Radial extension of monotone Riemannian metrics on density matrices

By CSABA SUDÁR (Budapest)

Introduction

Let \mathcal{M}_{n} be the space of all positive definite $n \times n$ complex matrices of trace 1. A Riemannian metric k on \mathcal{M}_{n} is said to be monotone if for every stochastic map T the following holds:

$$
k_{D}(T(X), T(Y)) \leq k_{D}(X, Y) \quad D \in \mathcal{M}_{n} X, Y \in T_{D} \mathcal{M}_{n}
$$

(Recall that a linear map T is stochastic if it is completely positive and $\left.T\left(\mathcal{M}_{n}\right) \subset \mathcal{M}_{n}\right)$

On the base of Morozova and Chentsov's work [7] D. Petz showed in [8] that for every monotone metric k there exists a symmetric and positive operator monotone function f such that

$$
\begin{equation*}
k_{D}(X, Y)=\operatorname{Tr}\left(\boldsymbol{K}_{D}(X) Y\right), \quad \boldsymbol{K}_{D}^{-1}=f\left(\boldsymbol{L}_{D} \boldsymbol{R}_{D}^{-1}\right) \boldsymbol{R}_{D} \tag{1}
\end{equation*}
$$

where $\boldsymbol{L}_{D}, \boldsymbol{R}_{D}$ are the operators of left and right multiplication by D. A function f is positive operator monotone if $A \leq B$ implies $f(A) \leq f(B)$ for every positive matrices A, B with order r and for each integer r. Such an f is symmetric if $f(x)=x f\left(x^{-1}\right)$, this condition implies that $\boldsymbol{K}_{D}\left(X^{*}\right)=$ $\boldsymbol{K}_{D}(X)^{*}$, so \boldsymbol{K}_{D} maps the space of selfadjoint operators into itself. In addition $f(x)$ possesses the following integral representation:

$$
\begin{equation*}
f(x)=\mu(\{0\}) \frac{x+1}{2}+\int_{(0,1]} \frac{1+t}{2}\left(\frac{x}{x+t}+\frac{x}{x t+1}\right) d \mu(t), \quad \operatorname{Re}(x)>0 \tag{2}
\end{equation*}
$$

Mathematics Subject Classification: Primary 82B10; Secondary 53Z05, 53C20. Supported by the grant OTKA T1900.
where μ is a probability measure on $[0,1]$ (see [6]).
Let \mathcal{M}_{n}° be the space of all positive semidefinite $n \times n$ complex matrices of trace 1 and let \mathcal{P} be the space of all one dimensional projection operators. \mathcal{M}_{n}° can be considered as the space of states of a phisical system and \mathcal{P} as the space of pure states. A. Uhlmann studied in [10] the Bures-metric which is related to the generalization of the Berry phase to mixed states and he gave a geometric representation of this metric. From this representation follows that the Bures-metric admits an extension to \mathcal{P} and this extension is proportional to the canonical Riemannian metric of \mathcal{P}. Note that the operator monotone function $\frac{x+1}{2}$ represents the Bures-metric.

On the other hand, D. Petz and other authors in [2] and [9] studied the geometry of the Kubo-Mori metric (or Bogolubov inner product) which is induced by the relative entropy functional. It is defined by the formula

$$
\left\langle\langle A, B\rangle_{D}=\int_{0}^{\infty} \operatorname{Tr}(D+t)^{-1} A(D+t)^{-1} B d t, \quad D \in \mathcal{M}_{n}, A, B \in T_{D} \mathcal{M}_{n}\right.
$$

and the corresponding operator monotone function is $\frac{x-1}{\log x}$. From their results follows that the Kubo-Mori metric does not admit any extension to \mathcal{P}.

The purpose of this paper is to define a type of extension of a monotone Riemannian metric to \mathcal{P} and to give a necessary and sufficient condition for the existence of this extension by the help of Petz's characterization given by (1).

Canonical metric on \mathcal{P}

In this section we will recall various definitions of Riemannian metrics on spaces that are diffeomorphic to \mathcal{P}.

