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Jordan *-derivations with respect to
the Jordan product

By PÉTER BATTYÁNYI (Debrecen)

Abstract. In this note we give a description of Jordan ∗-derivations on standard
operator algebras with respect to the Jordan product defined by A ◦B = 1

2
(AB +BA).

That is, we characterize the additive solutions of the functional equation E(T ◦ T ) =
T ◦ E(T ) + E(T ) ◦ T ∗ (T ∈ A), where A ⊂ B(H) is a standard operator algebra.

An additive mapping J on a ∗-ring R is called a Jordan ∗-derivation
if it satisfies

J(a2) = aJ(a) + J(a)a∗ (a ∈ R).

The theory of Jordan ∗-derivations originates from the result that the
structure of these mappings is in firm connection with the problem of the
representability of quadratic forms by sesquilinear ones on modules over
∗-rings (cf.[9,11]). Though the notion of Jordan ∗-derivations is relatively
new, there are already a considerable number of results concerned with
these mappings (see e.g. [1–5,7,8]). The result which is in the closest
connection with the subject of this note is that of Šemrl [10], who proved
that on standard operator algebras Jordan ∗-derivations are of the form

J(T ) = TA−AT ∗ (T ∈ B(H))

for some operator A ∈ B(H).
In the last decades the importance of non-associative rings and alge-

bras has been growing rapidly (cf. [6]). Owing to this fact it seems natural
to examine Jordan ∗-derivations of these kind of structures. Zalar [12]
was the first to begin investigations in this direction discussing Jordan
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∗-derivations on Cayley-Dickson algebra. In the present paper we are go-
ing to deal with Jordan ∗-derivations on operator algebras with respect
to the well-known Jordan product A ◦ B = 1

2 (AB + BA) (A,B ∈ B(H)),
which operation plays a fundamental role in many areas of functional anal-
ysis and algebra. Similarly to the above statement of Šemrl, we give a
full description of Jordan ∗-derivations on standard operator algebras with
respect to the commutative structure of B(H) induced by the Jordan prod-
uct.

Since the function in the equation of the following theorem is an op-
erator function, the methods applied in the proof are partly different from
those used in the theory of functional equations concerning real or complex
functions.

Theorem. Let H be a real or complex Hilbert space with dim H ≥ 3.
Let us suppose that A ⊂ B(H) is a standard operator algebra and E :
A → B(H) is an additive function. Then E satisfies the equality

E(T ◦ T ) = T ◦ E(T ) + E(T ) ◦ T ∗ (T ∈ A)

if and only if there is a scalar λ ∈ K such that

E(T ) = λ(T − T ∗) (T ∈ A).

Proof. Let H be a Hilbert space of dimension at least three over the
field K, where K denotes R or C respectively and, moreover let A ⊂ B(H)
be a standard operator algebra. Suppose that E : A → B(H) is a Jordan
∗-derivation with respect to the Jordan product. The defining equation of
E concerning the usual operator product takes the following form

(1) E(T 2) = 1
2 (E(T )T + TE(T ) + T ∗E(T ) + E(T )T ∗) (T ∈ B(H)).

Substituting T + S into equation (1) and subtracting from the result the
equalities obtained by writing T and S into (1) we have

(2)
E(TS + ST ) = 1

2 (E(T )S + SE(T ) + E(T )S∗ + S∗E(T ))

+ 1
2 (E(S)T + TE(S) + E(S)T ∗ + T ∗E(S)).

In the first part of the proof we show that there exists a λ ∈ K such
that E(T ) = λ(T − T ∗) holds for every T ∈ F(H), where F(H) ⊂ B(H)
stands for the algebra of finite rank operators. After this the statement
will be obtained easily.

In order to prove the theorem for finite rank operators, by the addi-
tivity of E it is enough to restrict our attention to rank-one operators.
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Let a and b be orthogonal unit vectors. We are going to demonstrate
that there exists a λab ∈ K of which the value depends on the choice of
the vectors a, b and for which E(a⊗ b) = λab(a⊗ b− b⊗ a) is valid. Let
us prove first that there is a λab ∈ K for which E(a ⊗ b)b = λaba and
E(a ⊗ b)a = −λabb hold. Let c be a vector orthogonal to both a and b.
Substitute T = a⊗ b into equation (1)

(3)
0 = E((a⊗ b)2) = 1

2 (a⊗ bE(a⊗ b) + E(a⊗ b)a⊗ b)

+ 1
2 (b⊗ aE(a⊗ b) + E(a⊗ b)b⊗ a).

