Free subgroups of the group of units in group algebras

By A. A. BOVDI (Debrecen)

Abstract

We give necessary conditions under which the group of units of a group algebra over a field does not contain a free subgroup of rank 2 and these conditions with some restriction are sufficient.

Introduction

Let K be a commutive ring and $t(G)$ the set of torsion elements of G. The following problem of Hartley is a very interesting one:

When does the group of units $U(K G)$ of a group ring $K G$ not contain a free group of rank 2?

The first result has been obtained by B. Hartley and P. Pickel [8]:
Let G be a solvable-by-finite group and suppose that $U(\mathbb{Z} G)$ does not contain a free group of rank two. Then $t(G)$ is an abelian group or a hamiltonian 2-group and every subgroup of $t(G)$ is normal in G.

We would like to deal with this problem for the group of units $U(K G)$ of a group algebra $K G$. J. Z. Gonsalves [5] gave necessary and sufficient conditions for this problem in case G is finite or some infinite solvable group [6, 7]. We extend this result and generalize Gonsalves' theorems.

We now define for an arbitary group G the normal subgroup

$$
\Lambda(G)=\left\{g \in G \mid\left[H: C_{H}(g)\right]<\infty\right.
$$

for every finitely generated subgroup H of $G\}$.

[^0]Of course, the torsion part $\Lambda^{+}(G)$ of $\Lambda(G)$ is a normal subgroup and $\Lambda(G) / \Lambda^{+}(G)$ is a torsion free abelian group [10].

Theorem 1. Let K be a field of characteristic 0 or p and suppose that $U(K G)$ does not contain a free subgroup of rank two. Then one of following conditions holds:

1. G is abelian;
2. G is a torsion group and K is algebraic over its prime field \mathbb{F}_{p};
3. K is a field of characteristic 0 and
a. $\Lambda^{+}(G)$ is an abelian subgroup and each of its subgroups is normal in G;
b. the centralizer $C_{G}\left(\Lambda^{+}(G)\right)$ contains all elements of finite order of G;
c. for every $a \in \Lambda^{+}(G)$, which is not central in G, K contains no root of unity of order equal to the order of a;
4. K is a field of characteristic p and K is not algebraic over its prime field \mathbb{F}_{p} and
a. the p-Sylow subgroup P of $\Lambda^{+}(G)$ is normal in G and $A=$ $\Lambda^{+}(G) / P$ is abelian group;
b. the centralizer $C_{G / P}(A)$ contains all elements of finite order of G / P;
c. if A is noncentral in G / P and G / P is non-torsion, then the algebraic closure L of \mathbb{F}_{p} in K is finite and for all $g \in G / P$ and $a \in A$ there exists a natural number r such that $g a g^{-1}=a^{p^{r}}$. Furthermore, each such r satisfies that $\left[L: \mathbb{F}_{p}\right]$ divides r.
5. G is not a torsion group, K is algebraic over its prime field \mathbb{F}_{p} and
a. the p-Sylow subgroup P of $\Lambda^{+}(G)$ is normal in G and $A=$ $\Lambda^{+}(G) / P$ is an abelian group;
b. if A is noncentral in G / P then the algebraic closure L of \mathbb{F}_{p} in K is finite and for all elements g of infinite order in G / P and $a \in A$ there exists a natural number r such that gag $^{-1}=a^{p^{r}}$. Furthermore, each such r satisfies that $\left[L: \mathbb{F}_{p}\right]$ divides r.

Corollary 1. Let K be a field of characteristic 0 or p and G a group such that $t(G)=\Lambda^{+}(G)$ and $G / t(G)$ is a unique product group. Then $U(K G)$ does not contain a free group of rank two if and only if G does not contain a free group of rank two and one of the following statements holds:

1. G is abelian;
2. G is a torsion group and K is algebraic over its prime field \mathbb{F}_{p};
3. K is a field of characteristic 0 and
a. $t(G)$ is an abelian subgroup and each of its subgroups is normal in G;
b. for every $a \in t(G)$, which is not central in G, K contains no root of unity of order equal to the order of a;
4. K is a field of characteristic p and
a. the p-Sylow subgroup P of $t(G)$ is normal in G and $A=t(G) / P$ is an abelian group;
b. if A is noncentral in G / P and G / P is non-torsion, then the algebraic closure L of \mathbb{F}_{p} in K is finite and for all $g \in G / P$ and $a \in A$ there exists a natural number r such that $g a g^{-1}=a^{p^{r}}$. Furthermore, each such r satisfies that $\left[L: \mathbb{F}_{p}\right]$ divides r.