First of all, \mathcal{P} itself admits a Riemannian metric, namely the restriction of the Hilbert-Schmidt metric to \mathcal{P}. This metric has the following form:

$$
\begin{equation*}
g_{P}(X, Y)=\operatorname{Tr}\left(X Y^{*}\right), \tag{3}
\end{equation*}
$$

where $P \in \mathcal{P}$ and $X, Y \in T_{P} \mathcal{P}$.
\mathcal{P} is diffeomorphic to the complex projective space $\boldsymbol{P}^{n-1} \mathbb{C}$ (complex one dimensional subspaces of $\left.\mathbb{C}^{n}\right)$. If $p \in \boldsymbol{P}^{n-1} \mathbb{C}$ and $z \in p, z=\left(z_{1} \ldots z_{n}\right)$, $|z|=1$ then this identification is given by the following map:

$$
p \mapsto\left(\begin{array}{ccc}
z_{1} \bar{z}_{1} & \ldots & z_{1} \bar{z}_{n} \tag{4}\\
\vdots & \ddots & \vdots \\
z_{n} \bar{z}_{1} & \ldots & z_{n} \bar{z}_{n}
\end{array}\right)
$$

Let P_{0} be the projection to the complex line generated by $e_{1}=$ $(1,0, \ldots, 0) \in \mathbb{C}^{n}$. Using (4), $T_{P_{0}} \mathcal{P}$ can be identified with matrices of the following form:

$$
\boldsymbol{v}=\left(\begin{array}{cccc}
0 & \bar{v}_{2} & \ldots & \bar{v}_{n} \tag{5}\\
v_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} & 0 & \ldots & 0
\end{array}\right)
$$

where $v_{i} \in \mathbb{C}$ for $i=2, \ldots, n$. Let (,$)$ and $\langle\rangle=,\operatorname{Re}($,$) denote the$ standard Hermitian inner product and the corresponding real one on \mathbb{C}^{n}, respectively. Let $S^{2 n-1}$ be the unit sphere in \mathbb{C}^{n} with respect to \langle, and let S^{1} be the group of complex unit vectors acting on $S^{2 n-1}$ by left multiplication. The identification of $\boldsymbol{P}^{n-1} \mathbb{C}$ and the quotient $S^{2 n-1} / S^{1}$ gives a convenient definition of the canonical Riemannian metric on $\boldsymbol{P}^{n-1} \mathbb{C}$ as follows.

Let r, r_{*} be the projection from $S^{2 n-1}$ to $P^{n-1} \mathbb{C} \sim S^{2 n-1} / S^{1}$ and its tangent map respectively. Let $z \in S^{2 n-1}$ and $T_{z} S^{2 n-1}$ be the tangent space at z and $T_{r(z)} \mathcal{P}^{n-1} \mathbb{C}$ at $r(z)$. Then the kernel of the linear map $r_{*, z}$ is the real line generated by $i z$. Let $V_{z} \subset T_{z} S^{2 n-1}$ be the orthogonal complement of Ker $r_{*, z}$ with respect to the restriction of \langle,$\rangle to T_{z} S^{2 n-1}$. $r_{*, z}$ gives a linear isomorphism of V_{z} to $T_{z} \boldsymbol{P}^{n-1} \mathbb{C}$ and the restriction of \langle,$\rangle to V_{z}$ can be projected to an inner product h_{z} on $T_{z} P^{n-1} \mathbb{C}$ such that $r_{*, z}$ becomes an isometry. Since S^{1} is a group of isometries of $S^{2 n-1}, h_{z}$ is actually a Riemannian metric and r a Riemannian submersion (see [1] II.2.29). Using the map defined by (4), h induces a Riemannian metric on \mathcal{P}, which simply will be denoted by h. An easy computation shows that $g=2 h$.

