Publ. Math. Debrecen
49 / 1-2 (1996), 183-192

Engel properties of group algebras I

By J. KURDICS (Nyíregyháza)

Abstract

We characterize 3-Engel group algebras, $p+1$-Engel group algebras of characteristic p, and show that the group of units of a 3 -Engel group algebra is 3 -Engel.

Introduction

Let G be a group and \mathbb{F} a field. We define the Lie commutator $[x, y]$ of the elements x and y of the group algebra $\mathbb{F} G$ to be $x y-y x$, and the multiple Lie commutator $\left[x, y_{1}, y_{2}, \ldots, y_{n}\right]$ inductively to be $\left[\left[x, y_{1}, \ldots, y_{n-1}\right]\right.$, $\left.y_{n}\right]$. We put $[x, y, y, \ldots, y]=[x, y, n]$, where the y occur n times, and say that the algebra $\mathbb{F} G$ is n-Engel if $[x, y, n]=0$ is an identity in $\mathbb{F} G$. We also say that $\mathbb{F} G$ is bounded Engel if it is n-Engel for some n. Recall Sehgal's well-known result [4, Theorem V.6.1.]: $\mathbb{F} G$ is bounded Engel if and only if $\mathbb{F} G$ is commutative provided \mathbb{F} is of characteristic 0 ; if and only if G is nilpotent containing a normal subgroup N such that the commutator subgroup N^{\prime} and the factorgroup G / N are of p-power orders provided \mathbb{F} is of prime characteristic p.

Let $\mathbb{F} G$ be n-Engel of prime characteristic p. In [3] Rips and Shalev proved that if $n<p$ then $\mathbb{F} G$ is commutative, and if $n=p$ then $\left|G^{\prime}\right| \leq p$. Extending these results, Theorem 1 and 2 determines 3 and $p+1$-Engel group algebras, respectively.

It is well-known that 3-Engel Lie algebras (even the not finitely generated ones) are nilpotent except the characteristic 2 and 5 cases. 3-Engel

[^0]Lie algebras were studied by Traustason in [6], where an example of a 3Engel non-nilpotent Lie algebra of characteristic 2 was given. We provide another example. Let $G=A \rtimes\langle b\rangle$, a semidirect product, where A is an infinite direct product of cyclic groups of order 4 , and b is of order 2 acting by inversion on A. Then the group algebra of G over the prime field $\mathrm{GF}(2)$ is 3 -Engel by Theorem 1, and not Lie nilpotent by Passi, Passman, Sehgal's characterization theorem [4].

Concerning the group commutator $(x, y)=x^{-1} y^{-1} x y$ we define the multiple commutators $\left(x, y_{1}, \ldots, y_{n}\right)$ and (x, y, n), and the notions of an n-Engel and a bounded Engel group analogously as above. Group algebras with bounded Engel groups of units were described by Bovdi and Khripta [1].

In [5] Shalev proved that if A is an n-Engel associative algebra over a field of prime characteristic, then the group of units $U(A)$ is m-Engel for some m. Let $f(n)$ be the smallest possible such m. For group algebras it is easy to show $f(2)=2$, and by means of Theorem 1 we also establish $f(3)=3$ in Theorem 3. It would be interesting to assess $f(n)$ for greater n. Theorem 3 strongly suggests that we can tackle the problem of characterizing group algebras with 3 -Engel group of units. This problem will be solved in the forthcoming second part of this paper.

In what follows, we assume G to be a group, and \mathbb{F} to be a field of prime characteristic p. By $\gamma_{k}(G)$ we mean the k th term of the lower central series of G with $\gamma_{1}(G)=G$, by $\zeta(G)$ the center of G and by $\zeta(\mathbb{F} G)$ the center of $\mathbb{F} G$. For a subgroup $H \subseteq G$ we denote by $\mathcal{I}(H)$ the ideal in $\mathbb{F} G$ generated by all elements of form $h-1$ with $h \in H$, and, with H finite, by $\widehat{H} \in \mathbb{F} G$ the sum of all elements of H. For a torsion element $a \in G$ we put $\widehat{\langle a\rangle}=\widehat{a}$. We shall use the following commutator identities frequently:

$$
[x, y z]=[x, y] z+y[x, z], \quad[x y, z]=x[y, z]+[x, z] y
$$

in characteristic

$$
\begin{gathered}
p[x, y, p]=\left[x, y^{p}\right], \quad[x, y]=y x((x, y)-1), \quad(x, y)=1+x^{-1} y^{-1}[x, y], \\
(x, y z)=(x, z)(x, y)^{z}=(x, z)(x, y)(x, y, z), \\
(x y, z)=(x, z)^{y}(y, z)=(x, z)(x, z, y)(y, z) .
\end{gathered}
$$

Results

Theorem 1. Let \mathbb{F} be a field of prime characteristic p, G an arbitrary group. Then the group algebra $\mathbb{F} G$ is 3-Engel if and only if one of the following conditions holds:
(i) G is abelian;
(ii) $p=2$ and G is nilpotent of class 2 with an elementary abelian commutator subgroup of order 2 or 4;
(iii) $p=2$ and G is nilpotent of class 2 such that its commutator subgroup is an elementary abelian 2-group of either finite order greater than 4 or of infinite order, and there exists an abelian subgroup of index 2 in G;
(iv) $p=3$ and G is nilpotent with a commutator subgroup of order 3 .

