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Radial extension of monotone Riemannian
metrics on density matrices

By CSABA SUD�AR (Budapest)

Introduction

Let Mn be the space of all positive definite n × n complex matrices
of trace 1. A Riemannian metric k on Mn is said to be monotone if for
every stochastic map T the following holds:

kD(T (X), T (Y )) ≤ kD(X,Y ) D ∈MnX, Y ∈ TDMn

(Recall that a linear map T is stochastic if it is completely positive and
T (Mn) ⊂Mn )

On the base of Morozova and Chentsov’s work [7] D. Petz showed
in [8] that for every monotone metric k there exists a symmetric and pos-
itive operator monotone function f such that

(1) kD(X,Y ) = Tr(KD(X)Y ), K−1
D = f(LDR−1

D )RD

where LD, RD are the operators of left and right multiplication by D. A
function f is positive operator monotone if A ≤ B implies f(A) ≤ f(B) for
every positive matrices A,B with order r and for each integer r. Such an
f is symmetric if f(x) = xf(x−1), this condition implies that KD(X∗) =
KD(X)∗, so KD maps the space of selfadjoint operators into itself. In
addition f(x) possesses the following integral representation:

(2) f(x) = µ({0})x + 1
2

+
∫

(0,1]

1 + t

2

(
x

x + t
+

x

xt + 1

)
dµ(t), Re(x) > 0
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where µ is a probability measure on [0,1] (see [6]).
Let M◦

n be the space of all positive semidefinite n × n complex ma-
trices of trace 1 and let P be the space of all one dimensional projection
operators. M◦

n can be considered as the space of states of a phisical sys-
tem and P as the space of pure states. A. Uhlmann studied in [10] the
Bures-metric which is related to the generalization of the Berry phase to
mixed states and he gave a geometric representation of this metric. From
this representation follows that the Bures-metric admits an extension to
P and this extension is proportional to the canonical Riemannian met-
ric of P. Note that the operator monotone function x+1

2 represents the
Bures-metric.

On the other hand, D. Petz and other authors in [2] and [9] studied
the geometry of the Kubo-Mori metric (or Bogolubov inner product) which
is induced by the relative entropy functional. It is defined by the formula

〈〈A,B〉〉D =
∫ ∞

0

Tr (D + t)−1A(D + t)−1B dt, D ∈Mn, A, B ∈ TDMn.

and the corresponding operator monotone function is x−1
log x . From their

results follows that the Kubo–Mori metric does not admit any extension
to P.

The purpose of this paper is to define a type of extension of a mono-
tone Riemannian metric to P and to give a necessary and sufficient condi-
tion for the existence of this extension by the help of Petz’s characterization
given by (1).

Canonical metric on P

In this section we will recall various definitions of Riemannian metrics
on spaces that are diffeomorphic to P.

First of all, P itself admits a Riemannian metric, namely the restric-
tion of the Hilbert-Schmidt metric to P. This metric has the following
form:

(3) gP (X, Y ) = Tr(XY ∗),

where P ∈ P and X, Y ∈ TPP.
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P is diffeomorphic to the complex projective space P n−1C (complex
one dimensional subspaces of Cn). If p ∈ P n−1C and z ∈ p, z = (z1 . . . zn),
|z| = 1 then this identification is given by the following map:

(4) p 7→



z1z̄1 . . . z1z̄n
...

. . .
...

znz̄1 . . . znz̄n




Let P0 be the projection to the complex line generated by e1 =
(1, 0, . . . , 0) ∈ Cn. Using (4), TP0P can be identified with matrices of
the following form:

(5) v =




0 v̄2 . . . v̄n

v2 0 . . . 0
...

...
. . .

...
vn 0 . . . 0




where vi ∈ C for i = 2, . . . , n. Let ( , ) and 〈 , 〉 = Re(, ) denote the
standard Hermitian inner product and the corresponding real one on Cn,
respectively. Let S2n−1 be the unit sphere in Cn with respect to 〈 , 〉
and let S1 be the group of complex unit vectors acting on S2n−1 by left
multiplication. The identification of P n−1C and the quotient S2n−1/S1

gives a convenient definition of the canonical Riemannian metric on P n−1C
as follows.

Let r, r∗ be the projection from S2n−1 to P n−1C ∼ S2n−1/S1 and
its tangent map respectively. Let z ∈ S2n−1 and TzS

2n−1 be the tangent
space at z and Tr(z)Pn−1C at r(z). Then the kernel of the linear map
r∗,z is the real line generated by iz. Let Vz ⊂ TzS

2n−1 be the orthogonal
complement of Ker r∗,z with respect to the restriction of 〈 , 〉 to TzS

2n−1.
r∗,z gives a linear isomorphism of Vz to TzP

n−1C and the restriction of
〈 , 〉 to Vz can be projected to an inner product hz on TzP

n−1C such that
r∗,z becomes an isometry. Since S1 is a group of isometries of S2n−1, hz

is actually a Riemannian metric and r a Riemannian submersion (see [1]
II.2.29). Using the map defined by (4), h induces a Riemannian metric on
P, which simply will be denoted by h. An easy computation shows that
g = 2h.

