisomorphic image, then R⊕Rop is a ring with
involution with (x, y)∗ := (y, x) for all x, y ∈ R. This involution is called
the exchange involution. For further properties of rings with involution,
we refer to [4].

If R is a ring, the notation A / R means “A is an ideal of R”. If
E / R and 0 6= A / R implies A ∩ E 6= 0, then E is an essential ideal of
R, denoted E / ·R. Similarly, if R is a ring with involution, A / ∗R means
“A is a ∗-ideal of R”. If E / ∗R and 0 6= A / ∗R implies A ∩ E 6= 0,
then E is an essential ∗-ideal of R, denoted E / ∗ · R. In the sequel, the
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varieties of rings and rings with involution will be denoted Rng and IR,
respectively. For a detailed treatment of radical theory in Rng (and related
varieties, e.g. IR), we refer for example to [12]. We recall that a class M
of prime rings is called special if M is hereditary (i.e. A / R ∈ M implies
A ∈M) and essentially closed (i.e. E / ·R, E ∈M implies R ∈M). This
definition is due to Heyman and Roos [5]. The upper radical determined by
M, UM := {R | R has no nonzero homomorphic image in M} is called a
special radical . In this case

UM(R) =
⋂{P / R | R/P ∈M}.

Salavovà [8] introduced special radicals for rings with involution. If
R ∈ IR, then R is ∗-prime if A,B / ∗R, AB = 0 implies A = 0 or B = 0.
A class M in IR is special if

S1 : M consists of ∗-prime involution rings.
S2 : M is ∗-hereditary , i.e. A / ∗R ∈M implies A ∈M.
S3 : A / ∗R, A ∈M, R ∗-prime implies R ∈M.

Using proofs similar to those of [5] for the ring case, it may be shown that
condition S3 may be replaced by

S4 : M is ∗-essentialy closed , i.e. E/∗·R, E ∈M implies R ∈M.

If M is a special class in IR, the upper radical determined by M, U∗M :=
{R | R has no nonzero ∗-homomorphic image in M}, is called a special
radical . In this case, as for rings it is easily shown that

U∗M(R) =
⋂{P / ∗R | R/P ∈M}

for all R ∈ IR.

Lee and Wiegandt [6] have noted that not every special radical
class R in Rng has the property that R(R) / ∗R for all R ∈ IR, although
most of the well-known specials do have this property. Examples of special
radicals which do not, are the right strongly prime [3], and superprime [11]
radicals. The following result gives necessary and sufficient conditions for
a special radical in Rng to have the above-mentioned property, and hence
to be usable as a radical in IR.

Proposition 1.1 (cf. [6]). Let R = UM, where M is a special class
in Rng. Then the following are equivalent:

(a) R(R) / ∗R ∀R ∈ IR

(b) R(R)∗ = R(R) ∀R ∈ IR
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(c) R ∈ R =⇒ Rop ∈ R ∀R ∈ Rng

(d) R ∈M =⇒R(Rop) = 0 ∀R ∈ Rng.

Proof. (a) ⇔ (b) is obvious. (b) ⇔ (c) is [6], Theorem 1. (c) =⇒
(d) follows from [6], Corollary 1. Hence we need only show (d) =⇒ (c).
Let R ∈ R and suppose Rop /∈ R. Then Rop has a nonzero homomorphic
image, Rop/A, say, which is in M. Hence R(Rop/A)op = 0, i.e. R(R/A) =
0. This is impossible, since R ∈ R and R is homomorphically closed.
Hence Rop ∈ R, and (c) holds.

Special radicals satisfying the conditions of Proposition 1.1 will be
called symmetric.

2. Special radicals in rings with involution

In this section we wil show that every special radical in Rng induces
a uniquely determined special radical in IR.

Lemma 2.1 ([7], Proposition 2.13.35). Let R ∈ IR. Then R is ∗-
prime if and only if there exists a prime ideal P of the ring R such that
P ∩ P ∗ = 0. Moreover, P may be chosen to be maximal in the class of
ideals I of R such that I ∩ I∗ = 0.