Another definition comes from the isomorphism of $\boldsymbol{P}^{n-1} \mathbb{C}$ to the homogeneous space $U(n) / U(1) \times U(n-1)(U(k)$ is the space of $k \times k$ unitary matrices). Let $E \in \boldsymbol{Q}=U(n) / U(1) \times U(n-1)$ be the left coset corresponding to $U(1) \times U(n-1)$ and T_{E} be the tangent space at E. The left action of an element $U \in U(1) \times U(n-1)$ on \boldsymbol{Q} fixes E so its tangent map $U_{*, E}$
at E maps T_{E} onto itself. The homomorphism $U \rightarrow U_{*, E} \in G L\left(T_{E}\right)$ is called the isotropy representation of \boldsymbol{Q}. Since $U(1) \times U(n-1)$ is compact, one can use the Haar measure to define an inner product on T_{E} such that the elements of the isotropy representation are isometries. Since $U(n)$ acts transitively on \boldsymbol{Q}, this inner product induces a left invariant Riemannian metric. Moreover, the isotropy representation of $\boldsymbol{P}^{n-1} \mathbb{C}$ is irreducible (it has no nontrivial invariant subspaces) so this metric is unique up to a scalar factor (see [1] II.2.43).

In the last definition we will consider $\boldsymbol{P}^{n-1} \mathbb{C}$ as a complex $n-1$ dimensional manifold, isomorphic to $\mathbb{C}^{n}-\{0\} / \mathbb{C}^{*}$ where \mathbb{C}^{*} is the group of nonzero complex numbers acting on $\mathbb{C}^{n}-\{0\}$ by left multiplication. Let us define the following function and the corresponding 2 -form on $\mathbb{C}^{n}-\{0\}$:

$$
\begin{gathered}
f(z)=\ln \left(z^{1} \bar{z}^{1}+z^{2} \bar{z}^{2}+\cdots+z^{n} \bar{z}^{n}\right) \\
\tilde{\Phi}=-4 i \partial \bar{\partial} f=-4 i \sum_{i, j} \frac{\partial^{2} f}{\partial z^{i} \partial \bar{z}^{j}} d z^{i} \wedge d \bar{z}^{j}
\end{gathered}
$$

It can be shown that this form is constant on complex lines so it can be projected to a 2 -form Φ on $\mathbb{C}^{n}-\{0\} / \mathbb{C}^{*}$. If we set $g(X, Y)=\Phi(J X, Y)$ where J is the complex structure on $\mathbb{C}^{n}-\{0\} / \mathbb{C}^{*}$ we get the so called Fubini-Study metric (see [5] IX.6.3).

Definition of the radial extension

Let $\mathcal{M}_{n}^{\prime} \subset \mathcal{M}_{n}$ be the set of the non degenerate elements of \mathcal{M}_{n}, i.e. the set of matrices whose eigenvalues are all distinct. This space is open and dense in \mathcal{M}_{n}. On \mathcal{M}_{n}^{\prime} we will consider the affine coordinate system, it consists of only one coordinate chart (ϕ, U) where $\phi: \mathcal{M}_{n}^{\prime} \rightarrow \boldsymbol{R}^{n^{2}-1}$, $\phi(D)=D-I / n$ and $U=\phi\left(\mathcal{M}_{n}^{\prime}\right)$ is open in $\boldsymbol{R}^{n^{2}-1}$. The tangent space $T_{D} \mathcal{M}_{n}^{\prime}$ at D is the space of traceless self-adjoint matrices.

Let us define a projection $\pi: \mathcal{M}_{n}^{\prime} \rightarrow \mathcal{P}$ as follows. Let $\pi(D)$ be the projection to the one-dimensional eigenspace corresponding to the largest eigenvalue of D. This map is smooth (see [3] II.5.8), moreover \mathcal{M}_{n}^{\prime} is a smooth fibre bundle over \mathcal{P} with projection π (see [4], I.5). The fibre space can be taken $\pi^{-1}\left(P_{\bar{e}_{1}}\right)$ where $\overline{\boldsymbol{e}}_{1}$ is the line generated by $\boldsymbol{e}_{1}=(1,0, \ldots, 0)^{T} \in \mathbb{C}^{n}$ and $P_{\bar{e}_{1}}$ is the projection to $\overline{\boldsymbol{e}}_{1}$.