Corollary 2. Let K be a field of characteristic 0 or p and G a solvable group such that $t(G)=\Lambda^{+}(G)$ and $G / t(G)$ is a unique product group. Then $U(K G)$ either contains a free group of rank two or $U(K G)$ has a normal p-subgroup N such that the factorgroup $U(K G) / N$ is a solvable group.

Clearly, if G is a locally nilpotent group, then $t(G)=\Lambda^{+}(G)$. If $U(K G)$ does not contain a free group of rank two and $U(K)$ has an element of infinite order, we propose that $t(G)=\Lambda^{+}(G)$. The last question is very difficult and was answered affirmatively if

1. (Hartley and Pickel [8]) K is a field of characteristic 0 and G is a solvable-by-finite group;
2. (Gonsalves [7]) G is a solvable-by-finite group without p-elements, K is a field of characteristic p not algebraic over its prime subfield \mathbb{F}_{p}, and if $p=2$ then the degree of transcendence of K over \mathbb{F}_{2} is at least 2 .

Bist Vikas [2] obtained a necessary and sufficient condition for the commutator subgroup of the group of units $U(K G)$ of group algebras to be torsion if G is a locally finite or a locally $F C$-group. As a consequence of Theorem 1 we have also the following result.

Corollary 3. Let K be a field of characteristic 0 or p and G a group such that $t(G)=\Lambda^{+}(G)$. Then the derived subgroup of $U(K G)$ is torsion if and only if the derived subgroup of G is torsion and one of the following conditions hold:

1. G is abelian;
2. G is a torsion group and K is algebraic over its prime subfield \mathbb{F}_{p};
3. K is a field of characteristic 0 and $t(G)$ is a central subgroup of G;
4. K is a field of characteristic p, the p-Sylow subgroup P of $t(G)$ is normal in G and $A=t(G) / P$ is abelian group;
a. A is a central subgroup of G / P;
b. if A is noncentral in G / P and G / P is non-torsion, then K is finite and for all $g \in G / P$ and $a \in A$ there exists a natural number r such that gag $^{-1}=a^{p^{r}}$. Furthermore, each such r satisfies that [$K: \mathbb{F}_{p}$] divides r.
We wish to prove Theorem 1, Corollary 1 and 2. For this we need the following statments, which are well-known.

Lemma 1. 1.1. Suppose that the characteristic of the field K does not divide the order of the finite abelian subgroup A of G and the element $g \in N_{G}(A)$ does not commute with a primitive idempotent e of the group algebra $K A$. Then the elements $e_{11}=e, e_{12}=e g, e_{21}=g^{-1} e, e_{22}=g^{-1} e g$ are matrix units. Let $f=e_{11}+e_{22}$ and

$$
W=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \in G L(2, K)
$$

Then

$$
w=1-f+a_{1} e_{11}+a_{2} e_{12}+a_{3} e_{21}+a_{4} e_{22} \in U(K G)
$$

and the map $W \rightarrow w$ is a monomorphism of $G L(2, K)$ into $U(K G)$.
1.2. [12]. If the characteristic of the field K is zero and $n>1$ is an integer then the matrices

$$
\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) ; \quad\left(\begin{array}{cc}
1 & 0 \\
n & 1
\end{array}\right)
$$

generate in $G L(2, K)$ a free subgroup of rank 2;
1.3. [1]. Let K be any commutative ring and $G=\langle u\rangle$ an infinite cyclic group. Then the matrices

$$
A=\left(\begin{array}{cc}
u & 0 \\
0 & u^{-1}
\end{array}\right) ; \quad P=\left(\begin{array}{cc}
1+u & u \\
-u & 1-u
\end{array}\right)
$$

are invertible over the group ring $K G$. The matrices A and $B=P A P^{-1}$ are free generators of a noncyclic free group;
1.4. If the characteristic of the field K is p, u is transcendental over the prime field and

$$
A=\left(\begin{array}{cc}
1 & u \\
0 & 1
\end{array}\right) ; \quad B=\left(\begin{array}{cc}
1 & 0 \\
u & 1
\end{array}\right) ; \quad P=\left(\begin{array}{cc}
1+u & u \\
-u & 1-u
\end{array}\right)
$$

then $\left\langle A, P B P^{-1}\right\rangle$ is a non-cyclic free subgroup of $G L(2, K)$.

