Note on a paper by Ram Singh on star-like functions

By MANSOOR AHMAD (Lucknow)

Introduction: The class of star-like functions f(z) such that ——*—zf (z)—l‘ <=1
in |z|<1 has recently been investigated by RAm SINGH [I] who has proved three
interesting theorems [1, Theorems 1, 2, 3] on this class of star-like functions. The
preliminary object of this note was to generalize these theorems but this generaliza-
tion led the author to generalize certain fundamental theorems of the complex func-
tion theory, some of which are closely connected with these theorems. The funda-
mental theorems which have been generalized are Schwarz’s lemma, Taylor’s theo-
rem, Borel—Carathedory theorem [2, § 5. 5, 5. 51], Poisson—Jensen Formula [2,
§ 3. 62], Hadamard’s gap theorem [2, § 7.43] and Fuch’s theorem [3, § 10. 11], with
special attention to Legendre’s and Bessel’s differential equations.

1. The transformation w = z(z—1) maps the closed domain bounded by the
closed contour |[z(z—1)| = 1 onto the domain |w|=1. The function z is regular

2 N

inside andon |z(z—1)| =1 but z = and this function of w has a branch
point at w = —% inside the circle |w|=1, although, it is easy to see that z can be ex-
panded as a power series

z=—w+w2=2wd45wt—...

inside the closed contour |z(z—1)| = 1.
As a generalization of this simple result we have

Theorem 1. If f(z) is an analytic function, regular inside the closed contour
\@(z)—@(0)| = R, where ®(z) is an analytic function, regular in the region
|®@(z)—@(0) = R,

R being a fixed positive number, and if the derivative of ®(z) does not vanish at z=0,
then f(z) can be expanded as a series

fz) = E a,(0(2)— D))",

inside the closed contour |®(z)—®(0)| = R a, (n=0, 1, 2, ...) being constants.
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ProoF. Since, by hypothesis, the derivative of @(z) does not vanish at z=0,
there exists a neighbourhood of z=0 in which @(z) takes any value only once [3, p.
153). Consequently, there exists a fixed positive ¢ such that @(z) takes any value,
inside or on the closed contour |®(z)—@®(0)| = ¢ only once. Now, by Cauchy’s
integral formula, we have
1 r f@)P(2)dz
2rig P(2)—P(zp) ’

(D Nzo) =

where C denotes the closed contour |®(z)—®(0) = ¢ and z, is any point inside C.
Since, by the maximum modulus principle, we have [®(z,)—®(0)| < &, it fol-

lows easily from (1) that f(z) can be expanded inside C as a series E’ a,(®(z)—®(0)),
n=0

where
PRSI J(2) ' (2)dz
n 2ni ((p (z) R 45(0-”,”_ I-

As a consequence of this result, we have

2. 8 f(2)®'(2)d=
@ M= Dzim ¢ (@(z)— D)’

where C, denotes the closed contour |®(z)—@®(0)] = R, = R and m denotes the
number of zeros of @(z)—®(0) inside C,, multiple zeros being counted according
to their orders. By (2), we have

G) a,| = ;;‘

M being independent of n, and the theorem follows from (3).

Corollary 1. If f(z) and @(z) satisfy all the conditions of Theorem I, and if
f(2) vanishes at z=0 and is continuous in the domain |®(z)—®(0)| = R, then, in
this domain we have

| S M

P(z)—9(0) ~ R’
where M’ denotes the maximum modulus of f(z) on the closed contour
|@(z)—®(0)| = R.

Corollary 2. If f(z) and @(z) satisfy all the conditions of Corollary 1, then in
the domain |®(z)—®(0)| = R, we have

@) = 2|®(z)—P(0) A(R) = R+ |P(z)—P(0)]
- R-[2@)-2(0) = R-[2(z)—2(0)

|£(0)],

where A(R) denotes the maximum of Re f(z) on the closed contour |@(z)— @ (0)| = R.
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Corollary 3. If ®(z) satisfies all the conditions of Theorem 1, and if f(z) is
regular and never takes the values O or 1 in the region |@(z)—®(0)| = R, then
2|®°(0)| Im v(ay)

a1 |v"(ao)|
where a,=/(0), a,=f"(0)=0, f(0) and @®’(0) denote the derivatives of f(z) and
@(z) at z=0, and v(a,), v'(a,) have the same meaning as in [3, 15. 52].