Let $\pi_{*, D}$ be the tangent map of π at D and let H_{D} be the orthogonal complement of $\operatorname{Ker} \pi_{*, D}$ in $T_{D} \mathcal{M}_{n}^{\prime}$ with respect to a fixed monotone Riemannian metric k_{D}. Since $\pi_{*, D}$ is surjective, the restriction of $\pi_{*, D}$ gives a
linear isomorphism between H_{D} and $T_{\pi(D)} \mathcal{P}$. If $\boldsymbol{v} \in T_{\pi(D)} \mathcal{P}$ then we can define a unique lift $\widehat{\boldsymbol{v}} \in H_{D}$ of \boldsymbol{v} such that $\pi_{*, D}(\widehat{\boldsymbol{v}})=\boldsymbol{v}$. Using this lift we can define the following inner product $g_{\pi(D)}^{D}$ on $T_{\pi(D)} \mathcal{P}$:

$$
g_{\pi(D)}^{D}(\boldsymbol{u}, \boldsymbol{v})=k_{D}(\widehat{\boldsymbol{u}}, \widehat{\boldsymbol{v}}) \quad \boldsymbol{u}, \boldsymbol{v} \in T_{\pi(D)} \mathcal{P}
$$

We will say that a sequence $D_{m} \in \mathcal{M}_{n}^{\prime}$ is radial at $P \in \mathcal{P}$ if $\pi\left(D_{n}\right)=P$ for every $m \in \boldsymbol{N}$ and D_{m} is convergent to P as m goes to infinity. Now we can define the radial extension of k.

Definition. We say that a smooth metric g on \mathcal{P} is the radial extension of k if for every $p \in \mathcal{P}, \boldsymbol{u}, \boldsymbol{v} \in T_{p} \mathcal{P}$ and for every radial sequence D_{n} at p

$$
\lim _{m \rightarrow \infty} g_{p}^{D_{m}}(\boldsymbol{u}, \boldsymbol{v})=g_{p}(\boldsymbol{u}, \boldsymbol{v})
$$

In the next section we give a necessary and sufficient condition for the existence of the radial extension.

The main existence theorem

Theorem. Let k be a monotone Riemannian metric on \mathcal{M}_{n} and let $f: \boldsymbol{R}^{+} \rightarrow \boldsymbol{R}^{+}$be the corresponding operator monotone function. The radial extension g of k exists if and only if $f(0) \neq 0$. In this case $g=\frac{1}{f(0)} h$ where h is the canonical Riemannian metric on \mathcal{P} defined by (3).

Proof. For any unitary matrix U and $D \in \mathcal{M}_{n}^{\prime}$ we have:

$$
\pi\left(U D U^{-1}\right)=U \pi(D) U^{-1}
$$

Differentiation of this equality gives

$$
\pi_{*, U D U^{-1}}\left(U X U^{-1}\right)=U \pi_{*, D}(X) U^{-1}, \quad X \in T_{D} \mathcal{M}_{n}^{\prime}
$$

Since k is unitary invariant and the action $U . U^{-1}$ is invertible, $U\left(\operatorname{Ker} \pi_{*, D}\right) U^{-1}=\operatorname{Ker} \pi_{*, U D U^{-1}}$ and $U H_{D} U^{-1}=H_{U D U-1}$. Moreover, for any $\boldsymbol{v} \in T_{\pi(D)} \mathcal{P}, U \widehat{\boldsymbol{v}} U^{-1}=\widehat{U \boldsymbol{v} U^{-1}}$; hence we get

$$
\begin{equation*}
g_{\pi(D)}^{D}(\boldsymbol{u}, \boldsymbol{v})=g_{U \pi(D) U^{-1}}^{U D U^{-1}}\left(U \boldsymbol{u} U^{-1}, U \boldsymbol{v} U^{-1}\right) \tag{6}
\end{equation*}
$$