Lemma 2 (Passman [10]). Let the Sylow p-subgroup P of $\Lambda^{+}(G)$ be normal in G. Then $\Lambda^{+}(G) / P=\Lambda^{+}(G / P)$ and the ideal $\mathcal{I}(P)$ generated by all elements of form $h-1(h \in P)$ in $K G$ is a nilideal.

Proof of Theorem 1. Let $U(K G)$ not contain noncyclic free subgroups. It is known [9] that $\Lambda^{+}(G)$ is a locally finite group. Let us further suppose that if K is algebraic over its prime field \mathbb{F}_{p} then G is a non-torsion group.

We shall prove that

1. $\Lambda^{+}(G)$ is either abelian or, if p is the characteristic of K, the derived subgroup of $\Lambda^{+}(G)$ is p-group and
2. every idempotent of $K \Lambda^{+}(G)$ commute with elements of infinite order of $G \bmod \mathcal{I}(P)$, where P is the Sylow p-subgroup P of $\Lambda^{+}(G)$ and $P=1$, if K is a field of characreristic 0 .

First we consider the case, when the group of units $U(K)$ of K contains an element of infinite order.

Let H be a finite subgroup of $\Lambda^{+}(G)$ and I a maximal nilpotent ideal of $K H$. By the Artin-Wedderburn theorem

$$
K H / I \cong D_{n_{1}}^{(1)} \oplus D_{n_{2}}^{(2)} \oplus \cdots \oplus D_{n_{s}}^{(s)}
$$

where $D_{n_{i}}^{(i)}$ is the ring of all $n_{i} \times n_{i}$ matrices over the division ring $D^{(i)}$. Thus

$$
U(K H) / 1+I \cong G L\left(n_{1}, D^{(1)}\right) \times G L\left(n_{2}, D^{(2)}\right) \times \cdots \times G L\left(n_{s}, D^{(s)}\right)
$$

Clearly, $D^{(i)}$ is finite dimensional over the centre, which contains a subfield K with an element of infinite order. If $D^{(i)}$ is a noncommutative division ring, then by Tits' theorem [11] easy to see [5] that the group of units of $D^{(i)}$ has a non-cyclic free subgroup. Since $1+I$ is a p-group and the group $U(K H) / 1+I$ does not contain noncyclic free subgroups, we conclude that $D^{(i)}$ is a field with an element of infinite order and by Lemma 1.2 and 1.4 $n_{i}=1$ for all $i=1,2, \ldots, s$. Thus $K H / I$ is a commutative ring, which contains no nilpotent elements.

Consequently, if the characteristic of K does not divide the order of the group H then H is an abelian group, and in the opposite case if K is of characteristic p and H contains p elements then $H \cap(1+I)$ is a p-group and the group $H / H \cap(1+I)$ is abelian and has no p-elements. Indeed, if $g \in H \backslash(H \cap(1+I))$ is a p-element then $g-1+I$ is a nilpotent element of $K H / I$, which is a contradiction. Thus we proved that $\Lambda^{+}(G)$ is either abelian or the characteristic of K is p and the derived subgroup of $\Lambda^{+}(G)$ is a p-group. It follows that the Sylow p-subgroup P of $\Lambda^{+}(G)$ is a normal
subgroup of G. By Lemma 2 the ideal $\mathcal{I}(P)$ of $K G$ generated by elements of form $h-1$ with $h \in P$ is a nilideal and, clearly,

$$
U(K G) / 1+\mathcal{I}(P) \cong U(K G / P)
$$

By Lemma $2 \Lambda^{+}(G) / P=\Lambda^{+}(G / P)$ and we conclude that $\Lambda^{+}(G / P)$ is abelian and $U(K G / P)$ does not contain a non-cyclic free subgroup.

Let K be a field of characteristic 0 or p. We put $P=1$ if the characteristic of K is 0 and in this case $\mathcal{I}(P)=0$. We shall prove below that every idempotent of $K \Lambda^{+}(G)$ commutes with elements of infinite order of G modulo $\mathcal{I}(P)$. Suppose that for the idempotent $e=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{s} g_{s}$ of $K \Lambda^{+}(G / P)$ we have $e g \neq g e$ for some $g \in G$. Clearly, $C=\left\langle g^{m} g_{i} g^{-m}\right|$ $m \in \mathbb{Z},(i=1,2, \ldots, s)\rangle$ is a finite abelian subgroup in $K \Lambda^{+}(G / P)$ and $g \in N_{G / P}(C)$. Since $\Lambda^{+}(G / P)$ has no p-elements in case of characteristic p, there exists a primitive idempotent which does not commute with g, and by Lemma 1.1 $G L(2, K)$ is isomorphic to a subgroup of $U(K G)$. This is impossible by Lemma 1.2 and 1.4, because K has an element of infinite order. Therefore all idempotents of $K \Lambda^{+}(G / P)$ are central in $K G / P$.