Corollary 4. If ®(z) satisfies all the conditions of Theorem 1, and if f(z) is
regular and never takes the values 0, 1 or a in the region |®(z)— ®(0)| <= R. then
2(@°(0) a,y |logal Imuv(A)

|ay| v (A4)] '
where a,, a;, have the same meaning as before, log @ has its principal value, and 4
denotes the principal value of log, a,.

R=

L]

R=

Proor. The principal branch of log, f(z) is regular and never takes the values 0
and 1 in the region |®(z)—@®(0)| = R. Replacing f(z) by log, f(z) in corollary (3),
we get the required result.

Corollary 5. If ®(z) satisfies all the conditions of Theorem I, and if f(z) is
regular and never takes the values 0, 1, @ or b in the region |®(z)—®(0)| <= R,
then

_ 2(9°(0) 4o log ao| log (log, b) | Im v(B)
. lay| [v"(B)| :

where a,, a, have the same meaning as before, log a,, log (log, ) have their principal
values and B denotes the principal value of logg, s (l0g, ao).

R

Proor. The principal branch of 1og,, s (l0g, f(z)) is regular and never takes
the values 0 and 1 in the region |®(z) — ®(0)| < R. The rest of the proof follows the
same lines as before.

Theorem 2. If f(z) is an analytic function, regular inside the circle |z| =R, which
vanishes at z=0, if Re f(z) is bounded on the circle, then

/@) = —a,

when |z|=R, a being the greatest lower bound of Re f(z) on the circle.

PrOOF. Let @(z) = Wf(_z}_-(;)_’ where / is a fixed number greater than 1 and

A denotes the least upper bound of Re f(z) on the circle. Since f(2) vanishes at z=0
@(z) also vanishes at z=0, by [4, p. 153] it follows that, the transformation Z=f(z)
maps a small neigh-bourhood of any interior point z, of the circle |z|=R on a small
neighbourhood of the point Z,, where Z,=/(z,). Consequently, there exists a conti-
nuous curve, with one end-point at z=0, such that, at every point of this curve, except
z=0, ®(z) is real and negative. If no zero of @(z), except z=0, lies on this curve, the
other end-point of the curve will lie on the circle |z|=R. If z, is a point of the curve,
such that z, is a zero of @(z) and that no other zero of @(z) lies on the arc of the curve,
joining z;, and z=0, then as before, there exists another continuous curve, with
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one end-point at z,, such that, at every point of this curve, except z,, @(z) is real
and negative. Proceeding in the same way, it follows that there exists a continuous
curve inside the circle |z]=R, joining z=0 to a point z” of the circle, such that,
at every point of the curve, except a zero of @(z) and possibly z’, @(z) is real and
negative.

Now, if @(z) tends to — 1, as z tends to a fixed point of the circle |z|= R, through
a sequence of interior points of the circle, then given any fixed positive 4, A<1, there
exists a fixed interior point z; of the circle such that

—2IA:
.f(zi) - 1 *)A
i.e.
—2lA42
Re f(z;) = T——:

So, it follows that Re f(z;) tends to — <=, as A tends to 1; which is contrary to our
hypothesis. We have, thus, proved that ®(z) does not tend to —1, as z tends to
any fixed point of the circle |z|=R, through any sequence of interior points of the
circle.

Let
(1) @(z)=—14u+tiv,

where u# and v are real. We have
UAOE) _ A +utic) _ [ . ] ~ 214 [, _u—iv ]

/@) = 14+@(z) u+iv U+ iv u? +p?
Therefore
(2") Re f(z) = 2IA(1 k),
where
u
£= e
Putting
(3) X=-14u, Y=u,
we have
X+2
= @iy

Since, by hypothesis, Re f(z) is bounded on the circle |z|=R, by (2'), it follows that

-;Tf:kcoo. Under the transformations (1) and (3), the curve |®(z)|*=1 is the circle

u i . .
X2+Y? = 1 and the curve k = o e 2 l.e.% = u?+v? is the circle (X+1)?+Y? =
X4l ; 1 . . g
= ———, Since k is greater than —, the two circles intersect at only one point i.e.

k 2
(—1,0); and since the centre of the second circle is [—2%— 1,0] and its radius is

31[‘ , it lies inside the circle X*+ Y2 = 1 and touches it at the point (—1, 0). Since,
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we have proved that @(z) i.e. (X+1+iY) does not tend to —1, as z tends to any
fixed point of the circle |z|=R, it follows that there exists a fixed 4, 0<=Ai<1, such
that |@(z)|= 4, when |z|= R. Also, since we have proved that there exists a continuous
curve inside the circle |z|=R, joining z=0 to a point z" of the circle |z|=R, such
that, at every point of the curve, except a zero of ®(z) and possibly z’, ®(z) is real
and negative, it follows that, there exists a fixed point z”, inside the circle |z|=R,

such that @(z”)=—/ and, consequently, f(z") = _1_2_]_‘% i.e. f’fj Re f(z").
So, we have

2142
4) 1—2 = —a.