Another definition comes from the isomorphism of P n−1C to the ho-
mogeneous space U(n)/U(1)×U(n−1) (U(k) is the space of k×k unitary
matrices). Let E ∈ Q = U(n)/U(1)×U(n−1) be the left coset correspond-
ing to U(1)×U(n− 1) and TE be the tangent space at E. The left action
of an element U ∈ U(1)× U(n− 1) on Q fixes E so its tangent map U∗,E
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at E maps TE onto itself. The homomorphism U → U∗,E ∈ GL(TE) is
called the isotropy representation of Q. Since U(1)×U(n−1) is compact,
one can use the Haar measure to define an inner product on TE such that
the elements of the isotropy representation are isometries. Since U(n) acts
transitively on Q, this inner product induces a left invariant Riemannian
metric. Moreover, the isotropy representation of P n−1C is irreducible (it
has no nontrivial invariant subspaces) so this metric is unique up to a
scalar factor (see [1] II.2.43).

In the last definition we will consider P n−1C as a complex n − 1
dimensional manifold, isomorphic to Cn − {0}/C∗ where C∗ is the group
of nonzero complex numbers acting on Cn−{0} by left multiplication. Let
us define the following function and the corresponding 2-form on Cn−{0}:

f(z) = ln(z1z̄1 + z2z̄2 + · · ·+ znz̄n)

Φ̃ = −4i∂∂̄f = −4i
∑

i,j

∂2f

∂zi∂z̄j
dzi ∧ dz̄j

It can be shown that this form is constant on complex lines so it can be
projected to a 2-form Φ on Cn − {0}/C∗. If we set g(X, Y ) = Φ(JX, Y )
where J is the complex structure on Cn − {0}/C∗ we get the so called
Fubini-Study metric (see [5] IX.6.3).

Definition of the radial extension

Let M′
n ⊂Mn be the set of the non degenerate elements of Mn, i.e.

the set of matrices whose eigenvalues are all distinct. This space is open
and dense in Mn. On M′

n we will consider the affine coordinate system,
it consists of only one coordinate chart (φ,U) where φ:M′

n → Rn2−1,
φ(D) = D − I/n and U = φ(M′

n) is open in Rn2−1. The tangent space
TDM′

n at D is the space of traceless self-adjoint matrices.
Let us define a projection π : M′

n → P as follows. Let π(D) be
the projection to the one-dimensional eigenspace corresponding to the
largest eigenvalue of D. This map is smooth (see [3] II.5.8), moreover
M′

n is a smooth fibre bundle over P with projection π (see [4], I.5).
The fibre space can be taken π−1(Pē1) where ē1 is the line generated
by e1 = (1, 0, . . . , 0)T ∈ Cn and Pē1 is the projection to ē1.

Let π∗,D be the tangent map of π at D and let HD be the orthogonal
complement of Ker π∗,D in TDM′

n with respect to a fixed monotone Rie-
mannian metric kD. Since π∗,D is surjective, the restriction of π∗,D gives a
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linear isomorphism between HD and Tπ(D)P. If v ∈ Tπ(D)P then we can
define a unique lift v̂ ∈ HD of v such that π∗,D(v̂) = v. Using this lift we
can define the following inner product gD

π(D) on Tπ(D)P:

gD
π(D)(u, v) = kD(û, v̂) u, v ∈ Tπ(D)P

We will say that a sequence Dm ∈ M′
n is radial at P ∈ P if π(Dn) = P

for every m ∈ N and Dm is convergent to P as m goes to infinity. Now
we can define the radial extension of k.

Definition. We say that a smooth metric g on P is the radial extension
of k if for every p ∈ P, u,v ∈ TpP and for every radial sequence Dn at p

lim
m→∞

gDm
p (u, v) = gp(u, v).

In the next section we give a necessary and sufficient condition for the
existence of the radial extension.

The main existence theorem

Theorem. Let k be a monotone Riemannian metric on Mn and let
f : R+ → R+ be the corresponding operator monotone function. The
radial extension g of k exists if and only if f(0) 6= 0. In this case g = 1

f(0)h

where h is the canonical Riemannian metric on P defined by (3).

Proof. For any unitary matrix U and D ∈M′
n we have:

π(UDU−1) = Uπ(D)U−1.

Differentiation of this equality gives

π∗,UDU−1(UXU−1) = Uπ∗,D(X)U−1, X ∈ TDM′
n.