From this equality follows that it is sufficient to compute g^{D} if only D is diagonal and $\pi(D)=P_{\bar{e}_{1}}$. Let us suppose D is diagonal and $\pi(D)=P_{\bar{e}_{1}}=$ P_{0}. For $X \in T_{D} \mathcal{M}_{n}^{\prime}$ let $\lambda(t)$ be the largest eigenvalue of $D+t X, t \in \boldsymbol{R}$ and let $\boldsymbol{e}(t)$ be the unit eigenvector corresponding to $\lambda(t)$. For sufficiently
small $t, D+t X \in \mathcal{M}_{n}^{\prime}$ and $\lambda(t)$ and $\boldsymbol{e}(t)$ are smooth functions of t. Setting $T(t)=D+t X$ we have:

$$
(T(t)-\lambda(t)) \boldsymbol{e}(t)=0
$$

Differentiating this expression we obtain that $\lambda^{\prime}(0)=x_{11}$ and

$$
\begin{align*}
\boldsymbol{e}^{\prime}(0) & =\left(0, \frac{x_{21}}{\lambda_{1}-\lambda_{2}}, \ldots, \frac{x_{n 1}}{\lambda_{1}-\lambda_{n}}\right)^{T} \\
\pi_{*, D}(X) & =\left(\begin{array}{cccc}
0 & \frac{x_{12}}{\lambda_{1}-\lambda_{2}} & \cdots & \frac{x_{1 n}}{\lambda_{1}-\lambda_{n}} \\
\frac{x_{21}}{\lambda_{1}-\lambda_{2}} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{x_{n 1}}{\lambda_{1}-\lambda_{n}} & 0 & \cdots & 0
\end{array}\right) \tag{7}
\end{align*}
$$

where $\lambda_{1}, \ldots \lambda_{n}$ are the eigenvalues of $D, \lambda_{1}=\lambda(0)$ and $X=\left(x_{i j}\right)$. If $X \in \operatorname{Ker} \pi_{*, D}$ then the expression of $\pi_{*, D}(X)$ gives:

$$
X=\left(\begin{array}{cccc}
x_{11} & 0 & \ldots & 0 \\
0 & x_{22} & \ldots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & x_{n 2} & \ldots & x_{n n}
\end{array}\right)
$$

Let $K_{D}^{-1}=f\left(L_{D} R_{D}^{-1}\right) R_{D}$ as in the Introduction. Since D is diagonal,

$$
K_{D}(X)=\left(\frac{x_{i j}}{f\left(\frac{\lambda_{i}}{\lambda_{j}}\right) \lambda_{j}}\right)
$$

hence we get $K_{D}\left(\operatorname{Ker} \pi_{*, D}\right)=\operatorname{Ker} \pi_{*, D}$. If $V \in H_{D}$ then the last equation gives

$$
V=\left(\begin{array}{cccc}
0 & \bar{v}_{2} & \ldots & \bar{v}_{n} \tag{8}\\
v_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} & 0 & \ldots & 0
\end{array}\right)
$$

where $v_{i} \in \mathbb{C}$ for $i=2, \ldots n$. If $\boldsymbol{v} \in T_{P_{0}} \mathcal{P}$ then (5),(7) and (8) give

$$
\widehat{\boldsymbol{v}}=\left(\begin{array}{cccc}
0 & \left(\lambda_{1}-\lambda_{2}\right) \bar{v}_{2} & \ldots & \left(\lambda_{1}-\lambda_{n}\right) \bar{v}_{n} \\
\left(\lambda_{1}-\lambda_{2}\right) v_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\left(\lambda_{1}-\lambda_{n}\right) v_{n} & 0 & \ldots & 0
\end{array}\right)
$$

Now we can express g^{D} :

$$
\begin{equation*}
g^{D}(\boldsymbol{u}, \boldsymbol{v})=2 \operatorname{Re} \sum_{i=2}^{n} \frac{\left(\lambda_{1}-\lambda_{i}\right)^{2}}{f\left(\frac{\lambda_{i}}{\lambda_{1}}\right) \lambda_{1}} u_{i} \bar{v}_{i} \tag{9}
\end{equation*}
$$

where $\boldsymbol{u}, \boldsymbol{v} \in T_{P_{0}} \mathcal{P}$.
Let us consider now the general case. Let D_{m} be a radial sequence at P and let $\boldsymbol{u}, \boldsymbol{v} \in T_{P} \mathcal{P}$. Let B_{P}^{m} be linear operators on $T_{P} \mathcal{P}$ such that

$$
g_{P}^{D_{m}}(\boldsymbol{u}, \boldsymbol{v})=h_{P}\left(B_{P}^{m} \boldsymbol{u}, \boldsymbol{v}\right) .
$$

