Cohen’s theorem for a class of Noetherian semirings

By PAUL J. ALLEN (Alabama)

1. Introduction. 1. S. CoHEN [1] has proven that a commutative ring with an iden-
tity is Noetherian if and only if every prime ideal is finitely generated. As well known,
prime ideals of rings are very important for the theory of radicals (cf. DivINsSKY [2])
and for classical ideal theory. In this paper, it will be shown that the above Cohen’s
theorem is valid for a large class of semirings.

2. Fundamentals. There are many different definitions of a semiring appearing
in the literature. Throughout this paper, a semiring will be defined as follows:

Definition 1. A set R together with two associative binary operations called
addition and multiplication (denoted by + and -. respectively) will be called a
semiring provided:

(i) addition is a commutative operation,

(i) 30 € R such that x+0 = x and x0=0x=0 for each x¢ R, and

(iii) multiplication distributes over addition both from the left and from the
right.

A semiring is said to be commutative if multiplication is a commutative operation.
The semiring R is said to have an identity if 3 1< R such that x1 =1x=x for each
XER.

Definition 2. A subset I of a semiring R will be called an ideal if a, b€l and
re R implies a+bel, racl and arel.

Definition 3. An ideal / in a semiring R will be called a k-ideal if the following
condition is satisfied: if a€/l, b€ R and a+b¢<1, then bel.
It is clear that every ideal in a ring is a k-ideal.

Definition 4. An ideal / in a commutative semiring R will be called prime if
a, b€ R and abecl implies acl or bel
Definition 5. Let I be an ideal in the semiring R. A subset B of 7 will be called
a basis for I if every element in / can be written in the form 3 rb; where r;€ R and
i=1
bl' ';:' B.

3. Noetherian semirings. A commutative ring with an identity is called
Noetherian if it satisfies the ascending chain condition for ideals. A Noetherian
semiring is defined in an analogous manner as follows:
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Definition 6. A commutative semiring R with an identity will be called a Noethe-
rian semiring if I,cl,c-..cl,cl,,,< - is an ascending chain of ideals in R
implies there exists a positive integer N such that /, =1y for n=N.

It is an easy matter to obtain the following characterization of Noetherian
semirings:

Proposition 7. If R is a commutative semiring with an identity, then R is Noethe-
rian if and only if every ideal in R has a finite basis.

Let R be a commutative semiring with an identity and let 7 be an ideal in R
that does not have a finite basis. Moreover, suppose {B,},.o is the collection of
all ideals in R such that /< B, and B, is maximal with respect to not having a finite
basis. One can use Zorn’s lemma to show the collection {B,},., is nonempty. In
general, it is not true that 3 g, € Q such that B, is a k-ideal. Consequently, the
following classification seems natural:

Definition 8. A commutative semiring R with an identity will be called an
M-semiring provided the following condition is valid: if 7 is an ideal in R that does
not have a finite basis, then there exists a k-ideal B in R such that /= B and B is
maximal with respect to not having a finite basis.

Let R be a commutative ring with an identity. If 7 is an ideal in R that does not
have a finite basis, the above argument implies there exists an ideal B in R such that
I— B and B is maximal with respect to not having a finite basis. Since B is a k-ideal,
it follows that every commutative ring with an identity is an M-semiring.

Examples of M-semirings other than commutative rings with an identity will
now be given.

Example 9. Z+ = {0, 1, 2, ...} together with the usual operations of addition
and multiplication of integers is a commutative semiring with an identity. Since
every ideal in Z* has a finite basis, it is clear that Z* is an M-semiring.

Example 10. Let R= {x|x is real and 0=x=1}U {2, 3}. R is a fully ordered
set under the usual ordering of the real numbers. Define a+5 = max (a, b) and
ab = min(a, b). It can be shown that R is a commutative semiring with an identity.
If 7 is an ideal in R that does not have a finite basis, then / = {x¢R|0=x=r}
for some r such that 0 <=r=1. Thus, 7 is contained in the ideal B= {x¢ R 0=x< 1}
and B is maximal with respect to not having a finite basis. Moreover, B is a k-ideal
in R, and it follows that R is an M-semiring. It is easy to see that R can not be imbed-
ded in a ring since R does not satisfy the additive cancellation law.

For the class of M-semirings, one can obtain the following generalization of
Cohen’s theorem:

Theorem 11. An M-semiring R is Noetherian if and only if every prime ideal
in R has a finite basis.

ProoF. If R is Noetherian, Proposition 7 implies every ideal in R has a finite
basis; consequently, every prime ideal in R has a finite basis.

Conversely, suppose that every prime ideal in R has a finite basis. Let F denote
the collection of all ideals in R that do not have a finite basis. If it can be shown
that F=0, then every ideal in R has a finite basis and it will follow from Proposition
7 that R is Noetherian. Assume F=0. Let /€ F. Since R is an M-semiring, there
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exists a k-ideal B in R such that /< B and B is maximal with respect to not having
a finite basis. Since B is not prime, Ja, b€ R such that a¢ B, b< B and abc B. 1t is
clear that the ideals Ra+ B = {ra+x'rcRand xé B} and B:aR = {x¢R|xaR< B}
both properly contain B (a< Ra+ B and b< B:aR). Since B is maximal with respect
to not having a finite basis, it follows that Ra+ B and B:aR have finite basis, say
{a; }i-, and {b;}}-,. respectlvely

It is clear that a/ = lal ¢ Z Ra; = Ra+ B. Thus, 3r; € R and a, ¢ B such that

a; = ra+a;. If x€ Ra+ B, then

n
x=Drid = Zn(raw)—anwZn
i=1 i

Therefore, x€Ra+ B implies x¢Ra+ > Ra;. 1If xfRa+ 2 Ra;, then

n l—|

i=
x =ra+ > racRa+ B since a;cB and B is an ideal. Consequenlly 3 {a;}i-+
l-I n

> Ra;. Let B* be the ideal generated

./-

such that each @;¢B and Ra+ B = Ra+
by a;,ab; where i=1,2,...,n and j=1, 2,....m; that is,

ZRa +2'Rab

Since a,eB and B is an ideal, it is clear that > 5 Ra;— B. Since b;c B:aR, it
|=ll

follows that Z Rab; < B. Hence, B*CB Let x¢éB. Thus, x = 0a+xcRa+ B =
=Ra+ 2 Ra C Ra+ B*; since ‘? Ra;c B*. Therefore, 3r€R and b*cB*

j=] i= 1
such that x = ra+b*. Since x, b*cB and B is a k-ideal, it follows that rac B.

Thus, réB:aR and it follows that r= Z'r b;. Therefore, ra = Z’rab € B*.

j= i=1
Hence x¢ B* and it follows that B< B*. It has now been shown that B=B*

has a finite basis, a contradiction.

Problem 1. (F. Szasz) Investigate semirings for an analogue of Theorem 11,
which are not M-semirings.

Problem 2. (F. Széasz) Investigate the ideals of a semiring that are not k-ideals.
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