Hence we have

214|0(2)| _ 2142 _

1—|@(z)| — 1-4 —
when |z|=R.
Remark: If we put —f(z) for f(z) in the last inequality, we have

/@) = 4,

/@) =

—a,

when [z|=R.
Consequently, it follows that

| f(z)] = min (—a, A).

Theorem 3. If ®(z) satisfies all the conditions of Theorem 1, if ®(z) vanishes
at z=0, and if f(z) is an analytic function, regular inside and on the closed contour
|®(z)| =R, having zeros at the points a,, a,, ..., a,, and poles at b, b,, ..., b, inside
the closed contour, then

PR (R?— R?) log |f(re")) di
B AN = 5o ) FI—TRR, cosli= 1) R~
k —P(a)P(r'e?) & R2— @ (b,)P(r'e?)
;E R(‘P( r'ei”))—d(a .)‘ 3 Z log.R(ﬂp(r'e""))—‘p(bu) ;

where r’e'” is‘any point inside the closed contour |®(z)| =R, re'® is any point on the
contour ®(r'e”)=R,e'*, ®(re’)=Re'*, L denotes the set of values of 1, attained on
the closed contour |®(z)|=R and m has the same meaning as in Theorem 1.

Proor. We consider

1 f R}) log F(z)d(®(2))
i (@(~) qr»(r e""))(Rz ®(2)D(r e”))
where
RP—0(:)0(a) & R(®(:)—(a)
F(z)=/(z) H R(®(z)—®(a,) 2 RP—0(2)(a,)

and C denotes the closed contour |®(z)|=R. The rest of the proof follows easily,
if we use Theorem 1.
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Putting r"=0 and supposing that z=0 is neither a zero nor a pole of f(z), we
have

f log | f(re®)| di.—log | f(0)| = f n(x, 0)—n(x, =)

an x

where n(x,0) and n(x, ==) denote the number of zeros and the number of poles
respectively inside or on the closed contour |®(z)| =x=R.
Now, we can define T(®, R, f) by the relation

T(®,R,f) = f log* | f(re'®)| di+ f oo

where log* |a| has its usual meaning.

Theorem 4. Iff(z) is an analytic function, regular inside a closed contour |®(z)| =1,
where ®(z) satisfies all the conditions of Theorem 1, with ®(0)=0 and R=1, if in
the series

@) = 3 a(0@),

a,=0 except when n belongs to a sequence ng such that nygsy = (14+A)n,, 2=0, and

if the radius of convergence of the series Z a,z" is 1, then the closed contour |®(z)|=1
n=0

is a natural boundary of f(z).

PROOF. Let @(z) = aw?+bwP*!, where 0<a<1, a+b = 1 and p is a positive
integer. Clearly |®(z)|=1, if (w|=1 and |®(z)|<1 if |w|=1, except that ®(z)=1
if w=1. The rest of the proof, now, follows the same lines as in [2, § 7. 43].

Theorem 5. If ®(z) satisfies all the conditions of Theorem 1 and vanishes at
z=0, if each of the functions p(z) and q(z) is an analytic function regular at z=0,
and if Ay and A, are two arbitrary constants, there exists a unique function w(z)=

= 3 a,(®(2))", which is regular and satisfies the differential equation

e @ dw
. +[ @) ¥'@) - M‘z))] () (# @) w =0

in a region |®(z)|<r, and which also satisfies the initial conditions w(0)=A4,, w'(0)=
= A, - (0).
PrOOF. We have

dw _ o, . dw dw d’w __ @"(@)adw
& =" Qe ™ & = OO eert we)

So the differential equation can be put in the form

dz

d(db(z))z +p( )d(tb( ))-}-q(z)w = 0.
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Since p(z) and g(z) are regular in a region |®(z)|<r, by Theorem I, they are ex-
pansible, in this region, as series of the form

p(z) = ?p,(¢(z))", q(z) = oiq,(@(z))",

The rest of the proof, now, follows the same lines as in[3, 10. 11], if we use the in-
equality (3) of the proof of Theorem 1.