Let M a special class in Rng. Then we define

M∗ = {R ∈ IR | ∃P / R with P ∩ P ∗ = 0 and R/P ∈M}.
Theoem 2.2. Let M be a special class in Rng. Then M∗ is a special

class in IR.

Proof. Let R ∈ M∗, and let P / R be such that P ∩ P ∗ = 0 and
R/P ∈ M. Then R/P is prime, whence R is ∗-prime by Lemma 2.1.
Hence M∗ satisfies S1. Now suppose that A / ∗R. Then A ∩ P is a prime
ideal of A, and (A∩P )∩ (A∩P )∗ = (A∩P )∩ (A∩P ∗) = A∩P ∩P ∗ = 0.
Moreover A/(A ∩ P ) ∼= (A + P )/P / R/P ∈ M, whence A/(A ∩ P ) ∈ M,
since M is hereditary. Thus A ∈ M∗. Let E be an essential ∗-ideal of a
ring with involution R. Let P / E with E/P ∈ M, P ∩ P ∗ = 0. Since
P / R / R and E/P is prime, P / R. We will show that E/P / ·R/P . If
P = E, P ∗ = E∗ = E so E = P ∩ P ∗ = 0. Since E is an essential ∗-ideal
of R, R = 0 and so E/P / ·R/P trivially. Suppose that P ⊂ E. Now
let 0 6= U / R/P . Then U = I/P for some ideal I of R which properly
contains P . Suppose E ∩ I ⊆ P . Then EI ⊆ E ∩ I ⊆ P , whence E ⊆ P or
I ⊆ P since P is prime. This is impossible, since P ⊂ I and P ⊂ E. Thus
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E ∩ I * P . Let x ∈ (E ∩ I) − P . Then x + P ∈ (E/P ) ∩ (I/P ). Hence
E/P / ·R/P . Since M is essentially closed, R/P ∈ M, whence R ∈ M∗.
Thus M∗ satisfies S4.

Theorem 2.3. Let M1 and M2 be special classes in Rng. If UM1 =
UM2, then U∗M∗

1 = U∗M∗
2 in IR.

Proof. Suppose that R is a ring with involution and R /∈ U∗M∗
1.

Then R has a nonzero ∗-homomorphic image R′ say, in U∗M∗
1. Then

there exists P / R′ such that R/P ∈ M1 and P ∩ P ∗ = 0. If P = R′

then P ∗ = (R′)∗ = R′, whence R′ = P ∩ P ∗ = 0. This is impossible by
our choice of R′, so P 6= R′. Thus R′/P is a nonzero homomorphic image
of R′ in M1. Hence R′ /∈ UM1. Since UM1 = UM2, R′ has a nonzero
homomorphic image S, say, in M2. Clearly, S is a homomorphic image
of R, whence S ∼= R/Q for some proper ideal Q of the ring R. Consider
the involution ring R/(Q ∩ Q∗). Then Q/(Q ∩ Q∗) / R/(Q ∩ Q∗) and
(Q/(Q ∩Q∗)) ∩ (Q/(Q ∩Q∗))∗ = 0.

Moreover (R/(Q ∩Q∗))/(Q/(Q ∩Q∗)) ∼= R/Q ∈M2. Hence
(R/(Q ∩ Q∗)) ∈ M∗

2, so R /∈ U∗M∗
2. Thus U∗M∗

2 ⊆ U∗M∗
1. The reverse

inclusion is proved similarly.

Theorems 2.2 and 2.3 show that every special radicalR in Rng induces
a uniquely determined special radical in IR. If M is a special class in Rng
and R = UM, then we shall denote U∗M∗ by R∗ .

Lemma 2.4. Let R ∈ IR. A subset Q of R is a ∗-ideal of R such that

R/Q ∈M∗ if and only if Q = P ∩ P ∗ for some ideal P of the ring R such

that R/P ∈M.