Let the field K be algebraic over its prime subfield \mathbb{F}_{p} of characteristic p, and assume that G is not a torsion group. Suppose further that H is a finite subgroup of $\Lambda^{+}(G)$ such that $\mathbb{F}_{p} H / I$ is a non-commutative ring, where I is a maximal nilpotent ideal of $K H$. Since a finite division ring is a field, there exists a two-sided ideal J of $L H$ such that $J+I / I \cong L_{n}$, the ring of all $n \times n$ matrices over the finite field L, and $n>1$. It follows that there exist matrix units $e_{11}, e_{12}, e_{21}, e_{22}$ in $K H$ [[9], 3.8.1 Theorem]. Clearly, $\operatorname{Supp}\left(e_{i j}\right) \subseteq \Lambda^{+}(G)$ and by definition of $\Lambda^{+}(G)$ we get an element $u \in G$ of infinite order such that $u e_{i j}=e_{i j} u$ for all i, j. Let $f=e_{11}+e_{22}$ and

$$
\begin{gathered}
w=1-f+(1+u) e_{11}+u e_{12}-u e_{21}+(1-u) e_{22} \in U(K G) \\
v=1-f+u e_{11}+u^{-1} e_{22} \in U(K G)
\end{gathered}
$$

By Lemma $1.3\langle v, w\rangle$ is a non-cyclic free group and this forces a contradiction.

Now put $P=1$ if the characteristic of K is 0 and assume that K contains an element of infinite order. Let q be a prime number and suppose that the q-element $c \in G / P$ does not belong to $C_{G / P}(A)$. We choose some element $h \in A$ such that $(c, h) \neq 1$. Since $h \in \Lambda^{+}(G / P)$, thus the subgroup $H=\langle h, c\rangle$ is a finite and nonabelian. Clearly, the subgroup $H \cap \Lambda^{+}(G / P)$ is normal in H. Since K contains an element of infinite order and the subgroup $U(K H)$ has no non-cyclic free subgroups, by the
facts proved above this leads to $q=p$ and the Sylow p-subgroup of H is normal in H. Thus H is abelian, which is impossible. Therefore, the centralizer $C_{G / P}(A)$ contains all elements of finite order of G / P. As we have seen above, the Sylow p-subgroup P of $\Lambda^{+}(G)$ is normal in G, the factor group $A=\Lambda^{+}(G) / P$ is abelian and every idempotent of $K \Lambda^{+}(G)$ commutes with elements of infinite order of G modulo $\mathcal{I}(P)$. It implies that all idempotents of $K A$ are central in $K G / P$, we can construct for every element $a \in A$ of order n the idempotent $e=\frac{1}{n} \sum_{i=1}^{n} a^{i}$, which is central. Then $g e=e g$ for all $g \in G / P$ and this follows that $\langle a\rangle$ is normal in G / P.

Suppose that $a \in A$ is not central in G / P and K contains the root of unity ζ of order equal to the order of a. Then $g^{-1} a g=a^{k} \neq a$ and the idempotent $e=\frac{1}{n} \sum_{i=1}^{n} \zeta^{i} a^{i}$ satisfies the condition $g e \neq e g$, which is a contradiction.

Let A be noncentral in the non-torsion group G / P and K algebraic over its prime subfield \mathbb{F}_{p} of characteristic p. Then every idempotent of $K A$ commutes with elements of infinite order of G. If g is an element of infinite order of G / P, then we apply Coelho's theorem [3] for the group algebra $K\left\langle g, \Lambda^{+}(G / P)\right\rangle$ and the Conditions 4.c and 5.b of Theorem 1 holds.

