Stability of the Cauchy equation on a restricted domain

By JACEK TABOR (Cracow)

Abstract

Let G be a commutative semigroup, E a Banach space and $D \subset G \times G$. Let $\varepsilon>0$ be given and let $f: G \rightarrow E$ satisfy the inequality $$
\|f(\alpha+\beta)-f(\alpha)-f(\beta)\| \leq \varepsilon \text { for }(\alpha, \beta) \in D
$$

We prove that under certain assumptions on D and G there exists a unique additive function $A: G \rightarrow E$ such that $$
\|f(\alpha)-A(\alpha)\| \leq \varepsilon \text { for } \alpha \in G
$$

By \mathbb{R}_{+}we understand the set $[0, \infty)$, by \mathbb{N} the set of all positive integers and by $\mathcal{P}(X)$ the family of all subsets of X. By a vector space we mean a real vector space. Let G be a semigroup. According to the tradition, we will use the additive notation (even in the case when G is noncommutative). When G is a semigroup without zero $G \backslash\{0\}$ denotes G. If $D \subset G \times G$ then we write
$D_{X}=\{x \mid(x, y) \in D\}, D_{Y}=\{y \mid(x, y) \in D\}, D_{X+Y}=\{x+y \mid(x, y) \in D\}$.
The set D is called a Pexider domain of stability if there exists a constant $K>0$ such that whenever three functions $f: D_{X} \rightarrow \mathbb{R}, g: D_{Y} \rightarrow \mathbb{R}$, $h: D_{X+Y} \rightarrow \mathbb{R}$ satisfy the inequality

$$
|f(x)+g(y)-h(x+y)| \leq \varepsilon \text { for }(x, y) \in D
$$

then there exists an additive function $A: G \rightarrow \mathbb{R}$ and two constants $a, b \in \mathbb{R}$ such that

$$
\begin{gathered}
|f(x)-A(x)-a| \leq K \varepsilon \text { for } x \in D_{X} \\
|g(y)-A(y)-b| \leq K \varepsilon \text { for } y \in D_{Y} \\
|h(z)-A(z)-a-b| \leq K \varepsilon \text { for } z \in D_{X+Y}
\end{gathered}
$$

To our knowledge this definition was introduced by Zs. PÁles.
We say that a set D is a Cauchy domain of stability if there exists a constant $K>0$ such that whenever $f: D_{X} \cup D_{Y} \cup D_{X+Y} \rightarrow \mathbb{R}$ satisfies the inequality

$$
|f(x+y)-f(x)-f(y)| \leq \varepsilon \text { for }(x, y) \in D
$$

then there exists an additive function $A: G \rightarrow \mathbb{R}$ such that

$$
|f(x)-A(x)| \leq K \varepsilon \text { for all } x \in D_{X} \cup D_{Y} \cup D_{X+Y}
$$

On the 32-nd International Symposium on Functional Equations Zs. PÁles posed the following problem [4]: Is the set $D=\left\{(x, y): y \geq x^{2}\right\}$ a Pexider domain of stability? The answer to this question is negative (c.f. [6]). We take $f(x)=0, g(x)=h(x)=\ln (1+|x|)$.

One may ask a closely related question. Is the same set a Cauchy domain of stability? We will show (see Example 1) that the answer is positive. This paper was inspired by this problem.

Definition 1. Let G be a commutative semigroup and let $B \subset G \times G$. We say that $W \subset G$ is B-bounded if
(i) $\forall \alpha \in G \backslash\{0\} \exists k_{0} \in \mathbb{N} \forall k \geq k_{0}: k \alpha \notin W$,
(ii) $\forall \alpha, \beta \in G \backslash\{0\},(\alpha, \beta) \in B \exists k_{0} \in \mathbb{N} \forall k_{1} \geq k_{0}, k_{2} \geq 1$:
$k_{1} \alpha+k_{2} \beta \notin W$.
One can easily notice that the family of B-bounded subsets of a semigroup forms an ideal of sets.

Definition 2. Let G be a semigroup. We say that $B \subset G \times G$ is full in G if for every group H, and every function $A: G \rightarrow H$ such that

$$
\begin{equation*}
A(\alpha+\beta)=A(\alpha)+A(\beta) \text { for }(\alpha, \beta) \in B \tag{1}
\end{equation*}
$$

A is additive.
For a broader study and the literature concerning full sets see [1], [2] or [3].