Take the operators on both sides of this equality at a and then forming
inner product with c we have

(4) 〈E(a⊗ b)b, c〉 = 0.

Similarly, taking equation (3) at b and then forming inner product with c

(5) 〈E(a⊗ b)a, c〉 = 0.

Also, considering the values of both sides of (3) at a and then creating
inner product with a we arrive at

0 = 〈E(a⊗ b)a, b〉+ 〈E(a⊗ b)b, a〉,
that is,

(6) 〈E(a⊗ b)a, b〉 = −〈E(a⊗ b)b, a〉.
Considering (2) with the substitutions T = a⊗ c, S = c⊗ b we have

E(a⊗ b) = E(a⊗ c · c⊗ b + c⊗ b · a⊗ c)(7)

= 1
2 (E(a⊗ c)c⊗ b + c⊗ bE(a⊗ c) + E(a⊗ c)b⊗ c + b⊗ cE(a⊗ c))

+ 1
2 (E(c⊗ b)a⊗ c + a⊗ cE(c⊗ b) + E(c⊗ b)c⊗ a + c⊗ aE(c⊗ b)).

Let us constitute the inner product of (7) at a with a. In this case we
obtain

(8) 〈E(a⊗ b)a, a〉 = 1
2 (〈E(c⊗ b)a, c〉+ 〈E(c⊗ b)c, a〉).

Interchanging a and c in relation (5)

(9) 〈E(c⊗ b)c, a〉 = 0.

Substitute c⊗ b for a⊗ b in (3) and take the inner product of this equation
at a with b. We obtain the equality

(10) 〈E(c⊗ b)a, c〉 = 0.



330 Péter Battyányi

Thus, returning to (8), from (9) and (10) it follows that

(11) 〈E(a⊗ b)a, a〉 = 0

holds.
In a similar way we also have

(12) 〈E(a⊗ b)b, b〉 = 0.

For this purpose consider the operators in (7) at b and form inner product
with b, too.

(13) 〈E(a⊗ b)b, b〉 = 1
2 (〈E(a⊗ c)c, b〉+ 〈E(a⊗ c)b, c〉)

If we write b into (4) in place of c and the other way round, we arrive at

(14) 〈E(a⊗ c)c, b〉 = 0.

Replacing b with c in (3), taking this equation at b then forming inner
product with a we have

(15) 〈E(a⊗ c)b, c〉 = 0.

Hence, on the account of (14) and (15), 〈E(a⊗ b)b, b〉 = 0 is valid in (13).
This implies, together with (4), (5), (6) and (11), (12) that E(a⊗b)b = λaba
and E(a⊗ b)a = −λabb hold for some λab ∈ K.

Let us prove now that if a, b and c are arbitrary, pairwise orthogonal
unit vectors, then E(a⊗ b)c = 0 holds true. Taking equality (7) at c and
forming inner products with a then with b we obtain the equations

(16) 〈E(a⊗ b)c, a〉 = 1
2 (〈E(a⊗ c)b, a〉+ 〈E(c⊗ b)a, a〉+ 〈E(c⊗ b)c, c〉)

and

(17) 〈E(a⊗ b)c, b〉 = 1
2 (〈E(a⊗ c)b, b〉+ 〈E(a⊗ c)c, c〉+ 〈E(c⊗ b)a, b〉).

Perform in (10) the following simultaneous substitutions: let us re-
place a with b, b with c and finally c with a. Hence we have

(18) 〈E(a⊗ c)b, a〉 = 0.

Let us form the inner product of the value of (7) at c with c

(19)
〈E(a⊗ b)c, c〉 = 1

2 (〈E(a⊗ c)c, b〉+ 〈E(a⊗ c)b, c〉)
+ 1

2 (〈E(c⊗ b)a, c〉+ 〈E(c⊗ b)c, a〉).
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Comparing the relations (9), (10) and (14), (15) we acquire

(20) 〈E(a⊗ b)c, c〉 = 0.

Changing the roles of a and b in the above line we arrive at

(21) 〈E(c⊗ b)a, a〉 = 0.

If we rewrite (11) with c instead of a we have the equation

(22) 〈E(c⊗ b)c, c〉 = 0.

Thus, turning back to (16), we can see that (18), (21) and (22) yield
together

〈E(a⊗ b)c, a〉 = 0.

We can also obtain from (17) the result 〈E(a ⊗ b)c, b〉 = 0 in a similar
fashion. Indeed, substitute in (20) c for b and vice versa. We then have

(23) 〈E(a⊗ c)b, b〉 = 0.