Proof of Corollary 1. It is easy to see that there remained to prove sufficiency of these conditions. Let us first assume that K is a field of characteristic p. Let $\mathcal{I}(P)$ be the ideal of $K G$ generated by elements of form $h-1$ with $h \in P$ and let $\bar{G}=G / P$. By Lemma $3 \mathcal{I}(P)$ is a nilideal,

$$
\begin{equation*}
U(K G) / 1+\mathcal{I}(P) \cong U(K \bar{G}) \tag{2}
\end{equation*}
$$

and $\Lambda^{+}(G) / P=\Lambda^{+}(\bar{G})$. It implies that $\Lambda^{+}(\bar{G})$ is an abelian group, $t(\bar{G})=$ $\Lambda^{+}(\bar{G})$ and $\bar{G} / \Lambda^{+}(\bar{G})$ are unique product groups. Since $1+\mathcal{I}(P)$ is a $p-$ group, it is enough to prove that $U(K \bar{G})$ does not contain a free group of rank two.

We shall suppose below that K is a field of characteristic p or 0 and $t(G)=\Lambda^{+}(G)$ is an abelian group such that if K is a field of characteristic p then $\Lambda^{+}(G)$ has no p-elements. Clearly, $K G$ is isomorphic to the crossed product S of $G / t(G)$ and $K t(G)$.

Let $\left\{u_{h} \mid h \in G / t(G)\right\}$ be a $K t(G)$-basis of S and $u_{h_{1}} u_{h_{2}}=u_{h_{1} h_{2}} \lambda_{h_{1}, h_{2}}$, where $\lambda_{h_{1}, h_{2}} \in U\left(K t(G)\right.$. Then the units $x_{i}(i=1,2, \ldots, n)$ are in S and the elements x_{i}, x_{i}^{-1} can be expressed as

$$
x_{i}=\sum_{h \in G / t(G)} t_{h} \alpha_{h}^{(i)}, \quad x_{i}^{-1}=\sum_{h \in G / t(G)} t_{h} \beta_{h}^{(i)}
$$

where $\alpha_{h}^{(i)}, \beta_{h}^{(j)} \in K t(G)$. Clearly, the support subgroup L of the elements $\left\{\alpha_{h}^{(i)}, \beta_{h}^{(j)} \mid i=1,2, \ldots, n, h \in G / t(G)\right\}$ is a finite abelian subgroup of G. By the theorem of Coelho and Polcino Milies [4] all idempotens of $K t(G)$ are central in $K G$. Since the idempotent $\frac{1}{|L|} \sum_{h \in L} h$ is central, the subgoup L is a normal subgroup in G and $K L$ is a semisimple algebra. Thus $K L$ contains the orthogonal primitive idempotens $e_{1}, e_{2}, \ldots, e_{m}$ such that $e_{1}+e_{2}+\cdots+e_{m}=1$ and $K L e_{i}$ is a field. It is easy to see that $K L e_{i}$ is invariant under transformation with the elements $u_{g}(g \in G)$ and $\alpha_{h}^{(j)} e_{i}, \beta_{h}^{(j)} e_{i} \in K L e_{i}$. Since by assumption $G / t(G)$ is a unique product group, the equality $\left(x_{j} e_{i}\right)\left(x_{j}^{-1} e_{i}\right)=e_{i}$ gives $x_{j} e_{i}=g_{i j} a_{i j} e_{i}$ and $x_{i}^{-1} e_{i}=$ $g_{i j}^{-1} a_{i j}^{-1} e_{i}$, where $g_{i j} \in G$ and $a_{i j} \in U\left(K L e_{i}\right)$. It follows

$$
\begin{equation*}
x_{j}=\sum_{i=1}^{m} g_{i j} a_{i j} e_{i}, \quad x_{j}^{-1}=\sum_{i=1}^{m} g_{i j}^{-1} a_{i j}^{-1} e_{i} . \tag{3}
\end{equation*}
$$

Clearly, $U\left(K L e_{i}\right)$ is a normal subgroup of $M_{i}=G \cdot U\left(K L e_{i}\right)$ and M_{i} does not contain a free group of rank two. There exists a monomorphism of $\left\langle x_{1}, x_{2}\right\rangle$ into the direct product $M=M_{1} \times M_{2} \times \cdots \times M_{m}$. It is easy to see that the direct product of groups, which does not contain free subgroups of rank two, contains also no noncyclic free subgroups. Therefore, the subgroup $\left\langle x_{1}, x_{2}\right\rangle$ and also the group of units $U(K G)$ does not contain a noncyclic free subgroup.