Proposition 1. Let G be a semigroup and let $B \subset G \times G$ satisfy the following condition:

$$
\begin{equation*}
\forall(\alpha, \beta) \in(G \times G) \backslash B \exists \gamma \in G:(\beta, \gamma),(\alpha, \beta+\gamma),(\alpha+\beta, \gamma) \in B \tag{2}
\end{equation*}
$$

Then B is full in G.
Proof. Consider an arbitrary group H and an arbitrary mapping $A: G \rightarrow H$ satisfying (1). We have to show that A is additive. Let $(\alpha, \beta) \in(G \times G) \backslash B$. Then by (2) there exists a $\gamma \in G$ such that

$$
(\beta, \gamma),(\alpha, \beta+\gamma),(\alpha+\beta, \gamma) \in B
$$

so

$$
\begin{aligned}
A(\beta+\gamma) & =A(\beta)+A(\gamma) \\
A(\alpha+\beta+\gamma) & =A(\alpha)+A(\beta+\gamma) \\
A(\alpha+\beta+\gamma) & =A(\alpha+\beta)+A(\gamma)
\end{aligned}
$$

This implies that
$A(\alpha+\beta)+A(\gamma)=A(\alpha+\beta+\gamma)=A(\alpha)+A(\beta+\gamma)=A(\alpha)+A(\beta)+A(\gamma)$.
As H is a group we obtain that $A(\alpha+\beta)=A(\alpha)+A(\beta)$.
Definition 3. Let E be a vector space, and let $S \subset E$. We define

$$
B(S):=\left\{(x, y) \in S \times S: y \neq r x \text { for all } r \in \mathbb{R}_{-}\right\}
$$

Proposition 2. Let E be a vector space such that $\operatorname{dim} E \geq 2$. Then $B(E)$ is full.

Proof. We are going to show that (2) holds. Let $(x, y) \in E \times$ $E \backslash B(E)$. Then $y=r x$ for a certain $r \in \mathbb{R}_{-}$. Since $\operatorname{dim} E \geq 2$ we can find a $z \in E$, such that $z \neq r x$ for every $r \in \mathbb{R}$. Then obviously $(y, z) \in B(E)$, $(x, y+z) \in B(E),(x+y, z) \in B(E)$. Proposition 1 completes the proof.

Let E be a vector space, and let $W \subset E$. One can easily notice that if the intersection of W with any two-dimensional subspace P of E is bounded in P then W is $B(E)$-bounded. This implies that every bounded subset of a topological vector space is $B(E)$-bounded.

Suppose that any three elements of W are linearly independent over the field \mathbb{Q}. Then W is $B(E)$-bounded. Condition (i) of the Definition 1 is obvious. Suppose that condition (ii) does not hold. Then we can find $x, y \in$
$E \backslash\{0\},(x, y) \in B(E)$ and $\left\{k_{i}\right\},\left\{l_{i}\right\} \subset \mathbb{N},\left\{k_{i}\right\}$ an increasing sequence, such that

$$
z_{i}=k_{i} x+l_{i} y \in W \text { for } i \in \mathbb{N} .
$$

Since $x \neq 0$ and $\left\{k_{i}\right\}$ is increasing, we can find n_{1}, n_{2}, n_{3} such that $z_{n_{1}} \neq z_{n_{2}}, z_{n_{2}} \neq z_{n_{3}}, z_{n_{1}} \neq z_{n_{3}}$. But obviously $z_{n_{1}}, z_{n_{2}}, z_{n_{3}}$ are linearly dependent over \mathbb{Q}. We obtain a contradiction.

The above observations and the fact that the finite union of $B(E)$ bounded sets is still a $B(E)$-bounded set shows that the family of $B(E)$ bounded subsets of a vector space is quite large.

