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On the subdirectly
irreducible semi-De Morgan algebras

By CÂNDIDA PALMA (Lisboa) and R. PRATA DOS SANTOS (Lisboa)

Abstract. In this note, we present a characterization of the subdirectly irre-
ducible algebras of the class of semi-De Morgan algebras and we show that the coherent
semi-De Morgan algebras are the coherent De Morgan algebras.

1. Introduction

The equational class of semi-De Morgan algebras was introduced by
H. P. Sankappanavar in [7] as a common abstraction of De Morgan
algebras and distributive pseudocomplemented lattices. Our work gives
an answer to Problem 10 raised in the last paragraph of that paper.

A special congruence φ, that in the case of pseudocomplemented lat-
tices is the filter congruence associated with the filter of dense elements,
has been very useful in the study of semi-De Morgan algebras in [7] and
[9]. In this note we prove that if a semi-De Morgan algebra L which is
not a De Morgan algebra is subdirectly irreducible, then φ is the minimum
congruence in Con(L)\{∆}, lattice of congruences of L, without ∆, the
zero element (Theorem 2.10).

Demi-pseudocomplemented lattices (also called demi-p-lattices) form
a subvariety of semi-De Morgan algebras that has deserved special atten-
tion (see [8] and [9]). This class is closer to the class of pseudocomple-
mented lattices and H. P. Sankappanavar has proved that it maintains
some of the very interesting properties of pseudocomplemented lattices
such as the congruence extension property. We determine the coherent
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semi-De Morgan algebras and the coherent demi-p-lattices. The notion
of coherent algebra was introduced in D. Geiger [5] and the coherent
De Morgan algebras were determined in [3] by R. Beazer.

2. Subdirectly irreducible semi-De Morgan algebras

We start by recalling some definitions and essential results.

Definition 2.1. An Ockham algebra is an algebra (A;∨,∧,′ , 0, 1) for
which (A;∨,∧, 0, 1) is a bounded distributive lattice and satisfies the iden-
tities

(x ∨ y)′ ≈ x′ ∧ y′, (x ∧ y)′ ≈ x′ ∨ y′, 0′ ≈ 1 and 1′ ≈ 0.

The subvariety K1,1 of the variety of Ockham algebras, first considered
by J. Berman in [4], is the class of Ockham algebras which satisfy x′ = x′′′.

Definition 2.2. An algebra L = (L,∨,∧,′ , 0, 1) is a semi-De Morgan
algebra if the following five conditions hold (x, y ∈ L):

(1) (L,∨,∧, 0, 1) is a distributive lattice with 0, 1.
(2) 0′ ≈ 1 and 1′ ≈ 0.
(3) (x ∨ y)′ ≈ x′ ∧ y′.
(4) (x ∧ y)′′ ≈ x′′ ∧ y′′.
(5) x′′′ ≈ x′.

We will denote by SDM this equational class of algebras. The fol-
lowing rules hold in SDM :

(6) (x ∧ y)′ ≈ (x′′ ∧ y′′)′ ≈ (x′ ∨ y′)′′.
(7) (x ∧ y)′′ ≈ (x′ ∨ y′)′.
(8) x ≤ y implies y′ ≤ x′.
(9) x ∧ (x ∧ y)′ ≥ x ∧ y′.

(10) (x ∨ y)′′ ≈ (x′ ∧ y′)′.

Clearly the intersection of the variety SDM with the variety of Ock-
ham algebras is the variety K1,1, so semi-De Morgan algebras are also a
generalization of K1,1 algebras. A semi-De Morgan algebra is a De Morgan
algebra if and only if it satisfies the identity x′′ ≈ x. In what follows M
will denote the class of De Morgan algebras. Indeed M is a subvariety
of K1,1.
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If L ∈ SDM and it satisfies the equation x′∧x′′ ≈ 0, then L is called
a demi-p-lattice.

If L ∈ SDM the set of the elements a ∈ L such that a = a′′ will be
denoted by DM(L). Let us define, for a, b ∈ DM(L), a ∨̇ b = (a′ ∧ b′)′,
then (DM(L), ∨̇,∧,′ , 0, 1) is a De Morgan algebra.