Proof of Corollary 2. Suppose that $U(K G)$ does not contain a free group of rank two. As in the proof of Corollary 1, if K is a field of characteristic p then $1+\mathcal{I}(P)$ is a p-group. By (2) we may only consider the case, when K is a field of characteristic p or 0 and $t(G)=\Lambda^{+}(G)$ is an abelian group such that if K is a field of characteristic p then $\Lambda^{+}(G)$ has no p-elements. We shall prove that $U(K G)$ is a solvable group.

Let $n=2^{t+1}$ and $x_{1}, x_{2}, \ldots, x_{n} \in U(K G)$. As in the proof of Corollary 1 , there exists a normal abelian subgroup L and every element x_{i} can be represented in the form (3). Let us define inductively

$$
\begin{gathered}
\left(x_{1}, x_{2}\right)^{\circ}=\left(x_{1}, x_{2}\right)=x_{1}^{-1} x_{2}^{-1} x_{1} x_{2} \\
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\circ}=\left(\left(x_{1}, x_{2}\right)^{\circ},\left(x_{3}, x_{4}\right)^{\circ}\right.
\end{gathered}
$$

and if $s=2^{t}$, then

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ}=\left(\left(x_{1}, x_{2}, \ldots, x_{s}\right)^{\circ},\left(x_{1}, x_{2}, \ldots, x_{s}\right)^{\circ}\right)
$$

Since L is a normal abelian subgroup, it is easy to show that if $a, b \in$ $U\left(K L e_{i}\right)$ and $g, h \in G$ then $(a g, b h)=c(g, h)$ for some $c \in U\left(K L e_{i}\right)$. If $t+1$ is derived length of G, then

$$
\begin{aligned}
\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} & =\sum_{i=1}^{m}\left(g_{i 1} a_{i 1}, g_{i 2} a_{i 2}, \ldots, g_{i n} a_{i n}\right)^{\circ} e_{i} \\
& =\sum_{i=1}^{m} c_{i}\left(g_{i 1}, g_{i 2}, \ldots, g_{i n}\right)^{\circ} e_{i}
\end{aligned}
$$

for some $c_{i} \in U\left(K L e_{i}\right)$ and $\left(g_{i 1}, g_{i 2}, \ldots, g_{i n}\right)^{\circ}=1$.
We proved that $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\circ} \in U(K L)$ and this implies the solvability of $U(K G)$.

References

[1] A. A. Bovdi, On group algebras with solvable unit groups, Contemporary Math. 131 (1992 (Part 1)), 81-90.
[2] Vikas Bist, Groups of units of group algebras, Commun. in Algebra 20 (6) (1992), 1747-1761.
[3] S. P. Coelho, A note on central idempotents in group rings, Proc. Edinburgh Math. Soc. 30 (1987), 69-72.
[4] S. P. Coelho and C. Polcino Milies, A note on central idempotents in group rings, II, Proc. Edinburgh Math. Soc. 31 (1988), 211-215.
[5] J. Z. Gonsalves, Free subgroups of units in group rings, Bull. Can. Math. Soc. 27 (3) (1984), 309-312.
[6] J. Z. Gonsalves, Free subgroups in the group of units of group rings, II, J. Number Theory 21 (2) (1985), 121-127.
[7] J. Z. Gonsalves, Free subgroups and the residual nilpotence of the group of units of modular and p-adic group rings, Bull. Can. Math. Soc. 29 (3) (1986), 321-328.
[8] B. Hartly and P. F. Pickel, Free subgroups in the unit groups of integral group rings, Can. J. Math. 32 (6) (1980), 1342-1352.
[9] N. Jacobson, Structure of rings, Vol. 36, Amer. Math. Soc. Colloquium, Providence, R.I., 1964.
[10] D. S. PASSMAN, A new radical for group rings?, J. Algebra 28 (3) (1974), 556-572.
[11] J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270.
[12] B. A. F. Wehrfritz, Infinite linear groups, Springer Verlag, Berlin, 1973.

```
ADALBERT BOVDI
INSTITUTE OF MATHEMATICS,
KOSSUTH UNIVERSITY,
H-4010 DEBRECEN, PF. 12,
HUNGARY
E-mail: bodibela@tigris.klte.hu
```

(Received October 31, 1995)

[^0]: Mathematics Subject Classification: Primary 16S34; Secondary 16U60, 20 C 07.
 Key words and phrases: group ring, unit group, free group.
 Research was supported by Hungarian National Fund for Scientific Research grant No. T014279.

