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Nonoscillation in half-linear differential equations

By HORNG-JAAN LI (Taiwan) and CHEH-CHIH YEH (Taiwan)

Abstract. We establish some necessary conditions on the nonoscillation of the
following half-linear second order differential equation

[r(t)|u′(t)|p−2u′(t)]′ + c(t)|u(t)|p−2u(t) = 0, t ≥ t0,

where p > 1 is a constant, r(t) and c(t) are continuous functions from [t0,∞) to [0,∞)
with r(t) > 0.

1. Introduction

This paper is concerned with the half-linear second order differential
equation

(E) [r(t)|u′(t)|p−2u′(t)]′ + c(t)|u(t)|p−2u(t) = 0, t ≥ t0,

where p > 1 is a constant, r(t) and c(t) are continuous functions on [t0,∞)
for some 0 ≥ 0. Throughout the paper, we assume that

(A1) 1
p + 1

q = 1;
(A2) r(t) > 0 for t ≥ t0 and

∫∞
t0

r1−q(s)ds = ∞;
(A3) c(t) ≥ 0 for t ≥ t0 and c(t) 6≡ 0 on any interval of the form [t,∞),

t ≥ t0.

By a solution of (E) we mean a function u ∈ C1[t0,∞) such that
r|u′|p−2u′ ∈ C1[t0,∞) and that satisfies (E). In [1], Elbert established
the existence, uniqueness and extension to [t0,∞) of solutions to the initial
value problem for (E). We will say that a nontrivial solution u of (E) is
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nonoscillatory if there exists a number N > 0 such that u(t) 6= 0 for all
t ≥ N . Equation (E) is nonoscillatory if all its solutions are nonoscillatory.

Kusano, Naito and Ogata [2], and Li and Yeh [3] independently
showed that if (E) is nonoscillatory then

(1)
∫ ∞

t0

c(s)ds < ∞

and

(2) lim sup
t→∞

πp−1(t)
∫ ∞

t

c(s)ds ≤ 1,

where

π(t) =
∫ t

t0

r1−q(s)ds, t ≥ t0.

It follows from (2) that if (E) is nonoscillatory then

(3)
∫ ∞

t0

r1−q(s)
(∫ ∞

s

c(τ)dτ

)q

ds < ∞.

The purpose of this paper is to improve the results (1), (2), (3), and
hence extend the result of Lovelady [4].

2. Main results

In order to prove our main theorem, we need the following lemma.

Lemma 2.1. If u(t) is a nonoscillatory solution of (E) which is not

eventually a constant, then u(t)u′(t) > 0 for all large t.

Proof. Without loss of generality, we may assume that u(t) > 0 on
[T0,∞) for some T0 ≥ t0. It follows from (E) that

(1) [r(t)|u′(t)|p−2u′(t)]′ ≤ 0 for t ≥ T0,

which implies that r(t)|u′(t)|p−2u′(t) is nonincreasing on [T0,∞). Suppose
there exists a T1 ≥ T0 such that u′(T1)≤0. Then r(T1)|u′(T1)|p−2u′(T1)≤0.
Since r(t)|u′(t)|p−2u′(t) is decreasing and not identically zero on [T0,∞),
there exists a T2 ≥ T1 such that

r(t)|u′(t)|p−2u′(t) ≤ r(T2)|u′(T2)|p−2u′(T2) = −k < 0 for t ≥ T2,
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which implies

(2) u′(t) ≤ −kq−1r1−q(t) for t ≥ T2.

Integrating (2) from T2 to t, we obtain by (A2)

u(t) ≤ u(T2)− kq−1

∫ t

T2

r1−q(s)ds → −∞ as t →∞,

which contradicts to u(t) > 0 on [T0,∞). Thus u′(t) > 0 on [T0,∞). This
completes our proof.

Theorem 2.2. Let

f(t) =
∫ ∞

t

c(s)ds, t ∈ [t0,∞).