Let U_{m} be unitary operators such that $D_{m}^{o}=U_{m} D_{m} U_{m}^{-1}$ is diagonal and $\pi\left(D_{m}^{o}\right)=P_{0}$ where $P_{0}=\overline{\boldsymbol{e}}_{1}$. Using (6) we have:

$$
\begin{equation*}
B_{P}^{m}=U_{m}^{-1} \circ B_{P_{0}}^{m} \circ U_{m} \tag{10}
\end{equation*}
$$

Since $\lim _{m \rightarrow \infty} \lambda_{1}^{m}=1$ and $\lim _{m \rightarrow \infty} \lambda_{i}^{m}=0$ for $i=2 \ldots n$, by (9)

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|B_{P_{0}}^{m}-\frac{1}{f(0)} I_{P_{0}}\right\|_{P_{0}}=0 \tag{11}
\end{equation*}
$$

where $I_{P_{0}}$ is the identity map on $T_{P_{0}} \mathcal{P}$ and $\|\cdot\|_{P_{0}}$ is the operator norm induced by $\langle,\rangle_{P_{0}}$. It follows from (10) that

$$
\begin{aligned}
\left\|B_{P}^{m}-\frac{1}{f(0)} I_{P}\right\|_{P} & =\left\|U_{m}^{-1} \circ B_{P_{0}}^{m} \circ U_{m}-\frac{1}{f(0)} U_{m}^{-1} \circ I_{P_{0}} \circ U_{m}\right\|_{P} \\
= & \left\|U_{m}^{-1} \circ\left(B_{P_{0}}^{m}-\frac{1}{f(0)} I_{P_{0}}\right) \circ U_{m}\right\|_{P} \\
& \leq\left\|U_{m}^{-1}\right\|_{P, P_{0}} \cdot\left\|B_{P_{0}}^{m}-\frac{1}{f(0)} I_{P_{0}}\right\|_{P_{0}} \cdot\left\|U_{m}\right\|_{P_{0}, P}
\end{aligned}
$$

Since U_{m} are isometries from $T_{P} \mathcal{P}$ to $T_{P_{0}} \mathcal{P},\left\|U_{m}\right\|_{P, P_{0}}=1$ and by (11) we obtain

$$
\lim _{m \rightarrow \infty}\left\|B_{P}^{m}-\frac{1}{f(0)} I_{P}\right\|_{P}=0
$$

Remark. In virute of formula (2) the condition $f(0) \neq 0$ is equivalent to $\mu(\{0\}) \neq 0 . \mathcal{P}$ is a proper subset of the topological boundary of \mathcal{M}_{n} for $n \geq 3$, so one can ask for the extension of a monotone metric to other points of the boundary. Since this boundary does not admit any differentiable manifold structure, it should be well-specified how the extension is understood. A detailed study of the extension of a monotone metric to the whole boundary with the aid of the generalization of the radial extension will be presented in a forthcoming paper.

Acknowledgement. The author is greatful to professor D. Petz for helpful discussions.

References

[1] S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry, Springer-Verlag, Berlin - Heidelberg - New York Inc., 1990.
[2] F. Hiai, D. Petz and G. Toth, Curvature in the geometry of canonical correlation, J. Math. Phys. (to appear).
[3] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin - Heidelberg - New York Inc., 1980.
[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. I, Wiley Intersience, New York - London, 1963.
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Wiley Intersience, New York - London - Sydney, 1969.
[6] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205-224.
[7] E. Morozova and N. Chentsov, Markov invariant geometry on state manifolds, Itogi Nauki i Tekhniki 36 (1990), 69-102 (in Russian).
[8] D. Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. (to appear).
[9] D. Petz and G. Toth, The bogoliubov inner product in quantum statistics, Lett. Math. Phys. 27 (1993), 205-216.
[10] A. Uhlmann, Density operators as an arena for differential geometry, Rep. Math. Phys. 33, 253-263.

```
CSABA SUDÁR
```

DEPARTMENT OF MATHEMATICS
FACULTY OF CHEMICAL ENGINEERING
TECHNICAL UNIVERSITY BUDAPEST
HUNGARY
(Received April 3, 1995; revised February 22, 1996)