If we replace b by c in (12), we arrive at

(24) 〈E(a⊗ c)c, c〉 = 0.

Substitute c for a, b for c and a for b in (15) to obtain

(25) 〈E(c⊗ b)a, b〉 = 0.

By (23), (24) and (25) we can deduce that in (17)

〈E(a⊗ b)c, b〉 = 0

holds.
If H is at least four dimensional, in order to prove the relation

E(a ⊗ b)c = 0 we have to show E(a ⊗ b)c, d〉 = 0 as well, where d is
an arbitrary vector being orthogonal to a, b and c alike. Prove first that
〈E(a⊗ b)c, d〉 = −〈E(b⊗ a)c, d〉 is true with a, b, c, d chosen as above.

Apply (2) to T = c⊗ a + a⊗ c and S = b⊗ c + c⊗ b, and interchange
a and b in (7). Taking the so obtained equations as well as (7) at c and
then forming inner products with d we have the following equalities

〈E(a⊗ b + b⊗ a)c, d〉(26)

= 〈E(c⊗ a + a⊗ c)b, d〉+ 〈E(b⊗ c + c⊗ b)a, d〉,
〈E(a⊗ b)c, d〉 = 1

2 (〈E(a⊗ c)b, d〉+ 〈E(c⊗ b)a, d〉),(27)

〈E(b⊗ a)c, d〉 = 1
2 (〈E(c⊗ a)b, d〉+ 〈E(b⊗ c)a, d〉).(28)
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Subtracting (26) from the duplicated sum of (27) and (28) we have

(29) 〈E(a⊗ b + b⊗ a)c, d〉 = 0.

After this let us show that 〈E(a⊗ b)c, d〉 = 0 is valid. Let us replace
in (27) a by b, b by c, c by a and eventually leave d fixed. Applying these
kind of substitutions once more to the equation obtained in this way from
(27) we arrive at the equalities

〈E(a⊗ b)c, d〉 = 1
2 (〈E(a⊗ c)b, d〉+ 〈E(c⊗ b)a, d〉),(27)

〈E(b⊗ c)a, d〉 = 1
2 (〈E(b⊗ a)c, d〉+ 〈E(a⊗ c)b, d〉),(30)

〈E(c⊗ a)b, d〉 = 1
2 (〈E(c⊗ b)a, d〉+ 〈E(b⊗ a)c, d〉).(31)

Making use of (29) and the similar relations working for the operators b⊗c

and c⊗ a, namely of the equalities

〈E(b⊗ c)a, d〉 = −〈E(c⊗ b)a, d〉 and 〈E(c⊗ a)b, d〉 = −〈E(a⊗ c)b, d〉,
we can solve the linear equation system constituted by (27), (30), (31),
which results in

〈E(a⊗ b)c, d〉 = 〈E(b⊗ c)a, d〉 = 〈E(c⊗ a)b, d〉 = 0.

Summing up, we have proved the relations

〈E(a⊗ b)c, a〉 = 0, 〈E(a⊗ b)c, b〉 = 0,

〈E(a⊗ b)c, c〉 = 0, 〈E(a⊗ b)c, d〉 = 0,

which yields that E(a ⊗ b)c = 0 really holds for any unit vector c ∈
M(a, b)⊥, where M(a, b) denotes the subspace spanned by a and b.

It follows from what we have proved so far that for every pair of
orthogonal unit vectors a,b there exists a λab ∈ K such that

(32) E(a⊗ b) = λab(a⊗ b− b⊗ a)

is satisfied, where the value of λab may depend on the choice of a and b.
In what follows we are going to prove that if a and b are unit vectors,

λab ∈ K is the scalar obtained in (32) and α ∈ K is arbitrary, we have

(33) E(αT ) = λab(αT − (αT )∗),

where T denotes the operator a⊗ a or a⊗ b, respectively.
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Let us fix two orthogonal unit vectors a, b ∈ H, and let λ stand for
the scalar λab ∈ K corresponded to a and b by (32). We shall prove that
for the underlying vectors a, b

(34) E(a⊗ b) = −E(b⊗ a)

holds. For this purpose, by (32), it is enough to verify the equality

〈E(a⊗ b)a, b〉 = −〈E(b⊗ a)a, b〉.
Let c ⊥ a, b be a unit vector. Consider (2) again with the substitutions
T = c ⊗ a + a ⊗ c and S = b ⊗ c + c ⊗ b. Taking this equation, together
with (7) and the equality obtained from (7) by interchanging a and b, and
forming inner products with b we arrive at

