Nonoscillation in half-linear differential equations

By HORNG-JAAN LI (Taiwan) and CHEH-CHIH YEH (Taiwan)

Abstract

We establish some necessary conditions on the nonoscillation of the following half-linear second order differential equation $$
\left[r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right]^{\prime}+c(t)|u(t)|^{p-2} u(t)=0, \quad t \geq t_{0}
$$ where $p>1$ is a constant, $r(t)$ and $c(t)$ are continuous functions from $\left[t_{0}, \infty\right)$ to $[0, \infty)$ with $r(t)>0$.

1. Introduction

This paper is concerned with the half-linear second order differential equation

$$
\begin{equation*}
\left[r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right]^{\prime}+c(t)|u(t)|^{p-2} u(t)=0, \quad t \geq t_{0} \tag{E}
\end{equation*}
$$

where $p>1$ is a constant, $r(t)$ and $c(t)$ are continuous functions on $\left[t_{0}, \infty\right)$ for some $0 \geq 0$. Throughout the paper, we assume that
$\left(A_{1}\right) \frac{1}{p}+\frac{1}{q}=1$;
$\left(A_{2}\right) r(t)>0$ for $t \geq t_{0}$ and $\int_{t_{0}}^{\infty} r^{1-q}(s) d s=\infty$;
$\left(A_{3}\right) c(t) \geq 0$ for $t \geq t_{0}$ and $c(t) \not \equiv 0$ on any interval of the form $[t, \infty)$, $t \geq t_{0}$.
By a solution of (E) we mean a function $u \in C^{1}\left[t_{0}, \infty\right)$ such that $r\left|u^{\prime}\right|^{p-2} u^{\prime} \in C^{1}\left[t_{0}, \infty\right)$ and that satisfies (E). In [1], Elbert established the existence, uniqueness and extension to $\left[t_{0}, \infty\right)$ of solutions to the initial value problem for (E). We will say that a nontrivial solution u of (E) is
nonoscillatory if there exists a number $N>0$ such that $u(t) \neq 0$ for all $t \geq N$. Equation (E) is nonoscillatory if all its solutions are nonoscillatory.

Kusano, Naito and Ogata [2], and Li and Yeh [3] independently showed that if (E) is nonoscillatory then

$$
\begin{equation*}
\int_{t_{0}}^{\infty} c(s) d s<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \pi^{p-1}(t) \int_{t}^{\infty} c(s) d s \leq 1 \tag{2}
\end{equation*}
$$

where

$$
\pi(t)=\int_{t_{0}}^{t} r^{1-q}(s) d s, \quad t \geq t_{0}
$$

It follows from (2) that if (E) is nonoscillatory then

$$
\begin{equation*}
\int_{t_{0}}^{\infty} r^{1-q}(s)\left(\int_{s}^{\infty} c(\tau) d \tau\right)^{q} d s<\infty \tag{3}
\end{equation*}
$$

The purpose of this paper is to improve the results (1), (2), (3), and hence extend the result of Lovelady [4].

2. Main results

In order to prove our main theorem, we need the following lemma.
Lemma 2.1. If $u(t)$ is a nonoscillatory solution of (E) which is not eventually a constant, then $u(t) u^{\prime}(t)>0$ for all large t.

Proof. Without loss of generality, we may assume that $u(t)>0$ on $\left[T_{0}, \infty\right)$ for some $T_{0} \geq t_{0}$. It follows from (E) that

$$
\begin{equation*}
\left[r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)\right]^{\prime} \leq 0 \quad \text { for } t \geq T_{0}, \tag{1}
\end{equation*}
$$

which implies that $r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)$ is nonincreasing on $\left[T_{0}, \infty\right)$. Suppose there exists a $T_{1} \geq T_{0}$ such that $u^{\prime}\left(T_{1}\right) \leq 0$. Then $r\left(T_{1}\right)\left|u^{\prime}\left(T_{1}\right)\right|^{p-2} u^{\prime}\left(T_{1}\right) \leq 0$. Since $r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)$ is decreasing and not identically zero on $\left[T_{0}, \infty\right)$, there exists a $T_{2} \geq T_{1}$ such that

$$
r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t) \leq r\left(T_{2}\right)\left|u^{\prime}\left(T_{2}\right)\right|^{p-2} u^{\prime}\left(T_{2}\right)=-k<0 \quad \text { for } t \geq T_{2},
$$

which implies

$$
\begin{equation*}
u^{\prime}(t) \leq-k^{q-1} r^{1-q}(t) \quad \text { for } t \geq T_{2} . \tag{2}
\end{equation*}
$$