To establish Theorem 1 we need the following lemmas.
Lemma 1. Let $\mathbb{F} G$ be a noncommutative ($p+1$)-Engel group algebra. Then $G / \zeta(G)$ is of exponent p.

Proof. Pick $g, h \in G$ such that $(g, h) \neq 1$. Since $\mathbb{F} G$ is $(p+1)$-Engel,

$$
\begin{aligned}
{[g, h, p+1] } & =\left[g, h^{p}, h\right]=\left[h^{p} g\left(\left(g, h^{p}\right)-1\right), h\right] \\
& =h^{p}\left(g\left[\left(g, h^{p}\right), h\right]+[g, h]\left(\left(g, h^{p}\right)-1\right)\right) \\
& =h^{p}\left(g h\left(g, h^{p}\right)\left(\left(g, h^{p}, h\right)-1\right)+h g((g, h)-1)\left(\left(g, h^{p}\right)-1\right)\right)=0 .
\end{aligned}
$$

It follows

$$
\begin{aligned}
& (g, h)\left(g, h^{p}\right)\left(\left(g, h^{p}, h\right)-1\right)+((g, h)-1)\left(\left(g, h^{p}\right)-1\right) \\
& \quad=(g, h)\left(g, h^{p}\right)\left(g, h^{p}, h\right)-(g, h)-\left(g, h^{p}\right)+1=0
\end{aligned}
$$

If $(g, h)=(g, h)\left(g, h^{p}\right)\left(g, h^{p}, h\right)$ then $\left(g, h^{p}\right)=1$ as required. If not, then $(g, h)=\left(g, h^{p}\right)$ i.e. $(g, h)=(g, h)\left(g, h^{p-1}\right)^{h}$, and therefore $\left(g, h^{p-1}\right)=1$, which, since $G / \zeta(G)$ has to be of exponent either p or p^{2}, follows $(g, h)=1$, a contradiction.

Lemma 2. Let $p=2$ and let G be a nonabelian group with an abelian subgroup A of index 2 in G, and assume that $G / \zeta(G)$ is of exponent 2^{m}. Then $\mathbb{F} G$ is $\left(2^{m}+1\right)$-Engel.

Proof. Pick some $b \in G$ such that $G / A \cong\langle b A\rangle$. Then every $y \in \mathbb{F} G$ can be written uniquely as $y=y_{1}+y_{2} b$ where $y_{1}, y_{2} \in \mathbb{F} A$. Note that $b^{2} \in \zeta(G) \subset A, b y_{1}=y_{1}^{b} b$, and $b y_{1} b=y_{1}^{b} b^{2} \in \mathbb{F} A$ for any $y_{1} \in \mathbb{F} A$. Clearly,

$$
y^{2}=\left(y_{1}+y_{2} b\right)^{2}=y_{1}^{2}+y_{2} y_{2}^{b} b^{2}+\left(y_{1}+y_{1}^{b}\right) y_{2} b,
$$

$y_{2} y_{2}^{b} b^{2}$ and $y_{1}+y_{1}^{b}$ are central in $\mathbb{F} G, y^{2} \equiv y_{1}^{2}+\left(y_{1}+y_{1}^{b}\right) y_{2} b(\bmod \zeta(\mathbb{F} G))$, and by induction it is easy to show

$$
y^{2^{k}} \equiv y_{1}^{2^{k}}+\left(y_{1}+y_{1}^{b}\right)^{2^{k}-1} y_{2} b(\bmod \zeta(\mathbb{F} G)) .
$$

Now let $x=x_{1}+x_{2} b, y=y_{1}+y_{2} b \in \mathbb{F} G$ be arbitrary. Evidently, $y_{1}^{2^{m}}, x_{2} y_{2}^{b}+$ $x_{2}^{b} y_{2} \in \zeta(\mathbb{F} G),\left(y_{1}+y_{1}^{b}\right)^{2^{m}}=0$, and we obtain

$$
\begin{gathered}
{\left[x, y, 2^{m}+1\right]=\left[x_{1}+x_{2} b, y_{1}+y_{2} b,\left(y_{1}+y_{2} b\right)^{2^{m}}\right]=\left[\left(x_{1}+x_{1}^{b}\right) y_{2} b\right.} \\
\left.\quad+\left(y_{1}+y_{1}^{b}\right) x_{2} b+\left(x_{2} y_{2}^{b}+x_{2}^{b} y_{2}\right) b^{2},\left(y_{1}+y_{1}^{b}\right)^{2^{m}-1} y_{2} b\right]=0
\end{gathered}
$$

For brevity, we shall say that $x \in G$ is a δ-element provided for any $y_{1}, y_{2} \in G$, if $\left(x, y_{1}\right) \neq 1,\left(x, y_{2}\right) \neq 1$ and $\left\langle\left(x, y_{1}\right)\right\rangle \cap\left\langle\left(x, y_{2}\right)\right\rangle=\{1\}$ then $\left(y_{1}, y_{2}\right) \in\left\langle\left(x, y_{1}\right),\left(x, y_{2}\right)\right\rangle$. Clearly, any element with at most 2 conjugates is a δ-element.