The function ′′ : L → L, x → x′′, is a homomorphism onto DM(L)
the kernel of which is φ = {(x, y) ∈ L × L | x′ = y′}. Furthermore L/φ ∼=
DM(L). These results were proved by H. P. Sankappanavar in [7].

Proposition 2.3. Let L ∈ SDM . Each class of the congruence φ
has one and only one element in DM(L); more precisely, for each x ∈ L,
x/φ ∩DM(L) = {x′′}.

Proof. Clearly x′′ ∈ DM(L)∩ x/φ. But, if y ∈ DM(L)∩ x/φ there
exists z ∈ L such that z′ = y. Since y′ = x′ we have z′′ = x′, so y = x′′.

¤
We shall write the subscript “lat” together with the letters that denote

the relation, whenever we deal with lattice congruences. The notation
x ¿ y will be used to indicate that the element y covers the element x.

The following proposition was first proved for L ∈ K1,1 (see [6],
Lemma 2.1).

Proposition 2.4. Let L ∈ SDM and a, b ∈ L such that a′ = b′.
Then θ(a, b) = θlat(a, b).

Proof. Since a′ = b′, we have (a, b) ∈ φ, thus θlat(a, b) ≤ φ. So
θlat(a, b) ∈ Con(L) and θlat(a, b) = θ(a, b). ¤

Proposition 2.5. Let L ∈ SDM be a finitely subdirectly irreducible
algebra. Then for each x, y ∈ L,

(i) |x/φ| ≤ 2;

(ii) (x, y) ∈ φ implies x = y or x = y′′ or y = x′′.

Proof. (i) Firstly we will prove that when L is a finitely subdirectly
irreducible semi-De Morgan algebra there does not exist a chain of length
greater than or equal to 2 in the same class of φ. Suppose that there
exists a < b < c such that a′ = b′ = c′. Let (x, y) ∈ θ(a, b) ∩ θ(b, c), by
Proposition 2.4, we have x ∨ b = y ∨ b and x ∧ b = y ∧ b. It, therefore,
follows that x = y and so θ(a, b) ∩ θ(b, c) = ∆, a contradiction.

As a congruence class of a lattice congruence is always a sublattice
there can not exist (x, y) ∈ φ such that x and y are incomparable. Then
x/φ = {x} or x/φ = {x, y} where x ¿ y or y ¿ x.

(ii) If (x, y) ∈ φ and x 6= y, by Proposition 2.3, either x ∈ DM(L) or
y ∈ DM(L). If x /∈ DM(L) then, since |x/φ| = 2 and x, x′′ ∈ x/φ, we
have y = x′′. ¤
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Corollary 2.6. Let L ∈ SDM be a finitely subdirectly irreducible
algebra. Then for each a ∈ L we have a = a′′ or a ¿ a′′ or a′′ ¿ a.

To reach the characterization of the subdirectly irreducible semi-
De Morgan algebras, in terms of the congruence φ, we present the three
lemmas that follow.

Lemma 2.7. Let L ∈ SDM be a finitely subdirectly irreducible al-
gebra. Then two distinct pairs of elements c 6= c′′ and d 6= d′′ can not be
on the same chain.

Proof. Suppose c ¿ c′′, d ¿ d′′ and c′′ ≤ d. If (x, y) ∈ θ(c, c′′) ∩
θ(d, d′′), by Proposition 2.4, we have x ∨ c′′ = y ∨ c′′ and x ∧ d = y ∧ d.
But as c′′ ≤ d it follows that x∨ d = y ∨ d. The distributivity of L implies
x = y, which is a contradiction. If we consider d′′ ≤ c we arrive at a
contradiction too.

In the cases c ¿ c′′ and d′′ ¿ d or c′′ ¿ c and d ¿ d′′ or c′′ ¿ c and
d′′ ¿ d we can argue in the same way. ¤

Remark. Recall that, in a distributive lattice L, if a, b, c ∈ L and
a ¿ b then, a∧ c = b∧ c or a∨ c = b∨ c. If a∧ c = b∧ c, then a∨ c ¿ b∨ c,
and if a ∨ c = b ∨ c, then a ∧ c ¿ b ∧ c.