Integrating (2) from T_{2} to t , we obtain by $\left(A_{2}\right)$

$$
u(t) \leq u\left(T_{2}\right)-k^{q-1} \int_{T_{2}}^{t} r^{1-q}(s) d s \rightarrow-\infty \quad \text { as } t \rightarrow \infty
$$

which contradicts to $u(t)>0$ on $\left[T_{0}, \infty\right)$. Thus $u^{\prime}(t)>0$ on $\left[T_{0}, \infty\right)$. This completes our proof.

Theorem 2.2. Let

$$
f(t)=\int_{t}^{\infty} c(s) d s, \quad t \in\left[t_{0}, \infty\right)
$$

If (E) is nonoscillatory, then there exist a number $T_{0} \geq t_{0}$ and a sequence $\left\{w_{k}\right\}(t)_{k=0}^{\infty}$ of continuous functions from $\left[T_{0}, \infty\right)$ to $(0, \infty)$ with the following properties:
(a) $w_{1}=f$.
(b) $w_{k}(t) \leq w_{k+1}(t)$ for $t \geq T_{0}$ and each integer $k \geq 1$.
(c) $\int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{k}(s) d s<\infty$ for $t \geq T_{0}$ and each integer $k \geq 0$; and
$w_{k+1}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{k}(s) d s$ for $t \geq T_{0}$ and each integer $k \geq 1$.
(d) If $t \geq T_{0}$, then $w_{0}(t)=\lim _{k \rightarrow \infty} w_{k}(t)$, and the convergence is uniform in each compact subset of $\left[T_{0}, \infty\right)$.
(e) $\limsup _{t \rightarrow \infty} \pi^{p-1}(t) w_{k}(t) \leq 1$ for each integer $k \geq 0$.
(f) $w_{0}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{0}(s) d s$ for $t \geq T_{0}$.

Proof. Let $u(t)$ be a nonoscillatory solution of (E). By Lemma 2.1, without loss of generality, we may assume that $u(t)>0$ and $u^{\prime}(t)>0$ on $\left[T_{0}, \infty\right)$ for some $T_{0} \geq t_{0}$. Let

$$
w(t)=\frac{r(t)\left|u^{\prime}(t)\right|^{p-2} u^{\prime}(t)}{|u(t)|^{p-2} u(t)} \quad \text { for } t \geq T_{0} .
$$

Then $w(t)>0$ and

$$
\begin{equation*}
w^{\prime}(t)=-c(t)-(p-1) r^{1-q}(t) w^{q}(t)<0 \tag{3}
\end{equation*}
$$

for $t \geq T_{0}$. This implies that $w(t)$ is decreasing and $\lim _{t \rightarrow \infty} w(t)$ exists. Integrating (3) from t to T, we obtain

$$
w(T)-w(t)=-\int_{t}^{T} c(s) d s-(p-1) \int_{t}^{T} r^{1-q}(s) w^{q}(s) d s
$$

for $T \geq t \geq T_{0}$. It follows from (1) and the existence of $\lim _{t \rightarrow \infty} w(t)$ that

$$
\begin{equation*}
\int_{T_{0}}^{\infty} r^{1-q}(s) w^{q}(s) d s<\infty \tag{4}
\end{equation*}
$$

It follows from $\left(A_{2}\right)$ and the decrease of $w(t)$ that $\lim _{T \rightarrow \infty} w(T)=0$. This implies

$$
\begin{equation*}
w(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) w^{q}(s) d s \quad \text { for } t \geq T_{0} \tag{5}
\end{equation*}
$$