Corollary 6. The generalized Legendre differential equation

d?w [2:@'() ¢»(z)]du n(n+_])

., Y
B oel PolE s varn=0

has a solution of the form w(z) = ) @ .(@(2))", regular in any region |®(z)|<r

n

which does contain the points +1.

”Ma

Corollary 7. The generalized Bessel differential equation

(fznr (p’(z) ¢”(Z) dw !'2 ’ -
e o F G GO

has a solution of the form w(z) = 2 b,(®(2))", regular in any region |®(z)|<R

in which @(z) is regular, provided that n(n— 1)+n®’(0)—v?(®’(0))* does not vanish
for any positive integral or zero value of .

ProOF. By the method of proof of Theorem 5, the differential equation can be

put in the form
d*w 1 dw v?
d@@) "z d(o (z))*[' ‘?] =t

Multiplying this differential equation by (®(z))?, we have

O segr o aewy* -5 @@ =0

Since the functions i ?) and [l - ](d-'l(z))z are regular in any region |®(z)| <R
in which @(z) is regular, by Thcorem 1, they can be expanded, in this region, as
series of the form 3 C,(®(z))". The rest of the proof, now, follows easily.
n=0
2. Theorem 6. Ler each of the functions ¥ (z), f(z) and ®(z) be an analytic
Sfunction of z, and Iet ¥ -1(2) denote the inverse function of ¥ (z). Let us suppose

that the function z —— 'P [zf oz )) where % denotes differentian with respect to
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z, is an analytic function of z, regular in the region |z|<1, and vanishes at z=0. Then a
necessary and sufficient condition that the inequality

(@)
‘z dz z¢(z)], i

K being a fixed number, may be satisfied at every point of the region |z| <1, is that f(z)
should be expressibie in this region in the form

(3) f2) = z0(2) ¥ f F(t)dt),

where F(z) is regular and |F(z)|<K in |z|<1.

The proOF follows the same lines as that of [1, Theorem 1], and so it has been
omitted.

Theorem 7. If all the conditions of Theorem 6 are satisfied, we have

/)

and if, besides these conditions, ¥ (z) is regular in the region |z| <K, we have

) BEImK[Z) = |/G)] = [20)| M(K]2).
~
) @)= mizn|| 20 _ oy Nkiz)|
and |
©) @) = M| 5D oy vz

when |z| <1, where m(r) denotes the minimum-modulus of ¥ (z), M(r) and N(r) denote

Y'(z)
the maximum moduli of ¥(z) and V()

f(2) and ¥'(z) denote the derivatives of f(z) and ¥ (z) respectively.

PrOOF. (7) follows easily from (5), and (8) and (9) follow in the same way as (7),
if we differentiate (5).

respectively, on the circle |z|=r<K, and

Theorem 8. If f(z) does not vanish in the region |z|<1, except at z=0, and
satisfies all the conditions of Theorem 6, if ®(z) and ¥ (z) are regular in the regions
|z|=1 and |z|=K respectively, and if P and Q denote the maximum-moduli of the
@) VG
P(2) ¥(2)

functions on the circles |z|=1 and |z|=K respectively, then

P+ Q)"

@ps1] = = , forall n, 1=n=r,
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and

(P+0O)

|a”+]’§Tr')'—‘——, for ah' n, n=>r,

where ®'(z) denotes the derivative of ®(z), r denotes the greatest integer less than
(P+0Q), and f(z) = z+ 3 a,z".

n=2

Proor. Taking logarithm of each side of (5) and differentiating we easily obtain
the relation

ve , w’[ﬁfF(t)dr)
o)

(10) J1@) = £1(2) 5
([ F(t)d)
0

where

1@=L2=14+ 3 87

Since, by hypothesis, f; (z) does not vanish in the region |z|<1, the function within
brackets on the right-hand side of (10) is regular in this region. Consequently, we
can put (10) in the form

(11)

T[fF(r)dr]
;‘ (m—1)a,z"" 24 Z 0" []+ Z @ z"" ] i(()) A :

Squaring the moduli of both sides of (11) and integrating round the circle |z|=R<1,
we obtain

n oo n=—1
2 (m=-1)?|a)2R¥*2+ 3 [b)?R*™ = (P+Q)2[l+ > Ia.,.!sz'"]-
m=2

m=n—1 m=2

Making R—1, we have

3 (m-17la3] = (P+ 0 [1 +' ra...I’]

or

(12) (1= 1?la)? = (P+QP+ 3 (P+QF—(n—13 a,l,
for all n, n=r+2, and ;

(13) (1= 12laf? = (P+OP+ 3 P+ =(n =17} lanl?

for all n, n>r+42.
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Now, putting #=2 in (12), we have

(14) laz] = (P+0)
Let us suppose that

P+0)r-!
(15) |aa| = T

for all n, l=n=k<r+1.
By (12) and (15), it follows easily that

k
(16) @] = T EEL

The rest of the proof follows easily from (13) to (16).

