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A Frobenius-type theorem for supersolvable groups

By WANG CAIYUN (Shanxi) and GUO XIUYUN (Shanxi)

Abstract. Frobenius’ Theorem for p-nilpotent groups is one of the most funda-
mental theorems in finite group theory. In this paper a Frobenius-type Theorem for
supersolvable groups is given by applying strictly p-closed groups, and some applications
are obtained.

Throughout, all groups mentioned are assumed to be finite groups.
The terminology and notations employed agree with standard usage.

Let p be a prime. A group G is said to be strictly p-closed when-
ever Gp, a Sylow p-subgroup of G, is normal in G with G/Gp Abelian of
exponent dividing p− 1.

Let P be a Sylow p-subgroup of a group G; Frobenius’ Theorem
[1, Theorem 10.3.2] states that: a group G is p-nilpotent, if and only if
NG(P1)/CG(P1) is a p-group for every subgroup P1 of P . If the condition
that NG(P1)/CG(P1) is a p-group is replaced by the weaker condition that
NG(P1)/CG(P1) is a strictly p-closed group, we can obtain a generalization
of Frobenius’ Theorem for supersolvable groups.

First we prove the following

Theorem 1. Let G be a p-solvable group, N a normal subgroup of
G such that G/N is a p-supersolvable group. If NG(P )/CG(P ) is strictly
p-closed for every p-subgroup P of N , then G is p-supersolvable.

Proof. Let K be a minimal normal subgroup of G contained in N .
Then K is an elementary Abelian p-group or a p′-group since G is a p-
solvable group. Set G = G/K, and N = N/K. If K is an elemen-

tary Abelian p-group, then, for every p-subgroup P = P/K of N , P
is a p-subgroup of N , and so NG(P )/CG(P ) is strictly p-closed. Since
the quotient group of a strictly p-closed group is also a strictly p-closed
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group, (NG(P )/K)/(CG(P )K/K) is a strictly p-closed group. It follows
from NG(P )/K = NG/K(P/K) and CG/K(P/K) ≥ CG(P )K/K that

NG(P )/CG(P ) is a strictly p-closed group. If K is a p′-group, then, for

every p-subgroup P = H/K of N , H = PK, where P ∈ Sylp H. By the

condition NG(P )/CG(P ) is strictly p-closed,and so NG(P )K/CG(P )K is

also strictly p-closed. It is clear that CG(P ) ≥ CG(P )K/K. Using [3, The-

orem 3.16] NG(P ) = NG(P )K/K we have that NG(P )/CG(P ) is strictly
p-closed. Hence we conclude by induction that G/K is p-supersolvable.

If K is a p′-group, then G is p-supersolvable. If K is an elemen-
tary Abelian p-group, set C = CG(K). By the condition G/C is strictly
p-closed. Let A/C ∈ Sylp(G/C), then A/C / G/C, and the semidirect

product A/C nK is a p-group. Hence Z(A/C nK) ∩K 6= 1. Since G/C
can act on Z(A/C nK)∩K, by conjugation and since the action of G/C
on K is irreducible we have Z(A/C nK) ∩K = K. Hence the action of
A/C on K is trivial and A/C = 1. Therefore G/C is Abelian of exponent
dividing p − 1. By [2, Theorem I.1.4] |K| = p, and G is p-supersolvable.
The proof of Theorem 1 is complete.

Theorem 2. Let N be a normal subgroup of a group G, and G/N be
a supersolvable group. Then G is a supersolvable group if and only if for
every prime p

∣∣ |N |, NG(P )/CG(P ) is a strictly p-closed group for every
p-subgroup P of N .

The proof of Theorem 2 needs the following

Lemma 1. Let P be a p-subgroup of a group G, and NG(P )/CG(P )
a strictly p-closed group. If H is a subgroup of G, and P ≤ H, then
NH(P )/CH(P ) is a strictly p-closed group too.

Proof. Since NH(P ) = H ∩ NG(P ) and CH(P ) = H ∩ CG(P ), we
have

NH(P )/CH(P ) = H ∩NG(P )/H ∩ CG(P ) ' [H ∩NG(P )]CG(P )/CG(P ).