Theorem 1. Let G be a nontrivial commutative semigroup and let $B \subset G \times G$ be full in G. Let $W: G \rightarrow \mathcal{P}(G)$ be a mapping such that $G \backslash W(\alpha)$ is a B-bounded set for every $\alpha \in G$. Let E be a Banach space and let $\varepsilon>0$. Suppose that $f: G \rightarrow E$ satisfies the following inequality:

$$
\|f(\alpha+\beta)-f(\alpha)-f(\beta)\| \leq \varepsilon \text { for } \alpha \in G, \beta \in W(\alpha)
$$

Then there exists a unique additive function $A: G \rightarrow E$ such that

$$
\|f(\alpha)-A(\alpha)\| \leq \varepsilon \text { for } \alpha \in G
$$

Proof. Let $\alpha \in G \backslash\{0\}$. Since $G \backslash W(\alpha)$ is B-bounded, there exists $n \in \mathbb{N}$ such that $i \alpha \in W(\alpha)$ for $i \geq n$. Then we have for $k>n$

$$
\begin{gathered}
\left\|\frac{f(k \alpha)}{k}-f(\alpha)\right\| \leq\left\|\frac{f(k \alpha)-(k-n) f(\alpha)}{k}\right\|+\left\|\frac{n f(\alpha)}{k}\right\| \\
\leq \sum_{i=n}^{k-1} \frac{\|f((i+1) \alpha)-f(i \alpha)-f(\alpha)\|}{k}+\frac{1}{k}\|f(n \alpha)\|+\frac{1}{k}\|n f(\alpha)\| \\
\quad \leq \frac{k-n}{k} \varepsilon+\frac{1}{k}\|f(n \alpha)\|+\frac{1}{k}\|m n f(\alpha)\| .
\end{gathered}
$$

Thus

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|\frac{f(k \alpha)}{k}-f(\alpha)\right\| \leq \varepsilon \text { for } \alpha \in G \backslash\{0\} \tag{3}
\end{equation*}
$$

Replacing in this inequality α by $n \alpha$ and dividing both sides by n we obtain

$$
\limsup _{k \rightarrow \infty}\left\|\frac{f(k n \alpha)}{k n}-\frac{f(n \alpha)}{n}\right\| \leq \frac{\varepsilon}{n},
$$

and inserting l instead of k and m instead of n

$$
\limsup _{l \rightarrow \infty}\left\|\frac{f(m l \alpha)}{m l}-\frac{f(m \alpha)}{m}\right\| \leq \frac{\varepsilon}{m}
$$

Thus

$$
\left\|\frac{f(n \alpha)}{n}-\frac{f(m \alpha)}{m}\right\| \leq \frac{\varepsilon}{n}+\frac{\varepsilon}{m} .
$$

This proves that $\left\{\frac{f(n \alpha)}{n}\right\}$ is a Cauchy sequence for $\alpha \in G \backslash\{0\}$. If G is a semigroup with zero then obviously $\left\{\frac{f(n 0)}{n}\right\}$ is convergent. We define

$$
A(\alpha):=\lim _{n \rightarrow \infty} \frac{f(n \alpha)}{n} \text { for } \alpha \in G
$$

Due to (3) and the definition of A we have $\|f(\alpha)-A(\alpha)\| \leq \varepsilon$ for $\alpha \in G \backslash\{0\}$. In the case when G is a semigroup with zero there exists a $\beta \notin W(0)$. Then we have $\|f(0+\beta)-f(0)-f(\beta)\| \leq \varepsilon$, so $\|f(0)\| \leq \varepsilon$. Hence

$$
\|f(\alpha)-A(\alpha)\| \leq \varepsilon \text { for } \alpha \in G
$$

and replacing α by $n \alpha$ and dividing by n we obtain

$$
\left\|\frac{f(n \alpha)}{n}-A(\alpha)\right\| \leq \frac{\varepsilon}{n} \text { for } \alpha \in G
$$

We prove the additivity of A. Let $\alpha, \beta \in G$. Suppose that $(\alpha, \beta) \in B$. As $A(0)=0$ we may assume that $\alpha, \beta \in G \backslash\{0\}$. Consider an arbitrary $\delta>0$ and take an $n \in \mathbb{N}$ such that $\frac{\varepsilon}{n} \leq \delta$. Then, as $G \backslash W(n \beta)$ is B-bounded, there exists $k \in \mathbb{N} \backslash\{0\}$ such that

$$
i \alpha+j(n \beta) \in W(n \beta) \text { for } i \geq n k, j \geq 1
$$

Hence

$$
\begin{aligned}
\|A(\alpha+\beta)-A(\alpha)-A(\beta)\| & \leq\left\|\frac{f(n k(\alpha+\beta))}{n k}-\frac{f(n k \alpha)}{n k}-\frac{f(n \beta)}{n}\right\|+3 \delta \\
\leq \sum_{i=0}^{k-1} \frac{1}{n k} \| f((i+1) n \beta & +n k \alpha)-f(i n \beta+n k \alpha)-f(n \beta) \|+3 \delta \\
& \leq \frac{k}{n k} \varepsilon+3 \delta \leq 4 \delta
\end{aligned}
$$

Since δ was chosen arbitrarily, we obtain that $A(\alpha+\beta)=A(\alpha)+A(\beta)$. As B is full, this proves that A is additive. Because $A(\alpha)=\lim _{n \rightarrow \infty} \frac{f(n \alpha)}{n}, A$ is a unique additive approximation of f.