Proof. Suppose Q = P ∩ P ∗, where P / R, R/P ∈ M. Then
(R/Q)/(P/Q) ∼= R/P ∈ M and (P/Q) ∩ (P/Q)∗ = (P ∩ P ∗)/Q = 0.
Hence R/Q ∈M∗. Conversely, suppose that Q/ ∗R and that R/Q ∈M∗.
Then there exists U / R/Q such that (R/Q)/U ∈ M and U ∩ U∗ = 0.
Then U = P/Q for some ideal P of the ring R such that Q ⊆ P . Then
R/P ∼= (R/Q)/(P/Q) ∈M and since U ∩ U∗ = 0, P ∩ P ∗ = Q.
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Proposition 2.5. If R is a special radical in Rng, then R∗(R) =

R(R) ∩ (R(R))∗ for any R ∈ IR.

Proof. Let R = UM, where M is a special class in Rng. Then

R∗(R) =
⋂{Q / ∗R : R/Q ∈M∗}

=
⋂{P ∩ P ∗ | P / R and R/P ∈M} (by Lemma 2.4)

=
⋂{P / R : R/P ∈M} ∩ {P ∗ | P / R and R/P ∈M}

= R(R) ∩ (R(R))∗.

Corollary 2.6. If R is a symmetric special radical in Rng, then

R∗(R) = R(R) for all R ∈ IR.

3. Examples

From [6] we have that if R denotes the prime or Jacobson radical for
rings then R(R)∗ = R(R) for any ring with involution R. Moreover, the
definitions of ∗-prime and ∗-primitive involution rings coincide with those
obtained from the corresponding classes in Rng. We refer to [7] for details.

The nil radical

Van der Walt [10] characterised the nil radical N in Rng as the

upper radical determined by the (special) class of s-prime rings. A ring R
is s-prime if there exists a multiplicatively closed subset S of R−{0} such
that 0 6= A / R implies A ∩ S 6= ∅. If P / R, then P is called an s-prime
ideal of R if R/P is an s-prime ring. The s-prime ideals of R may easily
be characterised as follows:

Lemma 3.1. Let R be a ring and P / R. Then the following are
equivalent:

(a) P is an s-prime ideal of R.

(b) R − P contains a multiplicatively closed subset S such that A / R,

A * P implies A ∩ S 6= ∅.
(c) R − P contains a multiplicatively closed subset S such that A / R,

P ⊂ A implies A ∩ S 6= ∅.
Let M be the class of s-prime rings. Clearly R ∈ M implies that

Rop ∈M. Hence N is a symmetric special radical by Proposition 1.1.
If R ∈ IR, then R is called ∗-s-prime if there exists a multiplicatively

closed subset S of R such that 0 6= I / ∗R implies I ∩ S 6= ∅.
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Lemma 3.2. Let R ∈ IR. Then R is ∗-s-prime if and only if there

exists an s-prime ideal P of R such that P ∩ P ∗ = 0.

Proof. Let R be ∗-s-prime and let S be the required multiplicatively
closed system in R−{0}. If 0 6= I, J /∗R, there exists s ∈ I∩S, s′ ∈ J∩S,
and ss′ ∈ S whence ss′ 6= 0. Thus IJ 6= 0. Hence, R is ∗-prime. By
Lemma 2.1, there exists a prime ideal P of R such that P ∩P ∗ = 0 and P

is maximal with respect to this property. We show that either S ∩ P = ∅
or S∗ ∩ P = ∅. For suppose s ∈ S ∩ P , s′ ∈ S ∩ P ∗. Then ss′ ∈ S and
ss′ ∈ PP ∗ ⊆ P ∩ P ∗ = 0. Thus 0 ∈ S, which is clearly impossible. Hence
S ∩ P = ∅, or S ∩ P ∗ = ∅, so S ∩ P = ∅ or S∗ ∩ P = ∅. Since both S and
S∗ are multiplicatively closed, we may assume S ∩ P 6= ∅. Let P ⊂ I / R.
By maximality of P , I ∩ I∗ 6= 0. Since I ∩ I∗ / ∗R, I ∩ I∗ ∩ S 6= ∅, whence
I ∩ S 6= ∅. Thus P is an s-prime ideal of R.