Lemma 2.8. Let L ∈ SDM be a finitely subdirectly irreducible al-
gebra. If a, b ∈ L, a 6= a′′ and b 6= b′′, then θ(a, a′′) = θ(b, b′′).

Proof. We will consider a ¿ a′′ and b ¿ b′′ with a 6= b because
in the other cases the proof is identical. By Proposition 2.5 (i), a′′ 6= b′′

and, by the previous lemma, a′′ 6≤ b and b′′ 6≤ a. Since b ¿ b′′ using the
properties in the above remark we will have that the following conditions
hold simultaneously:

(1) a ∧ b = a ∧ b′′ or a ∨ b = a ∨ b′′.
(2) a′′ ∧ b = a′′ ∧ b′′ or a′′ ∨ b = a′′ ∨ b′′.

We must consider the following four cases:
Case 1. a ∧ b = a ∧ b′′ and a′′ ∧ b = a′′ ∧ b′′.
The second equality implies a′′ ∨ b ¿ a′′ ∨ b′′ and since (a′′ ∨ b)′ =

(a′′ ∨ b′′)′, the Proposition 2.5 (ii) implies either a′′ ∨ b = (a′′ ∨ b′′)′′ or
(a′′ ∨ b)′′ = a′′ ∨ b′′. But then a ¿ a′′ ≤ a′′ ∨ b ¿ a′′ ∨ b′′ and this
contradicts Lemma 2.7.

Case 2. a ∨ b = a ∨ b′′ and a′′ ∧ b = a′′ ∧ b′′.
The second equality implies a ∧ b = a ∧ b′′. Hence b = b′′, a contra-

diction.
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Case 3. a ∨ b = a ∨ b′′ and a′′ ∨ b = a′′ ∨ b′′.
The first equality, by the previous remark, implies a ∧ b ¿ a ∧ b′′.

Since (a∧ b)′′ = a′′ ∧ b′′ = (a∧ b′′)′′, applying Proposition 2.5 (ii), we have
either a∧ b′′ = (a∧ b)′′ or a∧ b = (a∧ b′′)′′. Then a∧ b ¿ a∧ b′′ ≤ a ¿ a′′,
a contradiction.

Case 4. a ∧ b = a ∧ b′′ and a′′ ∨ b = a′′ ∨ b′′.
In this case (b, b′′) ∈ θ(a, a′′) so θ(b, b′′) ≤ θ(a, a′′).
Analogously we can conclude that θ(a, a′′) ≤ θ(b, b′′) and so θ(a, a′′) =

θ(b, b′′). ¤
Lemma 2.9. Let L ∈ SDM\M be a finitely subdirectly irreducible

algebra. Then, for each a ∈ L such that a 6= a′′, θ(a, a′′) = φ.

Proof. Suppose (x, y) ∈ φ and x 6= y. If x = y′′ then (x, y) ∈
θ(y, y′′). By Lemma 2.8, (x, y) ∈ θ(a, a′′), so φ ≤ θ(a, a′′). ¤

Theorem 2.10. Let L ∈ SDM\M be a finitely subdirectly irre-
ducible algebra. Then L is a subdirectly irreducible algebra and φ is the
minimum congruence in Con(L)\{∆}.

Proof. Let α ∈ Con(L)\{∆}. Consider (x, y) ∈ α such that x 6= y.
We have θ(x, y) ≤ α. Since L is not a De Morgan algebra, there exists
a ∈ L such that a 6= a′′. By the previous lemma θ(a, a′′) = φ. As L is a
finitely subdirectly irreducible algebra, there exists (c, d) ∈ θ(a, a′′)∩θ(x, y)
such that c 6= d. Then c = d′′ or c′′ = d. Suppose, without loss of
generality, that c′′ = d. Then (c, c′′) ∈ θ(x, y) and so θ(c, c′′) ≤ θ(x, y) ≤ α.
By Lemma 2.9, φ ≤ α. ¤

Corollary 2.11. Let L ∈ SDM . L is a subdirectly irreducible alge-
bra if and only if L is a subdirectly irreducible De Morgan algebra or φ is
the minimum element of Con(L)\{∆}.