Corollary 1. Let G be a semigroup, and let H be a nontrivial subsemigroup of the centre of G. Let $B \subset H \times H$ be full in H. Let $W: G \rightarrow \mathcal{P}(H)$ be a mapping such that $H \backslash W(\alpha)$ is B-bounded for $\alpha \in H$. We assume the following condition:
(4) for every $\alpha \in G$ there exists a $\beta \in W(\alpha)$ such that $\alpha+\beta \in H$.

Let F be a Banach space, and let $\varepsilon>0$. Suppose that $f: G \rightarrow F$ satisfies the inequality

$$
\|f(\alpha+\beta)-f(\alpha)-f(\beta)\| \leq \varepsilon \text { for } \alpha \in G, \beta \in W(\alpha)
$$

Then there exists a unique additive function $A: G \rightarrow F$ such that

$$
\begin{gathered}
\|f(\alpha)-A(\alpha)\| \leq 3 \varepsilon \text { for } \alpha \in G \\
\|f(\alpha)-A(\alpha)\| \leq \varepsilon \text { for } \alpha \in H
\end{gathered}
$$

Proof. Making use of Theorem 1 for the function $f \mid H$ we obtain that there exists a unique additive function $A: H \rightarrow F$ such that

$$
\|f(\alpha)-A(\alpha)\| \leq \varepsilon \text { for } \alpha \in H
$$

We will show that A has a unique additive extension onto G. Let $\alpha \in G$. Then by (4) there exists a $\beta \in W(\alpha) \subset H$ such that $\alpha+\beta \in H$. We define $\widetilde{A}(\alpha):=A(\alpha+\beta)-A(\beta)$. Now we prove that \widetilde{A} is well defined. Suppose that $\alpha+\beta_{1}, \alpha+\beta_{2} \in H$ for certain $\beta_{1}, \beta_{2} \in H$. Then

$$
\begin{aligned}
\left(A\left(\alpha+\beta_{1}\right)-A\left(\beta_{1}\right)\right)-(A(\alpha & \left.\left.+\beta_{2}\right)-A\left(\beta_{2}\right)\right) \\
& =A\left(\alpha+\beta_{1}+\beta_{2}\right)-A\left(\alpha+\beta_{2}+\beta_{1}\right)=0 .
\end{aligned}
$$

Making use of the fact that H is contained in the center of G one can easily prove that \widetilde{A} is additive. The way of defining \widetilde{A} shows that it is a unique additive extension of A.

Let $\alpha \in G$. Then by (4) there exists a $\beta \in W(\alpha)$ such that $\alpha+\beta \in H$. Then

$$
\begin{aligned}
\|f(\alpha)-\widetilde{A}(\alpha)\| \leq & \|f(\alpha+\beta)-A(\alpha+\beta)+A(\beta)-f(\beta)\| \\
& +\|f(\alpha+\beta)-f(\alpha)-f(\beta)\| \leq 3 \varepsilon
\end{aligned}
$$

Corollary 2. Let E be a vector space, let $C \subset E$ be a convex cone such that $C \cap-C=\{0\}, C-C=E$. Let $V: E \rightarrow \mathcal{P}(E)$ be a mapping such that $C \backslash V(x)$ is a $B(E)$-bounded set for $x \in E$. Let F be a Banach space and let $\varepsilon>0$. Suppose that $f: E \rightarrow F$ satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \text { for } x \in E, y \in W(x)
$$

Then there exists a unique additive function $A: E \rightarrow F$ such that

$$
\begin{gathered}
\|f(x)-A(x)\| \leq 3 \varepsilon \text { for } x \in E \\
\|f(x)-A(x)\| \leq \varepsilon \text { for } x \in C
\end{gathered}
$$

Proof. We are going to show that the assumptions of Corollary 1 are satisfied. Let $W(x):=C \cap V(x)$. Because C is a cone such that $C \cap-C=\{0\}, B:=B(E) \cap(C \times C)=C \times(C \backslash\{0\})$. Hence B is full in C and $C \backslash W(x)$ is B-bounded for $x \in C$. Let $x \in E$. Because $C-C=E$, there exists an $a \in C$ such that $a+x \in C$. Since $C \backslash W(x)$ is $B(E)$-bounded there exists a $b \in C$ such that $a+b \in W(x)$. Then obviously $(a+b)+x \in C$. Corollary 1 completes the proof.