〈E(a⊗ b + b⊗ a)a, b〉(35)

= 〈E(c⊗ a + a⊗ c)a, c〉+ 〈E(b⊗ c + c⊗ b)c, b〉,
〈E(a⊗ b)a, b〉 = 1

2 (〈E(a⊗ c)a, c〉+ 〈E(c⊗ b)c, b〉),(36)

〈E(b⊗ a)a, b〉 = 1
2 (〈E(c⊗ a)a, c〉+ 〈E(b⊗ c)c, b〉).(37)

Multiplying the sum of (36) and (37) by two and subtracting (35) from
the result we arrive at

〈E(a⊗ b + b⊗ a)a, b〉 = 0,

which supplies relation (34), as needed.
Let us prove that

(38) E(a⊗ a) = E(b⊗ b) = 0

also holds. By the equations E(a ⊗ a + b ⊗ b) = E((a ⊗ b + b ⊗ a)2) it
follows from (1), taking (34) into account, that

(39) E(a⊗ a) + E(b⊗ b) = 0.

Let c ⊥ a, b be a vector with norm one. In this case, similarly to (39), the
equalities

E(a⊗ a) + E(b⊗ b) = 0,

E(b⊗ b) + E(c⊗ c) = 0,

E(c⊗ c) + E(a⊗ a) = 0

are also valid, which yields (38).
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At this point the proof is separated into two branches according as H
is a real or a complex Hilbert space.

Supposing that H is real let us consider the self-adjoint, negative
semi-definit operator

S = α(a⊗ a + b⊗ b),

where α < 0 is an arbitrary real number. If we define T as

T =
√

(−α)(a⊗ b− b⊗ a),

then T ∗ = −T and moreover S = T 2 holds true. Applying (1) to S = T 2

we have

(40) E(S) = E(T 2) = 0.

Substituting T = a⊗ a, S = α(a⊗ a + b⊗ b) into (2), by (38) and (40) we
arrive at

(41) E(αa⊗ a) = 0.

Furthermore equation (2) taken at T = a ⊗ b, S = αb ⊗ b together with
(32) and (41) results in

(42)
E(αa⊗ b) = αb⊗ bE(a⊗ b) + E(a⊗ b)αb⊗ b

= λ(αa⊗ b− αb⊗ a).

Since E is additive, we have (33) for every α ∈ R.
Assume now that H is complex. Let us suppose that a and b are

chosen as above. First of all determine E(ia ⊗ a). By (38) the following
equality is true

2E(ia⊗ a) = E((ia⊗ a)a⊗ a + a⊗ a(ia⊗ a))

= a⊗ aE(ia⊗ a) + E(ia⊗ a)a⊗ a.

Taking this equation at y, where y ⊥ a is arbitrary, and then at a, we can
deduce by forming inner products with appropriate vectors that

(43) E(ia⊗ a) = λa(ia⊗ a− (ia⊗ a)∗)

holds for some λa ∈ C, where λa may depend on the choice of a.
Applying (2) to T = ia⊗ a and S = −ia⊗ b, taking into account that

T is skew-symmetric and (43) holds true, we have

E(a⊗ b) = λa(a⊗ b− b⊗ a).
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It follows from (32) that λa = λ. With this in hand, by the additivity of
E, the relation

(44) E(αa⊗ a) = λ(αa⊗ a− (αa⊗ a)∗) (α ∈ C)

can be obtained easily. If we argue in the same way as in the case of (42),
we also have

(45) E(αa⊗ b) = λ(αa⊗ b− (αa⊗ b)∗),

where α ∈ C is arbitrary.
In what follows we can treat the real and complex cases jointly again.

We claim that the scalar λ is in fact independent of the choice of a and b.
Prior to this, let us demonstrate that for a, b fixed as above and for a

unit vector c chosen to be orthogonal to a and b

(46) λ = λab = λac

holds. The course of the proof is analogous to that of the assertions from
(26) to (31).

First of all, on account of (32) and (34) for any two orthogonal unit
vectors d and e the relation

(47) 〈E(d⊗ e)e, d〉 = 〈E(e⊗ d)d, e〉
is valid.

Let us consider the inner product of the value of (7) at b with a.
Change a for b, b for c and finally c for a in this equation. Carry out these
substitutions one more time for the equation obtained in this way, we thus
arrive at the equalities

〈E(a⊗ b)b, a〉 = 1
2 (〈E(a⊗ c)c, a〉+ 〈E(c⊗ b)b, c〉)

〈E(b⊗ c)c, b〉 = 1
2 (〈E(b⊗ a)a, b〉+ 〈E(a⊗ c)c, a〉)

〈E(c⊗ a)a, c〉 = 1
2 (〈E(c⊗ b)b, c〉+ 〈E(b⊗ a)a, b〉).