Since k is unitary invariant and the action U.U−1 is invertible,
U(Kerπ∗,D)U−1 = Kerπ∗,UDU−1 and UHDU−1 = HUDU−1 . Moreover,

for any v ∈ Tπ(D)P, U v̂U−1 = ÛvU−1; hence we get

(6) gD
π(D)(u,v) = gUDU−1

Uπ(D)U−1(UuU−1, UvU−1).

From this equality follows that it is sufficient to compute gD if only D is
diagonal and π(D) = Pē1 . Let us suppose D is diagonal and π(D) = Pē1 =
P0. For X ∈ TDM′

n let λ(t) be the largest eigenvalue of D + tX, t ∈ R
and let e(t) be the unit eigenvector corresponding to λ(t). For sufficiently
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small t, D+tX ∈M′
n and λ(t) and e(t) are smooth functions of t. Setting

T (t) = D + tX we have:

(T (t)− λ(t))e(t) = 0.

Differentiating this expression we obtain that λ′(0) = x11 and

(7)

e′(0) =
(

0,
x21

λ1 − λ2
, . . . ,

xn1

λ1 − λn

)T

π∗,D(X) =




0 x12
λ1−λ2

. . . x1n

λ1−λn
x21

λ1−λ2
0 . . . 0

...
...

. . .
...

xn1
λ1−λn

0 . . . 0




where λ1, . . . λn are the eigenvalues of D, λ1 = λ(0) and X = (xij). If
X ∈ Kerπ∗,D then the expression of π∗,D(X) gives:

X =




x11 0 . . . 0
0 x22 . . . x2n
...

...
. . .

...
0 xn2 . . . xnn


 .

Let K−1
D = f(LDR−1

D )RD as in the Introduction. Since D is diagonal,

KD(X) =


 xij

f
(

λi

λj

)
λj


 ;

hence we get KD(Ker π∗,D) = Kerπ∗,D. If V ∈ HD then the last equation
gives

(8) V =




0 v̄2 . . . v̄n

v2 0 . . . 0
...

...
. . .

...
vn 0 . . . 0


 ,

where vi ∈ C for i = 2, . . . n. If v ∈ TP0P then (5),(7) and (8) give

v̂ =




0 (λ1 − λ2)v̄2 . . . (λ1 − λn)v̄n

(λ1 − λ2)v2 0 . . . 0
...

...
. . .

...
(λ1 − λn)vn 0 . . . 0


 .
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Now we can express gD:

(9) gD(u,v) = 2Re
n∑

i=2

(λ1 − λi)2

f( λi

λ1
)λ1

uiv̄i

where u, v ∈ TP0P.
Let us consider now the general case. Let Dm be a radial sequence at

P and let u, v ∈ TPP. Let Bm
P be linear operators on TPP such that

gDm

P (u, v) = hP (Bm
P u, v).

Let Um be unitary operators such that Do
m = UmDmU−1

m is diagonal and
π(Do

m) = P0 where P0 = ē1. Using (6) we have:

(10) Bm
P = U−1

m ◦Bm
P0
◦ Um.

Since limm→∞ λm
1 = 1 and limm→∞ λm

i = 0 for i = 2 . . . n, by (9)

(11) lim
m→∞

∥∥∥∥Bm
P0
− 1

f(0)
IP0

∥∥∥∥
P0

= 0

where IP0 is the identity map on TP0P and ‖ · ‖P0 is the operator norm
induced by 〈 , 〉P0 . It follows from (10) that

∥∥∥∥Bm
P − 1

f(0)
IP

∥∥∥∥
P

=
∥∥∥∥U−1

m ◦Bm
P0
◦ Um − 1

f(0)
U−1

m ◦ IP0 ◦ Um

∥∥∥∥
P

=
∥∥∥∥U−1

m ◦
(

Bm
P0
− 1

f(0)
IP0

)
◦ Um

∥∥∥∥
P

≤
∥∥U−1

m

∥∥
P,P0

·
∥∥∥∥Bm

P0
− 1

f(0)
IP0

∥∥∥∥
P0

· ‖Um‖P0,P .

Since Um are isometries from TPP to TP0P, ‖Um‖P,P0 = 1 and by (11) we
obtain

lim
m→∞

∥∥∥∥Bm
P − 1

f(0)
IP

∥∥∥∥
P

= 0. ¤

Remark. In virute of formula (2) the condition f(0) 6= 0 is equivalent
to µ({0}) 6= 0. P is a proper subset of the topological boundary of Mn

for n ≥ 3 , so one can ask for the extension of a monotone metric to other
points of the boundary. Since this boundary does not admit any differen-
tiable manifold structure, it should be well-specified how the extension is
understood. A detailed study of the extension of a monotone metric to the
whole boundary with the aid of the generalization of the radial extension
will be presented in a forthcoming paper.
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