Example 1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$. We put $E=F=\mathbb{R}, C=\mathbb{R}_{+}, V(x)=$ $(g(x),+\infty)$. Now by Corollary 2 we obtain that the set

$$
D=\{(x, y): y>g(x)\}
$$

is a Cauchy domain of stability.
Corollary 3. Let E be a vector space, let F be a Banach space and let $\varepsilon>0$. Suppose that $W: E \rightarrow \mathcal{P}(E)$ is a mapping, such that $E \backslash W(x)$ is a $B(E)$-bounded set for $x \in E$. Suppose that $f: E \rightarrow F$ satisfies the following inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \text { for } x \in E, y \in W(x)
$$

Then there exists a unique additive function $A: E \rightarrow F$ such that

$$
\|f(x)-A(x)\| \leq \varepsilon \text { for } x \in E
$$

Proof. Suppose that $E=\mathbb{R}$. Let $g(x)=-f(-x)$. Then

$$
\begin{gathered}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \text { for } y \in W(x) \\
\|g(x+y)-g(x)-g(y)\| \leq \varepsilon \text { for } y \in-W(-x)
\end{gathered}
$$

Obviously the set $-W(-x)$ is $B(\mathbb{R})$-bounded for every $x \in R$. Now due to Corollary 2 we can find additive functions $A_{1}, A_{2}: E \rightarrow F$ such that

$$
\begin{aligned}
& \left\|f(x)-A_{1}(x)\right\| \leq 3 \varepsilon \text { for } x \in \mathbb{R} \\
& \left\|f(x)-A_{1}(x)\right\| \leq \varepsilon \text { for } x \in \mathbb{R}_{+} \\
& \left\|g(x)-A_{2}(x)\right\| \leq 3 \varepsilon \text { for } x \in \mathbb{R} \\
& \left\|g(x)-A_{2}(x)\right\| \leq \varepsilon \text { for } x \in \mathbb{R}_{+} .
\end{aligned}
$$

One can easily notice that then $A_{1}=A_{2}=: A$. Hence

$$
\begin{gathered}
\|f(x)-A(x)\| \leq \varepsilon \text { for } x \in \mathbb{R}_{+} \\
\|-f(-x)-A(x)\| \leq \varepsilon \text { for } x \in \mathbb{R}_{+} .
\end{gathered}
$$

The last two inequalities mean that

$$
\|f(x)-A(x)\| \leq \varepsilon \text { for } x \in \mathbb{R}
$$

Suppose that $\operatorname{dim} E \geq 2$. Then by Proposition $2 B(E)$ is full, so Theorem 1 completes the proof.

Putting $E=\mathbb{R}, W(x):=[-1,1]$ we obtain a generalization of Theorem 3 [5]. Moreover we get the best possible constant K (instead of $K=9$ we have $K=1$).

Acknowledgements. I would like to thank the referee for his valuable remarks.

References

[1] R. Ger, On some functional equations with a restricted domain, Fund. Math. LXXXIX (1975), 131-149.
[2] R. GEr, On some functional equations with a restricted domain, II, Fund. Math. XCVIII (1978), 249-272.
[3] L. Paganoni and S. Paganoni Marzegalli, Cauchy functional equation on semigroups, Fund. Math. CX (1980), 63-74.
[4] Zs. Páles, 32 Remark and Problem, The Thirty-second International Symposium on Functional Equations, Gargnano, Italy, Aequationes Math. 49 (1995), 197.
[5] F. Skof, Sull'approssimazione delle applicazioni localmente δ-additive, Atti Acad. Sc. Torino 17 (1983), 377-389.
[6] Jacek Tabor, 20 Remark, The Thirty-third International Symposium on Functional Equations, Caldes de Malavella, Spain, Aequationes Math. (to appear).