Theorem 9. If f(z) and ®(z) satisfy all the conditions of Theorem 1. with R=1, a
necessary and sufficient condition that the function

(2@ -2O)/'C) _
P’(2)f(2)
may vanish at z=0 and may satisfy the inequality
(@E)-20)/()

B OO

at every point of the region |®(z)— ®(0)| = 1, is that f(z) should be expressible in
this region in the form
[Fmoma

(17) f(2) = (@) —-2(0)e”
where the path of integration is any contour lying inside this region and joining the
points 0 and z, F(z) is regular and |F(z)| <1 in this region.

The proof depends on Corollary 1 and follows the same lines as that of [I,
Theorem 1].

Theorem 10. If all the conditions of Theorem 9 are satisfied, we have
|8(2)— @(0)| e~ 1*@ =2 = | f(2)| = |#(z) — B(0)| e!® =2,
and
|9°(2)| (1= |@(2) = P(0))e~ 1=l = | f*(2)| = |@'(2)| (1 +|P(z) - P(0)])
when |®(z)—@(0)| < 1.

PRrROOF. Since, under the conditions of Theorem 1, with R=1, the transformation
z=®(z) maps the region |®(z)— ®(0)| < 1 on the interior of the circle |z— @(0)| = 1
in the z-plane, we can choose the contour of integration in (17), to be that whose
image is the segment of the straight line inside the circle, joining the points @(0)
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and z. Choosing the contour of integration in this way; and putting ®(7)—®(0) =
=ue™, when t lies on this contour, v being a real constant, we have

(18) fF(r)di’(r)dt = fF, (ue')e™ du,
0 0

where @ (z)— @(0) = Ue'” and F, (ue'’)= F(t). Since, by Theorem 9, we have | F(1)| <1,
when ¢ lies on this contour, by (18), it follows that

z U
(19) [F@)@ (0)di| = [du=U = |®(z)—d(0)]
0 0

Now, the first inequality follows easily from (17) and (19), and the second inequality
follows in the same way, if we differentiate each side of (17).

Theorem 11. If all the conditions of Theorem 9 are satisfied, and if f(0)=0,

F(0)=®(0), then
N | 8 ¢ 1
n! i[[d¢ (z)] / (Z)Lo} =
for all n, n=2.

Proor. Taking logarithm of each side of (17) and differentiating, we easily
obtain the relation

(20) f1(2) = [i(2) P’ (2) F(2),

where

voox 2o o N8
fl(z) - ¢(z)_¢(0)'

Since, by Theorem 1, f(z) can be expanded, in the region |@(z)—®(0)| = 1,
as a series

)= 3 a(0@-00),
and since, by hypothesis, /(0)=0 and f'(0)=®’(0), we have

fi@=1+ g'z a,,((b(z)_.p(g))u-l’

when |®(z)—@(0)| < 1.
Substituting this series for f; (z) in (20), we have

(21) ;zm; (n—1D)a,(P(z)— O)'~* = F(z) |1+ ia,(cp(z)-«pw))n-l]

Since, the function F(z) is regular in the region |®(z)— @®(0)| < 1, by Theorem 1, it
can be expanded, in this region, as a series

F(z) = 3 by(®(2)— @)
n=0
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Consequently, we can put (21) in the form

(22) "é” (m—1)a,(P(z) —P0)"~*+ S’ : en(P(2)—20))" =

= [1 + 2; a,,,(q>(z)—¢(0))"'-1] F(2)

Since, for every fixed r, 0<=r<1, |@(z)— ®(0)| = ris a closed contour which contains
the point z=0, we have ®(z)— ®(0) = re”®, when z lies on the closed contour, where
0 attains all values between 0 and 2.

Now putting @(z)— @®(0) = re' in (22), squaring the moduli of both sides of
(22), integrating over the interval 0=0= 2z, and proceeding in the same way as in
the proof of [1, Theorem 3], we can easily obtain the inequality

1
n—1

|la,| =

for all n, n=2.
Since, we have

J@) = g; a,(P(z) — @ (0))".

when |®(z)—®(0)| = 1, it follows easily that

1 ad.¥
&= [[dd»(z)] 4 (Z)Lu

This completes the proof of the theorem.
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