Conversely, let R ∈ IR and let P be an s-prime ideal of the ring R such
that P ∩ P ∗ = 0. Then by Lemma 3.1 (b), there exists a multiplicatively
closed subset S of R − P such that I / R, I * P implies I ∩ S 6= ∅. Let
0 6= A/∗R. If A ⊆ P , then A∗ ⊆ P ∗, i.e. A ⊆ P ∗ whence A ⊆ P ∩P ∗ = 0.
Thus A * P , whence A ∩ S 6= ∅. Hence R is ∗-s-prime.

The above Lemma shows that the class of ∗-s-prime involution rings
is precisely the class obtained by applying the techniques of Section 2 to
the class of s-prime rings. Hence this class is special in IR. Since N is
symmetetric, we have:

Proposition 3.3. N (R) =
⋂{P /R | R/P is ∗-s-prime} for all R ∈ IR.

We note that IR is a variety of Ω-groups [2] where Ω consists of the
multiplication and ∗-operators. Buys and Gerber [1] introduced a con-
cept of nilpotence for Ω-groups. An element x of R ∈ IR is ∗-nilpotent in
the sense if there exists n ∈ N such that x1 . . . xn = 0, where xi = x or x∗

for 1 ≤ i ≤ n. If I / ∗R, we define I to be weakly nil if every element of I

is ∗-nilpotent, and

NW (R) =
∑

{I / R | I is weakly nil}.

Clearly, N (R) ⊆ NW (R).
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Lemma 3.4. Let I / ∗R ∈ IR. Then the following are equivalent:

(a) I is weakly nil.

(b) Every symmetric element of I is nilpotent.

(c) xx∗ is nilpotent for all x ∈ I.

Proof. (a) =⇒ (b) and (b) =⇒ (c) are trivial. Suppose (c) holds.
Let x ∈ I. Then (xx∗)n = 0 for some n ∈ N, i.e. xx∗xx∗ . . . xx∗ = 0.
Hence I is weakly nil.

Remark. It follows from Lemma 3.4 that the inclusion NW (R) ⊆
N (R) is equivalent to a conjecture of McCrimmon [4]: If every symmetric
element of R ∈ IR is nilpotent, then R is a nil ring.

A ring with involution R is called strongly s-prime if there exists a
subset S of R−{0} which is closed with respect to the multiplication and
∗-operators such that 0 6= I / ∗R implies I ∩ S 6= ∅. It follows from [2],
Theorem 3.29 that the class MS of strongly s-prime involution rings is
special. From [1], Theorem 3.13 and Corollary 3.16, we have

Proposition 3.5. Let R ∈ IR. Then

NW (R) =
⋂{I / ∗R | R/I is strongoly s-prime}.

We do not know whether or not NW can be obtained from a special
radical class of rings using the methods of Section 2. However, we do have
the following result.

Proposition 3.6. If there exists a hereditary symmetric radical class
of rings R such that NW (R) = R(R) ∩ R(R)∗ for every R ∈ IR, then
R = N .

Proof. Let R ∈ N . Then Rop ∈ N , whence R ⊕Rop ∈ NW . Hence
R(R ⊕ Rop) = R ⊕ Rop, so R ⊕ Rop ∈ R. Since R ∼= (R, 0) / R ⊕ Rop

and R is hereditary, R ∈ R. Hence N ⊆ R. Conversely, let R ∈ R.
Since R is symmetric, Rop ∈ R. Hence R⊕Rop ∈ R, so NW (R⊕Rop) =
R(R ⊕ Rop) ∩ R(R ⊕ Rop)∗ = R ⊕ Rop. If x ∈ R, (x, x) is a symmetric
element of R⊕Rop whence (x, x)n = (0, 0) for some n ∈ N, by Lemma 3.4
(b), and so xn = 0. Thus R ∈ N so R ⊆ N .

The antisimple radical

It is well known that a ring R is subdirectly irreducible if and only if
the intersection of the nonzero ideals of R is nonzero. The intersection
H(R) is called the heart of R. Simiarly, if R ∈ IR, then R is subdirectly
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irreducible in IR if and only if the intersection of the nonzero ∗-ideals of
R is nonzero. This intersection is denoted H∗(R).