It is clear from (5) that $w \geq f$ on $\left[T_{0}, \infty\right.$), and hence (4) and (5) imply that

$$
\begin{equation*}
\int_{T_{0}}^{\infty} r^{1-q} f^{q-1}(s) w(s) d s \leq \int_{T_{0}}^{\infty} r^{1-q}(s) w^{q}(s) d s<\infty \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
w(t) \geq f(t)+(p-1) \int_{t}^{\infty} r^{1-q} f^{q-1}(s) w(s) d s \tag{7}
\end{equation*}
$$

for $t \geq T_{0}$, respectively. It follows from (E) that $r^{q-1}(t) u^{\prime}(t)$ is decreasing on $\left[T_{0}, \infty\right)$. Then

$$
\begin{aligned}
\frac{u(t)}{r^{1-q}(t) u^{\prime}(t) \pi(t)} & =\frac{u\left(T_{0}\right)+\int_{T_{0}}^{t} u^{\prime}(s) d s}{r^{q-1}(t) u^{\prime}(t) \pi(t)} \\
& =\frac{u\left(T_{0}\right)+\int_{T_{0}}^{t} r^{1-q}(s) r^{q-1}(s) u^{\prime}(s) d s}{r^{q-1}(t) u^{\prime}(t) \pi(t)} \\
& \geq \frac{u\left(T_{0}\right)+r^{q-1}(t) u^{\prime}(t) \int_{T_{0}}^{t} r^{1-q}(s) d s}{r^{q-1}(t) u^{\prime}(t) \pi(t)} \\
& \geq \frac{\pi(t)-\pi\left(T_{0}\right)}{\pi(t)}
\end{aligned}
$$

for $t \geq T_{0}$. This implies that

$$
\pi^{p-1}(t) w(t) \leq\left(\frac{\pi(t)}{\pi(t)-\pi\left(T_{0}\right)}\right)^{p-1}
$$

thus,

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} \pi^{p-1}(t) w(t) \leq 1 \tag{8}
\end{equation*}
$$

Let $w_{1}(t)=f(t)$ on $\left[T_{0}, \infty\right)$, and let

$$
w_{2}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{1}(s) d s \quad \text { for } t \geq T_{0}
$$

Then $w_{2}(t) \geq w_{1}(t)$ and

$$
w_{2}(t) \leq f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w(s) d s \leq w(t)
$$

for $t \geq T_{0}$. It follows from (8) that $\lim \sup _{t \rightarrow \infty} \pi^{p-1}(t) w_{2}(t) \leq 1$. Suppose n is a positive integer and $w_{1}, w_{2}, \ldots, w_{n}$ are defined such that $w_{1} \leq w_{2} \leq$ $\cdots \leq w_{n} \leq w$ on $\left[T_{0}, \infty\right)$, then

$$
\int_{T_{0}}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{k}(s) d s<\infty
$$

whenever $1 \leq k \leq n$, and

$$
w_{k+1}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{k}(s) d s
$$

whenever $1 \leq k \leq n-1$ and $t \geq T_{0}$. Let w_{n+1} be given by

$$
w_{n+1}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{n}(s) d s
$$

Now

$$
\begin{aligned}
w_{n}(t) & =f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{n-1}(s) d s \\
& \leq f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{n}(s) d s \\
& \leq f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w(s) d s \\
& \leq w(t)
\end{aligned}
$$

this implies that $w_{n}(t) \leq w_{n+1}(t) \leq w(t)$ for $t \geq T_{0}$. It is clear from (8) that

$$
\int_{T_{0}}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{n+1}(s) d s \leq \int_{T_{0}}^{\infty} r^{1-q}(s) f^{q-1}(s) w(s) d s<\infty
$$

We now see that there is a sequence $\left\{w_{k}\right\}_{k=1}^{\infty}$ satisfying (a), (b), (c), and

$$
\begin{equation*}
w_{k}(t) \leq w(t) \tag{9}
\end{equation*}
$$

whenever $k \geq 1$ and $t \geq T_{0}$. Now (8) and (9) give (e). From (c) we see that the family $\left\{w_{1}, w_{2}, \ldots\right\}$ is equicontinuous, so (9) says that there is a subsequence $\left\{w_{k_{j}}\right\}_{j=1}^{\infty}$ with a locally uniformly limit on $\left[T_{0}, \infty\right)$. This and (b) say that $\left\{w_{k}\right\}_{k=1}^{\infty}$ has a locally uniform limit, say w_{0}, on $\left[T_{0}, \infty\right)$. Clearly, $w_{0} \leq w$, so that

$$
\int_{T_{0}}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{0}(s) d s<\infty
$$

Now, Lebesgue's Dominated Convergence Theorem yields

$$
\int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{0}(s) d s=\lim _{k \rightarrow \infty} \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{k}(s) d s
$$

for $t \geq T_{0}$. This implies (d), and (f) is clear from the above discussion, so that the proof is complete.