Lemma 3. Let G be nilpotent of class 2 such that its commutator subgroup G^{\prime} is an elementary abelian 2-group of either finite order greater than 4 or of infinite order. Then the following statements are equivalent:
(i) there exists an abelian subgroup of index 2 in G;
(ii) any $x \in G$ is a δ-element;
(iii) there exists a δ-element $x \in G$ with $\left|G: C_{G}(x)\right|>2$.

Proof. To prove (i) \Rightarrow (ii) let A be an abelian subgroup of index 2 in G. Since the centralizer of any element of A is of index at most 2 in G, any element of A is a δ-element. Pick $b \notin A, a_{1} b^{k}, a_{2} b^{l} \in G$ with $a_{1}, a_{2} \in A$, $k, l \in\{0,1\}$, and assume $\left(b, a_{1} b^{k}\right)=\left(b, a_{1}\right) \neq 1,\left(b, a_{2} b^{l}\right)=\left(b, a_{2}\right) \neq 1$, $\left(b, a_{1}\right) \neq\left(b, a_{2}\right)$. Then $\left(a_{1} b^{k}, a_{2} b^{l}\right)=\left(a_{1}, b^{l}\right)\left(b^{k}, a_{2}\right) \in\left\langle\left(b, a_{1}\right)\right\rangle \times\left\langle\left(b, a_{2}\right)\right\rangle$, and consequently b is a δ-element. Since there exists a conjugacy class in G of order greater than $2,(i i) \Rightarrow($ iii $)$ is even more obvious.

To prove the converse implications, first we make some observations. Assume that $x \in G$ with $\left|G: C_{G}(x)\right|>2$ is a δ-element, choose some subgroup D in (x, G) of order 4 and put $H_{D}=\{h \in G \mid(x, h) \in D\}$. We shall prove the following:
(I) $H_{D}^{\prime}=D$;
(II) $(x, G)=G^{\prime}$;
(III) $C_{G}(x)$ is abelian;
(IV) $\left(y, C_{G}(x)\right) \subseteq\langle(y, x)\rangle$ for any $y \in G$, and all elements of $C_{G}(x)$ are δ-elements.
To prove (I) suppose on the contrary that there exist $v, w \in H_{D}$ such that $(v, w) \notin D$, and put $(x, v)=c,(x, w)=d$. Since x is a δ-element, either $c=1, d=1$ or $c=d$.

If $1 \neq c=d$ then there exists $w_{1} \in H_{D}$ such that $\left(x, w_{1}\right) \notin\langle c\rangle=\langle d\rangle$. Obviously, we have $\left(v, w_{1}\right) \in D$ since x is a δ-element. But $(x, v)=$ $c \in D,\left(x, w w_{1}\right)=c\left(x, w_{1}\right) \in D$ and $\left(v, w w_{1}\right)=(v, w)\left(v, w_{1}\right) \notin D, \mathrm{a}$ contradiction.

If one of the commutators c and d, say c, is 1 , and the other, i.e. d, is not 1 , then there exists $v_{1} \in H_{D}$ such that $\left(x, v_{1}\right) \notin\langle d\rangle$. Since x is a δ-element, we see $\left(v_{1}, w\right) \in D$, but $\left(x, v v_{1}\right)=\left(x, v_{1}\right) \in D,(x, w)=d \in D$ and $\left(v v_{1}, w\right) \notin D$, a contradiction.

If $c=d=1$ then there exist $v_{2}, w_{2} \in H_{D}$ such that $\left(x, v_{2}\right) \neq 1$, $\left(x, w_{2}\right) \neq 1$ and $\left(x, v_{2}\right) \neq\left(x, w_{2}\right)$. By the previous case $\left(v_{2}, w_{2}\right),\left(v, w_{2}\right)$, $\left(v_{2}, w\right) \in D$, but $\left(x, v v_{2}\right)=\left(x, v_{2}\right) \in D,\left(x, w w_{2}\right)=\left(x, w_{2}\right) \in D$ and $\left(v v_{2}, w w_{2}\right) \notin D$, a contradiction proving (I).

To prove (II), if $v_{3}, w_{3} \in G$ such that $\left(v_{3}, w_{3}\right) \notin(x, G)$ then choose some $E \subseteq(x, G)$ with $|E|=4$ such that $\left(x, v_{3}\right),\left(x, w_{3}\right) \in E$. Putting $H_{E}=\{h \in G \mid(x, h) \in E\}$ we have $v_{3}, w_{3} \in H_{E}$, contradicting (I).

Since $\left|G^{\prime}\right|>4$ and $(x, G)=G^{\prime}$, there exist $E_{1}, E_{2}, E_{3} \subseteq(x, G)$ with $\left|E_{i}\right|=4$ such that $E_{1} \cap E_{2} \cap E_{3}=\{1\}$. As $C_{G}(x) \subseteq H_{E_{i}}$ for $i=1,2,3$, by (I) we easily infer (III).