The antisimple radical A in Rng is the upper radical determined by

the special class of all prime subdirectly irreducible (psdi) rings [9]. Ac-
cordingly, we will define a ∗-psdi involution ring to be one which is subdi-
rectly irreducible and prime. As for rings these are precisely the involution
rings R which are subdirectly irreducible and for which H∗(R) is idempo-
tent.

Lemma 3.7. Let R ∈ IR. Then R is ∗-psdi if and only if there exists
P / R such that P ∩ P ∗ = 0 and R/P is a psdi ring.

Proof. Let R be ∗-psdi. Since R is ∗-prime, there exists a prime
ideal P of R such that P ∩P ∗ = 0, and P is maximal with respect to this
property. Let H = H∗(R). Then H * P for if H ⊆ P , then H = H∗ ⊆ P ∗,
whence H ⊆ P ∩ P ∗ = 0. This is impossible since R is ∗-psdi. Hence
H * P , so 0 6= (H + P )/P / R/P . We claim H(R/P ) = (H + P )/P . For
if 0 6= U / R/P , then U = I/P , where P ⊂ I / R. By our choice of P ,
I ∩ I∗ 6= 0. Since I ∩ I∗ / ∗R, H ⊆ I ∩ I∗ ⊆ I, so H + P ⊆ I whence
(H+P )/P ⊆ I/P . Thus H(R/P ) = (H+P )/P and so R/P is subdirectly
irreducible. Since R/P is prime, it is psdi, as required.

Conversely, Let P / R be such that P ∩ P ∗ = 0 and R/P is psdi. Let
H(R/P ) = H/P , where P ⊂ H / R. If H ⊆ P ∗, then H∗ ⊆ P ⊂ H,
whence H∗ ⊂ H, which is impossible. Hence, H * P ∗, whence H∗ * P .
Since P is prime, HH∗ * P , whence HH∗ 6= 0. Suppose 0 6= I / ∗R.
As before, I * P , whence P ⊂ I + P , so 0 6= (I + P )/P / R/P . Hence,
H/P ⊆ (I + P )/P and so H ⊆ I + P . Thus HH∗ ⊆
q(I +P )(I∗+P ∗) = (I +P )(I +P ∗) = I2 +PI + IP ∗+PP ∗ = I2 +PI +
IP ∗ ⊆ I (since PP ∗ ⊆ P ∩ P ∗ = 0). It follows that H∗(R) = HH∗, and
so R is subdirectly irreducible in IR. Since P is a prime ideal of R, R/P
is ∗-prime by Lemma 2.1. Henece R is ∗-psdi.

As before, the above Lemma shows that the class of ∗-psdi involution
rings is special. It is easily seen that if R is psdi, then so is Rop, and so A
is symmetric. Hence:

Proposition 3.8. A(R) =
⋂{P / R | R/P is ∗-psdi} for all R ∈ IR.

The Behrens radical

Let M be the class of all psdi rings whose hearts contain a nonzero
idempotent element. Then M is a special class, and the upper radical B
determined by M is known as the Behrens radical . We refer to [9] for
details of this radical. Clearly, B is symmetric.
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Proposition 3.9. Let R ∈ IR. Then R ∈M∗ if and only if R is ∗-psdi
and H∗(R) contains a nonzero idempotent element.

Proof. Suppose R ∈M∗. Then there exists P / R such that
P ∩P ∗ = 0 and R/P ∈M. Since R/P is psdi, R is ∗-psdi by Lemma 3.7.
Let H(R/P ) = H/P , where P ⊂ H / R. By the proof of Lemma 3.7,
H∗(R) = HH∗. If P = 0, then H = H(R), whence H ⊆ HH∗. But
HH∗ ⊆ H, so H(R) = H∗(R) has a nonzero idempotent element, so does
H∗(R). Suppose P 6= 0. Let e ∈ H be such that 0 6= e + P = (e + P )2.
Since P 6= 0, P ∗ * P , so 0 6= (P + P ∗)/P / R/P . Hence, e + P ∈
H/P ⊆ (P + P ∗)/P , and so there exists p ∈ P such that e + P = p∗ + P .
Hence (p∗ + P )2 = p∗ + P whence (p∗)2 − p∗ ∈ P . Since (p∗)2 − p∗ ∈ P ∗