If (E) is nonoscillatory, then there exist a number T0 ≥ t0 and a sequence

{wk}(t)∞k=0 of continuous functions from [T0,∞) to (0,∞) with the follow-

ing properties:

(a) w1 = f .

(b) wk(t) ≤ wk+1(t) for t ≥ T0 and each integer k ≥ 1.

(c)
∫∞

t
r1−q(s)fq−1(s)wk(s)ds < ∞ for t ≥ T0 and each integer k ≥ 0;

and

wk+1(t) = f(t) + (p − 1)
∫∞

t
r1−q(s)fq−1(s)wk(s)ds for t ≥ T0 and

each integer k ≥ 1.

(d) If t ≥ T0, then w0(t) = limk→∞ wk(t), and the convergence is uniform

in each compact subset of [T0,∞).

(e) lim sup
t→∞

πp−1(t)wk(t) ≤ 1 for each integer k ≥ 0.

(f) w0(t) = f(t) + (p− 1)
∫∞

t
r1−q(s)fq−1(s)w0(s)ds for t ≥ T0.

Proof. Let u(t) be a nonoscillatory solution of (E). By Lemma 2.1,
without loss of generality, we may assume that u(t) > 0 and u′(t) > 0 on
[T0,∞) for some T0 ≥ t0. Let

w(t) =
r(t)|u′(t)|p−2u′(t)
|u(t)|p−2u(t)

for t ≥ T0.

Then w(t) > 0 and

(3) w′(t) = −c(t)− (p− 1)r1−q(t)wq(t) < 0
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for t ≥ T0. This implies that w(t) is decreasing and limt→∞ w(t) exists.
Integrating (3) from t to T , we obtain

w(T )− w(t) = −
∫ T

t

c(s)ds− (p− 1)
∫ T

t

r1−q(s)wq(s)ds

for T ≥ t ≥ T0. It follows from (1) and the existence of limt→∞ w(t) that

(4)
∫ ∞

T0

r1−q(s)wq(s)ds < ∞.

It follows from (A2) and the decrease of w(t) that limT→∞ w(T ) = 0. This
implies

(5) w(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)wq(s)ds for t ≥ T0.

It is clear from (5) that w ≥ f on [T0,∞), and hence (4) and (5) imply
that

(6)
∫ ∞

T0

r1−qfq−1(s)w(s)ds ≤
∫ ∞

T0

r1−q(s)wq(s)ds < ∞

and

(7) w(t) ≥ f(t) + (p− 1)
∫ ∞

t

r1−qfq−1(s)w(s)ds

for t ≥ T0, respectively. It follows from (E) that rq−1(t)u′(t) is decreasing
on [T0,∞). Then

u(t)
r1−q(t)u′(t)π(t)

=
u(T0) +

∫ t

T0
u′(s)ds

rq−1(t)u′(t)π(t)

=
u(T0) +

∫ t

T0
r1−q(s)rq−1(s)u′(s)ds

rq−1(t)u′(t)π(t)

≥ u(T0) + rq−1(t)u′(t)
∫ t

T0
r1−q(s)ds

rq−1(t)u′(t)π(t)

≥ π(t)− π(T0)
π(t)

for t ≥ T0. This implies that

πp−1(t)w(t) ≤
(

π(t)
π(t)− π(T0)

)p−1

,
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thus,

(8) lim sup
t→∞

πp−1(t)w(t) ≤ 1.

Let w1(t) = f(t) on [T0,∞), and let

w2(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)w1(s)ds for t ≥ T0.

Then w2(t) ≥ w1(t) and

w2(t) ≤ f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)w(s)ds ≤ w(t)

for t ≥ T0. It follows from (8) that lim supt→∞ πp−1(t)w2(t) ≤ 1. Suppose
n is a positive integer and w1, w2, . . . , wn are defined such that w1 ≤ w2 ≤
· · · ≤ wn ≤ w on [T0,∞), then

∫ ∞

T0

r1−q(s)fq−1(s)wk(s)ds < ∞

whenever 1 ≤ k ≤ n, and

wk+1(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)wk(s)ds

whenever 1 ≤ k ≤ n− 1 and t ≥ T0. Let wn+1 be given by

wn+1(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)wn(s)ds.