While proving the first statement of (IV) we may suppose $y \notin C_{G}(x)$ because (IV) in this case gives just (III). Assume that there is $z \in C_{G}(x)$ such that $1 \neq(y, z) \notin\langle(y, x)\rangle$. Then there exists $c_{1} \in G^{\prime}$ with $c_{1} \notin$ $\langle(y, z)\rangle \times\langle(y, x)\rangle$, and putting $E=\left\langle c_{1}\right\rangle \times\langle(y, x)\rangle$ we see that $y, z \in H_{E}$ contradicting (I). We proceed to show that all elements of $C_{G}(x)$ are δ-elements. Suppose on the contrary that there exist $z \in C_{G}(x)$ and $y_{1}, y_{2} \in G$ such that $\left(z, y_{1}\right) \neq 1,\left(z, y_{2}\right) \neq 1,\left(z, y_{1}\right) \neq\left(z, y_{2}\right)$ and $\left(y_{1}, y_{2}\right) \notin$ $\left\langle\left(z, y_{1}\right)\right\rangle \times\left\langle\left(z, y_{2}\right)\right\rangle$. The property (III) implies $y_{1}, y_{2} \notin C_{G}(x)$, and by the first part of (IV) we deduce $\left(x, y_{1}\right)=\left(z, y_{1}\right),\left(x, y_{2}\right)=\left(z, y_{2}\right)$, contradicting that x is a δ-element.

To show $($ iii $) \Rightarrow$ (ii) pick some δ-element $u \in G$ with $\left|G: C_{G}(u)\right|>2$ and some $g \in G$ which is not a δ-element. Then there exist $h_{1}, h_{2} \in G$ such that $\left(g, h_{1}\right) \neq 1,\left(g, h_{2}\right) \neq 1,\left(g, h_{1}\right) \neq\left(g, h_{2}\right)$ and yet $\left(h_{1}, h_{2}\right) \notin$ $\left\langle\left(g, h_{1}\right)\right\rangle \times\left\langle\left(g, h_{2}\right)\right\rangle$. Note that $h_{1} h_{2}, g h_{1}, g h_{2}, g h_{1} h_{2}$ are not δ-elements.

By (IV) we see $g, h_{1}, h_{2} \notin C_{G}(u)$ i.e. $\left(u, h_{1}\right) \neq 1,\left(u, h_{2}\right) \neq 1,(u, g) \neq 1$. If $\left(u, h_{1}\right)=\left(u, h_{2}\right)$ then $h_{1} h_{2} \in C_{G}(u)$, but $h_{1} h_{2}$ is not a δ-element and therefore $\left(u, h_{1}\right) \neq\left(u, h_{2}\right)$. Similarly, $\left(u, h_{1}\right) \neq(u, g),\left(u, h_{2}\right) \neq(u, g)$ and $\left(u, h_{1}\right) \neq(u, g)\left(u, h_{2}\right)$. Since u is a δ-element, it follows $\left(g, h_{1}\right) \in\langle(u, g)\rangle \times$ $\left\langle\left(u, h_{1}\right)\right\rangle,\left(g, h_{2}\right) \in\langle(u, g)\rangle \times\left\langle\left(u, h_{2}\right)\right\rangle$ and $\left(h_{1}, h_{2}\right) \in\left\langle\left(u, h_{1}\right)\right\rangle \times\left\langle\left(u, h_{2}\right)\right\rangle$.

We may choose h_{1} and h_{2} such that $\left(h_{1}, h_{2}\right)=\left(u, h_{1}\right)$. Indeed, this is clear in the case $\left(h_{1}, h_{2}\right)=\left(u, h_{2}\right)$, and if $\left(h_{1}, h_{2}\right)=\left(u, h_{1}\right)\left(u, h_{2}\right)$ then, putting $h_{1}^{\prime}=h_{1} h_{2}$, we have $\left(u, h_{1}^{\prime}\right)=\left(h_{1}^{\prime}, h_{2}\right)=\left(u, h_{1}\right)\left(u, h_{2}\right)$.

Now $\left(g, h_{1}\right)$ equals either (u, g) or $(u, g)\left(u, h_{1}\right)$. Since $\left(u, h_{1}\right) \neq\left(u, g h_{2}\right)$ and $\left(h_{1}, g h_{2}\right)$ equals either (u, g) or $(u, g)\left(u, h_{1}\right)$, we see $\left(h_{1}, g h_{2}\right) \notin$ $\left\langle\left(u, h_{1}\right)\right\rangle \times\left\langle\left(u, g h_{2}\right)\right\rangle$, contradicting that u is a δ-element.

There remained to prove (ii) \Rightarrow (i). Assume that (ii) holds, pick some $u \in G$ with $\left|G: C_{G}(u)\right|>2$, choose some subgroup D in (u, G) of order 4 and put $H_{D}=\{h \in G \mid(u, h) \in D\}$.