and P ∩ P ∗ = 0, (p∗)2 = p∗. It follows that p2 = p. Let f = p + p∗.
Then f2 = (p + p∗)2 = p2 + pp∗ + pp∗ + (p∗)2 = p2 + (p∗)2 (since pp∗,
p∗p ∈ P ∩ P ∗ = 0) = p + p∗ = f . Hence f is idempotent. Moreover,
f + P = p + p∗ + P = p∗ + P = e + P . Hence f − e ∈ P ⊆ H. Since
e ∈ H, f ∈ H. Moreover, f∗ = (p+p∗)∗ = p∗+p = p+p∗ = f . Moreover,
f = f∗ = ff∗ ∈ HH∗ = H∗(R). Thus H∗(R) contains an idempotent
element.

Conversely, suppose R is ∗-psdi and that H = H∗(R) contains an
idempotent element, e, say. Then by Lemma 3.7, there exists P / R such
that R/P is psdi and P ∩P ∗ = 0. Moreover, by the proof of that Lemma,
H(R/P ) = (H + P )/P . Then e + P ∈ H(R/P ) and (e + P )2 = e2 + P =
e + P , so R/P ∈M. Hence R ∈M∗.

Corollary 3.10. B(R) =
⋂{P / R | R/P is ∗-psdi and H∗(R/P )

contains a nonzero idempotent element} for all R ∈ IR.

The Brown–McCoy radical

It is well known that the Brown–McCoy radical for rings is the upper
radical G determined by the class of simple rings with unity. An ideal P
of a ring R is called modular if the factor ring R/P has a unity. Clearly,
R/P is a simple ring with unity if and only if P is a maximal modular
ideal of R. An involution ring R will be caled ∗-simple if R has no ∗-ideals
except {0} and R.

Lemma 3.11 ([7] Lemma 2.13.23). Let R ∈ IR. Let R is ∗-simple if
and only if there exists a maximal ideal P of R such that P ∩ P ∗ = 0.
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Theorem 3.12. Let R ∈ IR. Then the following are equivalent:

(a) R is ∗-simple with unity.

(b) There exists a modular maximal ideal P of the ring R such

that P ∩ P ∗ = 0.

(c) Either R is a simple ring with unity or R is ∗-isomorphic to

S ⊕ Sop with the exchange involution, where S is a simple

ring with unity.

Proof. (a) =⇒ (b): Since R is ∗-simple, by Lemma 3.11 there exists
a maximal ideal P of the ring R such that P ∩ P ∗ = 0. Let e be the
identity of R. Then e + P is the identity of R/P . Hence P is modular.

(b) =⇒ (c): Let P be a modular maximal ideal of the ring R such
that P ∩ P ∗ = 0. If P = 0, then R is a simple ring with unity. Suppose
P 6= 0. Then P 6= P ∗, whence P ⊂ P + P ∗. By maximality of P ,
R = P + P ∗. It follows that R is isomorphic to P ⊕ P ∗ ∼= P ⊕ P op. The
isomorphism α : R −→ P ⊕ P ∗ is given by α(x) = (p, q), where p and q are
the unique elements of P and P ∗ respectively such that x = p + q. Then
(α(x))∗ = (p, q)∗ = (q∗, p∗) = α(x∗). Hence α is a ∗-isomorphism of R

onto P ⊕ P ∗. Now P is isomorphic to R/P ∗, which is a simple ring with
unity since P ∗ is a modular maximal ideal of R. Hence, P is a simple ring
with unity, as required.

(c) =⇒ (a): If R is a simple ring with unity, it is ∗-simple. If R =
S ⊕ Sop where S is a simple ring with unity, then the ∗-ideals of R are of
the form A⊕ Aop, where A / S. Since S is simple, R is ∗-simple. Since S

has a unity, so does Sop. Hence R has a unity.

In view of Theorem 3.11, and the fact that G is clearly symmetric, we
have:

Proposition 4.9. G(R) =
⋂{P / R | R/P is ∗-simple with unity} for

all R ∈ IR.
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