Corollary 2.3. If (E) is nonoscillatory, then

$$
\limsup _{t \rightarrow \infty} \pi^{p-1}(t)\left\{\int_{t}^{\infty} c(s) d s+(p-1) \int_{t}^{\infty} r^{1-q}(s)\left(\int_{s}^{\infty} c(\tau) d \tau\right)^{q} d s\right\} \leq 1
$$

Proof. As in the proof of Theorem 2.2, we have

$$
\limsup _{t \rightarrow \infty} \pi^{p-1}(t) w_{2}(t) \leq 1
$$

and

$$
\begin{aligned}
w_{2}(t) & =f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{1}(s) d s \\
& =f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q}(s) d s,
\end{aligned}
$$

where $f(t)=\int_{t}^{\infty} c(s) d s$. Hence, the proof is complete.
Corollary 2.4. If (E) is nonoscillatory, then

$$
\begin{equation*}
\int_{t_{0}}^{\infty} c(s) \exp \left((p-1) \int_{t_{0}}^{s} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right) d s<\infty \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{\infty} r^{1-q}(s) f^{q}(s) \exp \left((p-1) \int_{t_{0}}^{s} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right) d s<\infty \tag{11}
\end{equation*}
$$

Proof. As in the proof of Theorem 2.2, there is a number $T_{0} \geq t_{0}$ and a function w_{0} on $\left[T_{0}, \infty\right)$ such that

$$
w_{0}(t)=f(t)+(p-1) \int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{0}(s) d s
$$

where $f(t)=\int_{t}^{\infty} c(s) d s$. This implies that

$$
\begin{equation*}
w_{0}^{\prime}(t)=-c(t)-(p-1) r^{1-q}(t) f^{q-1}(t) w_{0}(t) \tag{12}
\end{equation*}
$$

Its solution is

$$
\begin{aligned}
w_{0}\left(T_{0}\right)-\int_{T_{0}}^{t} c(s) \exp & \left((p-1) \int_{T_{0}}^{s} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right) d s \\
= & w_{0}(t) \exp \left((p-1) \int_{T_{0}}^{t} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right)>0
\end{aligned}
$$

Hence,

$$
w_{0}\left(T_{0}\right)>\int_{T_{0}}^{t} c(s) \exp \left((p-1) \int_{T_{0}}^{s} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right) d s
$$

This implies

$$
\begin{equation*}
\int_{T_{0}}^{\infty} c(s) \exp \left((p-1) \int_{T_{0}}^{s} r^{1-q}(\tau) f^{q-1}(\tau) d \tau\right) d s<\infty \tag{13}
\end{equation*}
$$

Clearly, (13) is equivalent to (10). Let z be given on $\left[T_{0}, \infty\right)$ by

$$
z(t)=\int_{t}^{\infty} r^{1-q}(s) f^{q-1}(s) w_{0}(s) d s
$$

Then
$z^{\prime}(t)=-r^{1-q}(t) f^{q-1}(t) w_{0}(t)=-r^{1-q}(t) f^{q}(t)-(p-1) r^{1-q}(t) f^{q-1}(t) z(t)$,
which implies that (11) holds. Hence, the proof is complete.

References

[1] Á. Elbert, A half-linear second order differential equations, 30: Qualitative Theory of Differential Equations, Colloquia Math. Soc. Janos Bolyai, Szeged, 1979, pp. 153-180.
[2] T. Kusano, Y. Naito and A. Ogata, Strong oscillation and nonoscillation of quasilinear differential equations of second order, Differential Equations and Dynamical Systems 2 (1994), 1-10.
[3] H. J. Li and C. C. Yeh, Oscillation criteria for nonlinear differential equations, Houston J. Math., 21 (1995), 801-811.
[4] D. L. Lovelady, Nonscillation in linear second order ordynary differential equations, Hiroshima Math. J. 5 (1975), 135-139.

```
HORNG-JAAN LI
CHIENKUO JUNIOR COLLEGE OF TECHNOLOGY AND COMMERCE
CHANG-HUA
TAIWAN
CHEH-CHIH YEH
DEPARTMENT OF MATHEMATICS
NATIONAL CENTRAL UNIVERSITY
CHUNG-LI
TAIWAN
```

(Received October 25, 1995)