We show that there exists an element in G with 2 conjugates. Suppose the contrary. Pick $b_{1}, b_{2} \in H_{D}$ with $D=\left\langle\left(u, b_{1}\right)\right\rangle \times\left\langle\left(u, b_{2}\right)\right\rangle$, now b_{1} and b_{2} are δ-elements with more than 2 conjugates and $\left(b_{1}, b_{2}\right) \in D$. By (IV) we can see easily that this is impossible. Indeed, if $\left(b_{1}, b_{2}\right)=1$ then $\left(u, b_{2}\right) \in\left\langle\left(u, b_{1}\right)\right\rangle$. If $\left(b_{1}, b_{2}\right)=\left(u, b_{1}\right)$ then $\left(b_{1}, u b_{2}\right)=1$ and $\left(u, b_{2}\right)=$ $\left(u, u b_{2}\right) \in\left\langle\left(u, b_{1}\right)\right\rangle$. If $\left(b_{1}, b_{2}\right)=\left(u, b_{2}\right)$ then $\left(b_{2}, u b_{1}\right)=1$ and $\left(u, b_{1}\right)=$ $\left(u, u b_{1}\right) \in\left\langle\left(u, b_{2}\right)\right\rangle$. Since $u b_{1}$ is not central in $G,\left|G: C_{G}\left(u b_{1}\right)\right|>2$, and hence if $\left(b_{1}, b_{2}\right)=\left(u, b_{1}\right)\left(u, b_{2}\right)$ then $\left(u b_{1}, u b_{2}\right)=1$ and $\left(u, b_{2}\right)=\left(u, u b_{2}\right) \in$ $\left\langle\left(u, u b_{1}\right)\right\rangle$. In each of the four cases we arrived at a contradiction, thus there exists an element in G with 2 conjugates.

Pick some $a \in G$ with $\left|G: C_{G}(a)\right|=2$. First we show that each element of $C_{G}(a)=A$ has at most only 2 conjugates in G. Let $G / A \cong$ $\left\langle u_{1} A\right\rangle$. If there exists $b \in A$ satisfying $\left|G: C_{G}(b)\right|>2$ then, by (III), $C_{G}(b) \subseteq A$ because $a \in C_{G}(b)$. By (IV) for any $a_{1} \in A$ we have $\left(u_{1} a_{1}, a\right) \in$ $\left\langle\left(u_{1} a_{1}, b\right)\right\rangle$ and hence, first putting $a_{1}=1$, we obtain $\left(u_{1}, a\right)=\left(u_{1}, b\right)$ and $\left(u_{1}, a\right)=\left(u_{1} a_{1}, b\right)$. Consequently, $\left(u_{1}^{2} a_{1}, b\right)=\left(a_{1}, b\right)=1$ and $C_{G}(b)=A$, a contradiction proving the desired property.

This readily follows $u \notin A$ and hence $G / A \cong\langle u A\rangle$. Finally, to show that A is abelian suppose on the contrary that there exist $a_{2}, a_{3} \in A$ such that $\left(a_{2}, a_{3}\right)=c_{3} \neq 1$. Then $A^{\prime}=\left\langle c_{3}\right\rangle$ and $\left(u, a_{2}\right),\left(u, a_{3}\right) \in\left\langle c_{3}\right\rangle$. Since $(u, G)=(u, A)=G^{\prime}$ by (II), there exist $a_{4}, a_{5} \in A$ such that $\left(u, a_{4}\right)=c_{4} \neq$ $1,\left(u, a_{5}\right)=c_{5} \neq 1, c_{4} \neq c_{5}$ and $c_{3} \notin\left\langle c_{4}\right\rangle \times\left\langle c_{5}\right\rangle$. Observing $a_{4}, a_{5} \in \zeta(A)$ we conclude that ($u, a_{2} a_{4}$) equals either c_{4} or $c_{3} c_{4},\left(u, a_{3} a_{5}\right)$ equals either c_{5} or $c_{3} c_{5}$, and $\left(a_{2} a_{4}, a_{3} a_{5}\right)=c_{3} \notin\left\langle\left(u, a_{2} a_{4}\right)\right\rangle \times\left\langle\left(u, a_{3} a_{5}\right)\right\rangle$, contradicting that u is a δ-element. Thus A is an abelian subgroup of index 2 in G.

Now we can complete the
Proof of Theorem 1. The result of Rips and Shalev mentioned in the introduction settles the case $p=3$ and assures that if a noncommutative group algebra is 3 -Engel then it is of characteristic 2 or 3 . Hence to complete the proof consider the case $p=2$.

Evidently, (ii) of Theorem 1 follows that $\mathbb{F} G$ is even Lie nilpotent of class at most 3. If (iii) of Theorem 1 holds then the central factor of G is of exponent 2 and Lemma 2 forces $\mathbb{F} G$ to be 3 -Engel.

Now suppose that $\mathbb{F} G$ is a noncommutative 3-Engel group algebra of characteristic 2. By Lemma $1 G / \zeta(G)$ is a group of exponent 2 and therefore elementary abelian, which follows that G is nilpotent of class 2
and its commutator subgroup is an elementary abelian 2-group. There remained to prove that if G^{\prime} is either of finite order greater than 4 , or of infinite order, then there is an abelian subgroup of index 2 in G. Suppose the contrary. Then by Lemma 3 there exists an element in G which is not a δ-element, i.e. there exists $g, h_{1}, h_{2} \in G$ such that $\left(g, h_{1}\right)=c_{1} \neq 1$, $\left(g, h_{2}\right)=c_{2} \neq 1, c_{1} \neq c_{2}$ and $\left(h_{1}, h_{2}\right)=c_{3} \notin\left\langle c_{1}\right\rangle \times\left\langle c_{2}\right\rangle$. Since $\mathbb{F} G$ is 3 -Engel, we have