Noticing that subgroups of a strictly p-closed group are strictly p-closed
groups, NH(P )/CH(P ) is strictly p-closed.

Proof of Theorem 2. Assume first that G is a supersolvable group.
Let p be a prime, P a p-subgroup of N, H = NG(P ). Since P /H, we have
a chief series of H passing through P :

1 = P0 < P1 < · · · < PS = P ≤ · · · ≤ H.
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As a subgroup of the supersolvable group G, H itself is supersolvable,
and so |Pj/Pj−1| = p (j = 1, 2, . . . , s). By [2, Theorem I.1.4]

AutH(Pj/Pj−1) ' H/CH(Pj/Pj−1)

is Abelian of exponent dividing p − 1. Set L =
s⋂

j=1

CH(Pj/Pj−1) and

C = CG(P ), then L / H and H/L is also Abelian of exponent dividing
p − 1, and moreover, L ≥ C. We claim that L/C is a p-group. Suppose
to the contrary that some Cx ∈ L/C has order n relatively prime to p.
Let α ∈ Aut(P ) be the automorphism induced by x, i.e., α(g) = x−1gx
(g ∈ P ), then the order of α in Aut(P ) divides n, hence it is also relatively
prime to p. Also note that x ∈ L implies [Pj , α] ≤ Pj−1 for 1 ≤ j ≤ s, so
that [2, Lemma I.1.11] applies to show α is trivial. Hence so is Cx too,
proving the claim. It follows that NG(P )/CG(P ) is strictly p-closed with
Sylow p-subgroup L/C.

Suppose now that for every prime p
∣∣ |N |, NG(P )/CG(P ) is a strictly

p-closed group for every p-subgroup P of N . Let K be a minimal normal
subgroup of G contained in N . Then K is a p-group for some prime p.
In fact, assume that p is the smallest prime dividing |K|; by Lemma 1
and (p − 1, |K|) = 1, NK(P )/CK(P ) is a p-group for every p-subgroup P
of K. Using Frobenius’ Theorem [1, Theorem 10.3.2], K has a normal p-
complement, say L. Noticing that L / G, L < K and that K is a minimal
normal subgroup of G, we have L = 1, and hence K is an elementary
Abelian p-group.

Set G = G/K and N = N/K. Similarly to the proof of Theorem 1
we have that for every prime q

∣∣ |N |, NG(R)/CG(R) is strictly q-closed
for every q-subgroup Q of N . Hence we conclude by induction that G/K
is supersolvable. By the condition and Theorem 1 G is p-supersolvable.
Noticing that K is a minimal normal p-subgroup of G, we have that K is
a cyclic group of order p. It follows that G is supersolvable. The proof of
Theorem 2 is complete.

Corollary 1. A group G is supersolvable if and only if, for every prime
p

∣∣ |G|, NG(P )/CG(P ) is strictly p-closed for every p-subgroup P of G.

Theorem 3. Let N be a normal subgroup of a group G, and G/N
a supersolvable group. Then G is supersolvable if and only if, for every
prime p

∣∣ |N |, [NG(P )/CG(P )]′ and [NG(P )/CG(P )]p−1 are p-groups for
every p-subgroup P of N .

From Theorem 2 and the following Lemma 2 Theorem 3 is immediate.



324 Wang Caiyun and Guo Xiuyun

Lemma 2. A group G is strictly p-closed if and only if G′ and Gp−1

are p-groups.

Proof. If G is strictly p-closed, then G/Gp is Abelian, where Gp ∈
Sylp G. Hence G′ ≤ Gp and G′ is a p-group. It follows from the exponent
of G/Gp dividing p− 1 that gp−1 ∈ Gp for every g ∈ G, therefore Gp−1 is
also a p-group.

Suppose now that G′ and Gp−1 are p-groups. Let Gp ∈ Sylp G. Since
G′ / G, we have G′ ≤ Gp and so Gp / G and G/Gp is Abelian. By using
that Gp−1 is a p-group we have Gp−1 ≤ Gp. Hence G/Gp is Abelian of
exponent dividing p− 1.