We can now state a corollary which extends a result obtained for K1,1

algebras by R. Beazer (see [2], Corollary 7).

Corollary 2.12. Let L ∈ SDM\M be a finite subdirectly irreducible
algebra. Then Con(L) is a boolean lattice with a new minimum element.

Proof. Con(L/φ) is a boolean lattice (see [7], Theorem 3.3). So
[φ,∇] is also a boolean lattice and the result follows. ¤

The precedent statements allow us to achieve alternative proofs of
some known results; in particular, Theorem 5.5 in [8], Corollaries 3.2, 3.3
and Theorem 5.2 in [9]. As an example we present the following:
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Proposition 2.12 ([9], Corollary 3.2). The class of subdirectly irre-
ducible demi-p-lattices is a universal class.

Proof. It is known that this class is an elementary class (see [9],
Theorem 3.1). Consider a subdirectly irreducible demi-p-lattice L and let
L1 be a subalgebra of L. We must show that L1 is a subdirectly irreducible
algebra. If L ∈ M , then L = Ĉ0, the boolean algebra with two elements,
and the statement is trivially verified.

If L /∈ M and L1 ∈ M , all the elements of L1 satisfy x = x′′, so
L1 ⊆ B(L) = {a ∈ DM(L) : a ∧ a′ = 0}. Suppose that there exists
c ∈ L1\{0, 1}. As c ∈ B(L)\{0, 1} it is known from Lemma 5.1 in [8] that
c ∨ c′ 6= 1. But c ∨ c′ ∈ L1 so c ∨ c′ = (c ∨ c′)′′ = (c′ ∧ c′′)′ = 0′ = 1, a
contradiction. Then L1 = Ĉ0.

If L /∈ M and L1 /∈ M , φ|L1 6= ∆|L1 . Consider α ∈ Con(L1) such
that α 6= ∆|L1 . Since L has the extension congruence property ([7], Corol-
lary 4.7) there exists β ∈ Con(L) such that β|L1 = α and then β 6= ∆. By
Theorem 2.10 β ≥ φ, so β|L1 ≥ φ|L1 and consequently α ≥ φ|L1 . Thus L1

is a subdirectly irreducible algebra. ¤

3. Coherent semi-De Morgan algebras

An algebra L is called coherent if each subalgebra containing a class
of a congruence θ of L is a union of classes of θ. In [3], R. Beazer proved
that the coherent algebras of K1,1 are exactly the coherent De Morgan
algebras. This result extends to SDM . In the same paper the author
showed that a pseudocomplemented lattice is coherent if and only if it is
a boolean algebra. This remains true for the algebras of the variety of
demi-p-lattices.

Theorem 3.1. Let L ∈ SDM . Then L is coherent if and only if it is
a coherent De Morgan algebra.

Proof. Let L ∈ SDM be a coherent algebra. We will prove that
for each x ∈ L, x = x′′. Consider S = {0}∪1/φ. Clearly S is a subalgebra
of L and 0/φ = {0}.

For each x ∈ L\{0, 1} let denote by S[x′] the subalgebra of L gener-
ated by x′. It is easily verified that

S[x′] =
{

0, x′, x′′, x′ ∧ x′′, x′ ∨ x′′, (x′ ∧ x′′)′, 1
}

.

Since 0/φ = {0} is contained in S[x′] it must contain x′′/φ = x/φ, so
x ∈ S[x′]. If x = x′ ∨ x′′ we have x′ = x′′ ∧ x′ and x′ ≤ x′′. Thus
x′ ∨ x′′ = x′′ and x = x′′. For the other elements of S[x′] it is also true
that x = x′′ since they belong to DM(L). So L ∈ M . ¤
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Corollary 3.2. Let L be a demi-p-lattice. L is coherent if and only if
it is a boolean algebra.

Proof. If L is a coherent demi-p-lattice then for each x ∈ L, x = x′′,
so x′ ∧ x′′ = x′ ∧ x = 0 and this implies that L is a boolean algebra. ¤
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CÂNDIDA PALMA AND R. PRATA DOS SANTOS
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