$$
\begin{gathered}
{\left[g, h_{1}+h_{2}, 3\right]=\left[g, h_{1}, h_{1}, h_{1}+h_{2}\right]+\left[g, h_{2}, h_{2}, h_{1}+h_{2}\right]+\left[g, h_{1}, h_{2}, h_{2}\right]} \\
+\left[g, h_{2}, h_{1}, h_{1}\right]+\left[g, h_{1}, h_{2}, h_{1}\right]+\left[g, h_{2}, h_{1}, h_{2}\right] \\
=\left[g, h_{1}, h_{2}, h_{1}\right]+\left[g, h_{2}, h_{1}, h_{2}\right]=g h_{1}^{2} \widehat{h_{2}} \widehat{c_{1}} \widehat{c_{2} c_{3}} \widehat{c_{3}}+g h_{1} h_{2}^{2} \widehat{c_{2}} \widehat{c_{1} c_{3}} \widehat{c_{3}} \\
=g h_{1} h_{2}\left(h_{1}+h_{2}\right) \widehat{c_{1}} \widehat{c_{2}} \widehat{c_{3}}=0 .
\end{gathered}
$$

It follows $h_{1} \widehat{c_{1}} \widehat{c_{2}} \widehat{c_{3}}=h_{2} \widehat{c_{1}} \widehat{c_{2}} \widehat{c_{3}}$, which is possible only if $h_{1} \in h_{2} \zeta(G)$, contradicting that h_{1} and h_{2} do not commute.

Theorem 2. Let \mathbb{F} be a field of prime characteristic $p>2, G$ a nonabelian group. Then the group algebra $\mathbb{F} G$ is $(p+1)$-Engel if and only if G is nilpotent with a commutator subgroup of order p.

Proof. The "if" claim is clear. To establish the "only if" claim assume that $\mathbb{F} G$ is $(p+1)$-Engel. Then, by Sehgal's theorem, G is nilpotent. Recall that for a normal subgroup N in $G, \mathbb{F} G / N \cong \mathbb{F} G / \mathcal{I}(N)$.

First we shall prove that for any $e, f \in G$ such that $(e, f)=c$ is of order p and central in $\langle e, f\rangle$ we have

$$
(e+f)^{p}=e^{p}+f^{p}+\widehat{c} \sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} e^{k} f^{p-k}
$$

Put $(e+f)^{p}=e^{p}+f^{p}+\sum_{k=1}^{p-1} w_{k}$, where w_{k} is the sum of all the products with e ocurring k times as a factor. Clearly, there are $\binom{p}{k}$ summands in w_{k}, and we can write $w_{k}=e^{k} f^{p-k} \sum_{i=1}^{\binom{p}{k}} c^{l_{i}}$. On the other hand, by Jacobson's formula [2, p.187] we have $w_{k}=s_{k}(e, f)$, where $k s_{k}(e, f)$ is the coefficient of λ^{k-1} in $[e, \lambda e+f, p-1]$, considered as a polynomial of the indeterminate λ, and hence, applying the identity $[x, y]=y x((x, y)-1)$ several times, $w_{k}=\alpha e^{k} f^{p-k} \widehat{c}$ for some $\alpha \in \operatorname{GF}(p)$. By the first expression of w_{k}, the coefficient α cannot be else than $\frac{1}{p}\binom{p}{k}$.

Suppose that G is nilpotent of class 2 and $\left|G^{\prime}\right|>p$. By Lemma 1 G^{\prime} is of exponent p, and we may assume $\left|G^{\prime}\right|=p^{2}$. It is easy to see that
there exist $a \in G$ with more than p conjugates and $b_{1}, b_{2} \in G$ such that $\left(a, b_{1}\right)=c_{1} \neq 1,\left(a, b_{2}\right)=c_{2} \notin\left\langle c_{1}\right\rangle$ and $\left(b_{1}, b_{2}\right)=c_{1}$. Indeed, this is clear if $\left(b_{1}, b_{2}\right)$ is in $\left\langle c_{1}\right\rangle$ or $\left\langle c_{2}\right\rangle$. If $\left(b_{1}, b_{2}\right)=c_{1}^{k} c_{2}^{l}$ with $1 \leq k, l \leq p-1$ then, putting $b_{1}^{\prime}=b_{1}^{k} b_{2}^{l}, b_{2}^{\prime}=b_{2}^{k^{\prime}}$, where $k k^{\prime} \equiv 1(\bmod p)$, we see $\left(a, b_{1}^{\prime}\right)=c_{1}^{k} c_{2}^{l} \neq 1$, $\left(a, b_{2}^{\prime}\right)=c_{2}^{k^{\prime}} \notin\left\langle\left(a, b_{1}^{\prime}\right)\right\rangle$ and $\left(b_{1}^{\prime}, b_{2}^{\prime}\right)=\left(b_{1}, b_{2}\right)^{k k^{\prime}}=\left(a, b_{1}^{\prime}\right)$.