Corollary 2. A group G is supersolvable if and only if, for every
prime p

∣∣ |G|, [NG(P )/CG(P )]′ and [NG(P )/CG(P )]p−1 are p-groups for
every p-subgroup P of G.

As an application of Theorem 2, we prove the following

Theorem 4. Let N be a normal subgroup of a group G, and G/N
be a supersolvable group. If every minimal subgroup of N is pronormal
in G, and either the Sylow 2-subgroups of N are Abelian or every cyclic
subgroup of N of order 4 is pronormal in G, then G is supersolvable.

The proof of Theorem 4 needs the following

Lemma 3. Let A1, A2, . . . , AS ; B1, B2, . . . , BS be subgroups of the
group G, and Bi / Ai, (i = 1, 2, . . . , s). If Ai/Bi is Abelian of exponent
dividing m, then (A1 ∩A2 ∩ · · · ∩As)/(B1 ∩B2 ∩ · · · ∩Bs) is also Abelian
of exponent dividing m.

Proof. We only prove Lemma 3 when s = 2. Clearly B1 ∩B2 /A1 ∩
A2. For any g1, g2 ∈ A1 ∩ A2, since A1/B1 and A2/B2 are Abelian and
g1(B1 ∩B2) = g1B1 ∩ g1B2, we have g1g2(B1 ∩B2) = g2g1(B1 ∩B2), i.e.,
A1∩A2/B1∩B2 is Abelian. From gm

1 ∈ B1, g
m
1 ∈ B2 we have gm

1 ∈ B1∩B2.
Hence the exponent of A1 ∩A2/B1 ∩B2 divides m.

Proof of Theorem 4. For any prime p
∣∣ |N |, if P is a subgroup of

N of order p, then NG(P )/CG(P ) is Abelian of exponent dividing p− 1
since NG(P )/CG(P ) is isomorphic to a subgroup of Aut(P ). Hence
NG(P )/CG(P ) is strictly p-closed. If P is a cyclic subgroup of N of order
4, it follows from |Aut(P )|=2 that NG(P )/CG(P ) is Abelian of exponent
dividing 2. Hence NG(P )/CG(P ) is strictly 2-closed.

Let A be any p-subgroup of N , and x be an element of A of order p.
Then 〈x〉 is subnormal in NG(A). Using [1, exercise 10.3.3] 〈x〉 /NG(A).
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Since Ω1(A) / NG(A) = H, CH(Ω1(A)) / H, it is clear that C = CG(A) ≤
CH(Ω1(A)). We claim that CH(Ω1(A))/C is a p-subgroup of H/C if p 6= 2,
or p = 2 and A is Abelian. In fact, let gC ∈ CH(Ω1(A))/C and the order
of gC be a p′-number. Noticing that 〈gC〉 can act on A by conjugation,
and that the action of 〈gC〉 on Ω1(A) is trivial, the action of 〈gC〉 on
A is trivial by [3, Theorem 7.26] if p 6= 2 or by [4, Theorem 5.2.4] if
p = 2 and A is Abelian. Hence gC = C, i.e., CH(Ω1(A))/C is a p-group.
Noticing that CH(Ω1(A)) =

⋂
x∈Ω1(A)

(CH(〈x〉)), H ⊆ ⋂
x∈Ω1(A)

NH(〈x〉) and

that NH(〈x〉)/CH(〈x〉) is Abelian of exponent dividing p− 1 (when x has
order p), H/CH(Ω1(A)) is Abelian of exponent dividing p−1 by Lemma 3.
Hence H/C = NG(A)/CG(A) is strictly p-closed if p 6= 2 or p = 2 and A
is Abelian.

If A is a 2-subgroup of N and A is not Abelian, by considering the
subgroup Ω2(A) and using [3, Theorem 7.26], similar to the above proof
we have that CH(Ω2(A))/CG(A) is a 2-group, and that H/CH(Ω2(A)) is
Abelian of exponent dividing 2. Hence H/C = NG(A)/CG(A) is a 2-group,
and so strictly 2-closed. By Theorem 1 G is supersolvable. The proof of
Theorem 4 is complete.

Remark. The statement of Theorem 4 for the case when N has odd
order has been proved by M. Asaad in [5].
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