This linear equation system, taking into consideration (47), yields

λab = 〈E(a⊗ b)b, a〉 = 〈E(b⊗ c)c, b〉 = 〈E(a⊗ c)c, a〉 = λac,

as required.
Now we can prove the above claim asserting that λ is independent of

a and b. Let c be a unit vector. There exist a unit vector d ∈ M(a, b)⊥

and scalars µ, ν, ρ ∈ K such that

c = µa + νb + ρd.
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Applying (33), (46) we obtain

E(a⊗ c) = E(µa⊗ a + νa⊗ b + ρa⊗ d)(48)

= λab(µa⊗ a− µa⊗ a) + λab(νa⊗ b− νb⊗ a) + λad(ρa⊗ d− ρd⊗ a)

= λab(a⊗ (µa + νb + ρd)− (µa + νb + ρd)⊗ a) = λab(a⊗ c− c⊗ a).

Hereupon, let c and d be orthogonal unit vectors. Substituting T = c⊗ a
and S = a⊗ d into (2) and taking into account (34) and (48) we come to
the conclusion that

(49) E(c⊗ d) = λ(c⊗ d− d⊗ c)

holds true. Obviously, (33) is valid with respect to c and d also, hence
there is a λ ∈ K such that E(T ) = λ(T − T ∗) for every operator of the
form T = αc⊗d and T = αc⊗c, where α ∈ K and c, d ∈ H are orthogonal
unit vectors.

In possession of these results we can prove the theorem for an arbitrary
finite rank operator as well. Let S ∈ F(H) and denote by {e1, . . . , en} an
orthonormal basis of the subspace M(rng S ∪ rng S∗). In this case

(50) S =
n∑

i=1

ei ⊗ S∗ei =
n∑

i=1

ei ⊗
n∑

k=1

αi
kek =

n∑

i,k=1

αi
kei ⊗ ek

holds. By the additivity of E the claim follows from the last term of (50)
in considerations with the previous remark as well.

Eventually, let us define the function F : A → B(H) in the following
way

F (T ) = E(T )− λ(T − T ∗) (T ∈ A).

By what has been proved before, F (T ) = 0 in case of T ∈ F(H). Let
T ∈ A and assume that there exists x ∈ H such that F (T )x 6= 0. Let
P ∈ F(H) be the projection for which rng P = M(x, Tx, T ∗x,E(T )x).
Since, as it can be seen easily, F is a Jordan ∗-derivation, then by (2) we
obtain

0 = F (TP + PT )x = (F (T )P + PF (T ))x = 2F (T )x 6= 0,

which is a contradiction.
To end up with, we would mention that the mappings T 7→ λ(T −T ∗)

(λ ∈ K) clearly satisfy the equation in the statement of the theorem.
By this the proof is completed. ¤
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Remark. In what follows we are going to give a sketch of the cases
dim H ≤ 2.

If H is a complex Hilbert space with dimH ≤ 2, then a considerably
shorter computation than the above one, making use of the existence of
the operator iI, leads to the result that the solutions of our equality are
supplied by the functions

E(T ) = λ(T − T ∗) (T ∈ A),

where λ ∈ C is an appropriate scalar.
The situation is completely different in the real case. If H is real and

dim H = 2, then the solutions of the equation are of the form

E(T ) = TA−AT ∗ (T ∈ A),

where A is a symmetric operator. The proof is based on an argument
similar to that of the theorem. Considerations of space forbid us, however,
to enter into the details of the proof.

In the end, in the case when H is real and dim H = 1 by the com-
mutativity the Jordan product coincides with the usual product and the
operation of adjoining is now the identity. It is easy to see that in this
case we have actually to consider the additive functions E : R→ R which
satisfy

E(x2) = xE(x) + E(x)x (x ∈ R).

Linearizing this equality, that is, substituting x + y for x, we have

E(xy) = xE(y) + E(x)y (x, y ∈ R).

Thus, as a solution, we have obtained the set of all additive derivations
on R. Since, as it is well-known, the only continuous one among these
mappings is the identically zero function, in this case the solutions of the
equality cannot be given explicitly as in the previous cases.

Acknowledgements. I would like to thank Prof. Lajos Molnár for
suggesting this subject of investigation to me. I would like to express my
thanks also to the referee, whose valuable idea helped me with making
significant reductions in the proof.
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