If $p=3$ then

$$
\begin{aligned}
{\left[a, b_{1}+b_{2}, 4\right] } & =\left[a, b_{1}+b_{2},\left(b_{1}+b_{2}\right)^{3}\right] \\
& =\left[a, b_{1}+b_{2}, b_{1}^{3}+b_{2}^{3}+\widehat{c_{1}}\left(b_{1} b_{2}^{2}+b_{1}^{2} b_{2}\right)\right] \\
& =\widehat{c_{1}}\left[a, b_{2}, b_{1} b_{2}^{2}+b_{1}^{2} b_{2}\right]=\widehat{c_{1}}\left(b_{1}\left[a, b_{2}, b_{2}^{2}\right]+b_{1}^{2}\left[a, b_{2}, b_{2}\right]\right) \\
& =\widehat{c_{1}} b_{1}\left(b_{1}-b_{2}\right)\left[a, b_{2}, b_{2}\right]=\widehat{c_{1}} \widehat{c_{2}}\left(b_{1}-b_{2}\right) a b_{1} b_{2}^{2}=0,
\end{aligned}
$$

which implies $b_{1} \in b_{2} \zeta(G)$, a contradiction. If $p>3$ then put $z=$ $\left(c_{2}-1\right)^{\frac{p-1}{2}}$ and compute

$$
\begin{aligned}
{\left[a, z b_{1}+b_{2}, p+1\right] } & =\left[a, z b_{1}+b_{2},\left(z b_{1}+b_{2}\right)^{p}\right] \\
& =\left[a, z b_{1}+b_{2}, b_{2}^{p}+\widehat{c_{1}}\left(z b_{1} b_{2}^{p-1}+\frac{p-1}{2} z^{2} b_{1}^{2} b_{2}^{p-2}\right)\right] \\
& =\widehat{c_{1}}\left[a, b_{2}, z b_{1} b_{2}^{p-1}+\frac{p-1}{2} z^{2} b_{1}^{2} b_{2}^{p-2}\right] \\
& =\widehat{c_{1}} z b_{1}\left[a, b_{2}, b_{2}^{p-1}\right]=0 .
\end{aligned}
$$

Since $0=\left[x, b_{2}^{p}\right]=\left[x, b_{2}\right] b_{2}^{p-1}+b_{2}\left[x, b_{2}^{p-1}\right]$, it follows

$$
\widehat{c_{1}} z\left[a, b_{2}, b_{2}\right]=\widehat{c_{1}}\left(c_{2}-1\right)^{\frac{p+3}{2}} b_{2}^{2} a=0,
$$

which is impossible since $\frac{p+3}{2}<p$. Thus if G is nilpotent of class 2 then $\left|G^{\prime}\right|=p$.

Now suppose that G is nilpotent of class greater than 2. Since $G / \gamma_{4}(G)$ is of class 3, we may assume that G is of class 3 . Since $G / \gamma_{3}(G)$ is of class 2, the facts proved above follow that $G^{\prime} / \gamma_{3}(G)$ is of order p. By Lemma 1 $\gamma_{3}(G)$ is of exponent p and, since in a group nilpotent of class 3 we have $\left(x, y^{p}\right)=(x, y)^{p}(x, y, y)^{p \frac{p-1}{2}}$ and p is odd, G^{\prime} is of exponent p. Combining these observations we may suppose that G is of class 3 with an elementary abelian commutator subgroup of order p^{2}.

If G is not a 2-Engel group then there exist $g, h \in G$ such that $(g, h)=$ $d \notin \gamma_{3}(G), 1 \neq(d, h)=c \in \gamma_{3}(G)$ and $(d, g)=1$. Indeed, if $(g, h, g)=c^{r}$
with $1 \leq r \leq p-1$ then $\left(h^{-r} g, h\right)=(g, h)=d,\left(d, h^{-r} g\right)=c^{-r} c^{r}=1$. We have

$$
\begin{gathered}
{[g, d+h, p+1]=\left[g, d+h,(d+h)^{p}\right]} \\
=\left[g, d+h, 1+h^{p}+\widehat{c} \sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} d^{k} h^{p-k}\right]=\widehat{c} \sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} d^{k}\left[g, h, h^{p-k}\right] \\
=\widehat{c} \sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} d^{k} h^{p-k+1} g\left(d^{p-k}-1\right)(d-1)=0 .
\end{gathered}
$$

Multiplying by $(d-1)^{p-3}$ it follows

$$
\begin{aligned}
& \widehat{c} \widehat{d} g h \sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k}(p-k) h^{p-k}=\widehat{c} \widehat{d} g h \sum_{k=1}^{p-1}\binom{p-1}{k} h^{p-k} \\
& =\widehat{c} \widehat{d} g h \sum_{k=1}^{p-1}(-1)^{k} h^{p-k}=\widehat{c} \widehat{d} g h^{2} \sum_{k=0}^{p-2}(-1)^{k} h^{k}=0,
\end{aligned}
$$

which is possible only if $h \in\langle c, d\rangle$, contradicting $(d, h) \neq 1$.
Now we prove the following auxiliary assertion: if H is a 2-Engel group nilpotent of class 3 then $\left|H^{\prime} / \gamma_{3}(H)\right| \neq 3$. Indeed, suppose the contrary. Then there exist $u, v \in H$ such that $H^{\prime} / \gamma_{3}(H)=\left\langle(u, v) \gamma_{3}(H)\right\rangle$, and, furthermore, there exists $w \in H$ with $(u, v, w) \neq 1$. Clearly, either (u, w) or (v, w), say (u, w), is noncentral in H, and hence $(u, w)=(u, v)^{k} z$, where $k \in\{1,2\}$ and z is central in H. However, since in the 2-Engel group H the exponent of $\gamma_{3}(H)$ is 3 , it follows $1=(u, w, w)=\left((u, v)^{k} z, w\right)=$ $(u, v, w)^{k} \neq 1$, a contradiction.