Now

wn(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)wn−1(s)ds

≤ f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)wn(s)ds

≤ f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)w(s)ds

≤ w(t),

this implies that wn(t) ≤ wn+1(t) ≤ w(t) for t ≥ T0. It is clear from (8)
that∫ ∞

T0

r1−q(s)fq−1(s)wn+1(s)ds ≤
∫ ∞

T0

r1−q(s)fq−1(s)w(s)ds < ∞.
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We now see that there is a sequence {wk}∞k=1 satisfying (a), (b), (c), and

(9) wk(t) ≤ w(t)

whenever k ≥ 1 and t ≥ T0. Now (8) and (9) give (e). From (c) we see
that the family {w1, w2, . . . } is equicontinuous, so (9) says that there is
a subsequence {wkj}∞j=1 with a locally uniformly limit on [T0,∞). This
and (b) say that {wk}∞k=1 has a locally uniform limit, say w0, on [T0,∞).
Clearly, w0 ≤ w, so that

∫ ∞

T0

r1−q(s)fq−1(s)w0(s)ds < ∞.

Now, Lebesgue’s Dominated Convergence Theorem yields
∫ ∞

t

r1−q(s)fq−1(s)w0(s)ds = lim
k→∞

∫ ∞

t

r1−q(s)fq−1(s)wk(s)ds

for t ≥ T0. This implies (d), and (f) is clear from the above discussion, so
that the proof is complete.

Corollary 2.3. If (E) is nonoscillatory, then

lim sup
t→∞

πp−1(t)
{∫ ∞

t

c(s)ds + (p− 1)
∫ ∞

t

r1−q(s)
(∫ ∞

s

c(τ)dτ

)q

ds

}
≤ 1.

Proof. As in the proof of Theorem 2.2, we have

lim sup
t→∞

πp−1(t)w2(t) ≤ 1,

and

w2(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)w1(s)ds

= f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq(s)ds,

where f(t) =
∫∞

t
c(s)ds. Hence, the proof is complete.

Corollary 2.4. If (E) is nonoscillatory, then

(10)
∫ ∞

t0

c(s) exp
(

(p− 1)
∫ s

t0

r1−q(τ)fq−1(τ)dτ

)
ds < ∞

and

(11)
∫ ∞

t0

r1−q(s)fq(s) exp
(

(p− 1)
∫ s

t0

r1−q(τ)fq−1(τ)dτ

)
ds < ∞.
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Proof. As in the proof of Theorem 2.2, there is a number T0 ≥ t0
and a function w0 on [T0,∞) such that

w0(t) = f(t) + (p− 1)
∫ ∞

t

r1−q(s)fq−1(s)w0(s)ds,

where f(t) =
∫∞

t
c(s)ds. This implies that

(12) w′0(t) = −c(t)− (p− 1)r1−q(t)fq−1(t)w0(t).

Its solution is

w0(T0)−
∫ t

T0

c(s) exp
(

(p− 1)
∫ s

T0

r1−q(τ)fq−1(τ)dτ

)
ds

= w0(t) exp
(

(p− 1)
∫ t

T0

r1−q(τ)fq−1(τ)dτ

)
> 0.

Hence,

w0(T0) >

∫ t

T0

c(s) exp
(

(p− 1)
∫ s

T0

r1−q(τ)fq−1(τ)dτ

)
ds.

This implies

(13)
∫ ∞

T0

c(s) exp
(

(p− 1)
∫ s

T0

r1−q(τ)fq−1(τ)dτ

)
ds < ∞.

Clearly, (13) is equivalent to (10). Let z be given on [T0,∞) by

z(t) =
∫ ∞

t

r1−q(s)fq−1(s)w0(s)ds.

Then

z′(t) = −r1−q(t)fq−1(t)w0(t) = −r1−q(t)fq(t)− (p− 1)r1−q(t)fq−1(t)z(t),

which implies that (11) holds. Hence, the proof is complete.
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