Finally, in the case when G is 2-Engel and of class 3 we have $p=3$ and $\left|G^{\prime} / \gamma_{3}(G)\right|=3$, which is impossible by the previous auxiliary assertion.

Theorem 3. If $\mathbb{F} G$ is a 3-Engel group algebra then the group of units $U(\mathbb{F} G)$ is 3-Engel.

Proof. The implication is evident if (i), (ii) or (iv) of Theorem 1 holds. Suppose that $p=2$ and G is nilpotent of class 2 such that its commutator subgroup is an elementary abelian 2-group of order either finite greater than 4 , or of infinite order, and there exists an abelian subgroup A of index 2 in G. We shall use the notations and observations made in the proof of Lemma 2. For arbitrary noncommuting units
$x=x_{1}+x_{2} b, y=y_{1}+y_{2} b \in U(\mathbb{F} G)$ we shall prove $(x, y, 3)=1$ by means of the identity $\left(x, y, y^{2}\right)=(x, y, y)^{2}(x, y, 3)$. Obviously,

$$
t=x_{1}+x_{1}^{b}, w=y_{1}+y_{1}^{b}, z=x_{2} y_{2}^{b}+x_{2}^{b} y_{2} \in \zeta(\mathbb{F} G), \quad t^{2}=w^{2}=z^{2}=0
$$

$I=t \mathbb{F} G+w \mathbb{F} G+z \mathbb{F} G$ is an ideal, $I^{2}=t w \mathbb{F} G+t z \mathbb{F} G+w z \mathbb{F} G, I^{4}=\{0\}$, and

$$
\begin{aligned}
{[x, y] } & =t y_{2} b+w x_{2} b+z b^{2} \in I, \quad y^{2} \equiv w y_{2} b(\bmod \zeta(\mathbb{F} G)) \\
{[x, y, y] } & =\left[x, y^{2}\right]=w\left(t y_{2} b+z b^{2}\right) \in I^{2}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
(x, y) & =1+x^{-1} y^{-1}[x, y] \in 1+I, \quad(x, y)^{2} \in 1+I^{2}, \\
\left(x, y^{2}\right) & =1+x^{-1} y^{-2}\left[x, y^{2}\right] \in 1+I^{2},
\end{aligned}
$$

which, since $\left(x, y^{2}\right)=(x, y)^{2}(x, y, y)$, immediately follows $(x, y, y) \in 1+I^{2}$, and hence $(x, y, y)^{2}=1,(x, y, 3)=\left(x, y, y^{2}\right)$. Recalling $[x, y, 3]=\left[x, y, y^{2}\right]=0$ we conclude

$$
\begin{gathered}
{\left[(x, y), y^{2}\right]=\left[x^{-1} y^{-1}[x, y], y^{2}\right]=x^{-1} y^{-1}\left[x, y, y^{2}\right]+\left[x^{-1}, y^{2}\right] y^{-1}[x, y]} \\
=y^{-1} x^{-1}\left[x, y^{2}\right] x^{-1}[x, y]=y^{-1} x^{-1} w\left(t y_{2} b+z b^{2}\right) x^{-1}\left(t y_{2} b+w x_{2} b+z b^{2}\right) \\
=y^{-1} x^{-1} t w z\left[x^{-1}, y_{2} b\right] b^{2}=y^{-1} x^{-1} x^{-1} t w z\left[x, y_{2} b\right] x^{-1} b^{2}=0 .
\end{gathered}
$$

Acknowledgement. The author wishes to thank Prof. A. A. Bovdi for raising the problem and for his continuous encouragement.

References

[1] A. A. Bovdi and I. I. Khripta, Engel properties of the multiplicative group of a group algebra, Math. USSR Sbornik 72 (1992), 121-133.
[2] N. Jacobson, Lie Algebras, Interscience, New York, 1962.
[3] E. Rips and A. Shalev, The Baer condition for group algebras, J. Algebra 140 (1991), 83-100.
[4] S. K. Sehgal, Topics in Group Rings, Marcel Dekker, New York, 1978.
[5] A. Shalev, On associative algebras satisfying the Engel condition, Israel J. Math. 67 (1989), 287-289.
[6] G. Traustason, Engel Lie algebras, Quart. J. Math. Oxford 44 (1993), 355-384.
DEPARTMENT OF MATHEMATICS
BESSENYEI COLLEGE
NYÍREGYHÁZA, HUNGARY
E-mail: kurdics@ny1.bgytf.hu
(Received March 26, 1996)

[^0]: Mathematics Subject Classification: Primary 16A27; Secondary 16A68.
 Key words and phrases: Group algebra, Lie, Engel, group of units.
 Supported by Hungarian National Fund for Scientific Research (OTKA) grants No. T014279 and F015470.

