Hosszú's functional equation on the unit interval is not stable

By JACEK TABOR (Cracow)

Abstract

We prove that for every $\varepsilon>0$ there exists a function $f:(0,1) \rightarrow \mathbb{R}$ satisfying the inequality $$
|f(x+y-x y)+f(x y)-f(x)-f(y)| \leq \varepsilon \text { for } x, y \in(0,1)
$$ such that for every solution $h:(0,1) \rightarrow \mathbb{R}$ of the Hosszú's functional equation $$
\sup \{|f(x)-h(x)|: x \in(0,1)\}=\infty
$$

The same result holds if we replace $(0,1)$ by any interval with ends 0 and 1 .

The functional equation

$$
h(x+y-x y)+h(x y)=h(x)+h(y)
$$

is referred to as the Hosszu's equation. It is well known (cf. [1]) that for every function $h: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the Hosszú's equation there exists an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $C \in \mathbb{R}$ such that

$$
h(x)=A(x)+C .
$$

By the unit interval we understand any interval with ends 0 and 1 and by \mathbb{R}_{+}we mean the interval $[0, \infty)$. Since U is closed for operations $(x, y) \rightarrow$ $x y,(x, y) \rightarrow x+y-x y$ one can study the Hosszú's equation on U. K. Lajkó proved in [2] that if a function $h: U \rightarrow \mathbb{R}$ satisfies the Hosszu's equation then there exists an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ and a constant $C \in \mathbb{R}$ such that

$$
\begin{equation*}
h(x)=A(x)+C \text { for } x \in(0,1) \tag{1}
\end{equation*}
$$

(h may be arbitrarily chosen on $U \backslash(0,1)$).

There arises a natural question concerning the stability of the Hosszú's equation. L. Losonczi proved in [3] that the Hosszús equation on \mathbb{R} is stable in the Hyers-Ulam sense, i.e. he obtained the following result.

Theorem L. If X is a Banach space and $f: \mathbb{R} \rightarrow X$ satisfies the functional inequality

$$
\|f(x+y-x y)+f(x y)-f(x)-f(y)\| \leq \varepsilon \text { for } x, y \in \mathbb{R}
$$

with an $\varepsilon \geq 0$, then there exists a unique function $h: \mathbb{R} \rightarrow X$ satisfying the Hosszu's equation such that

$$
\|f(x)-h(x)\| \leq 20 \varepsilon \text { for } x \in \mathbb{R}
$$

Surprisingly, in the case where f is defined on the unit interval, the answer to the question of stability is negative (cf. [4]). For every $\varepsilon>0$ we can find a function $f_{\varepsilon}: U \rightarrow \mathbb{R}$ such that

$$
\left|f_{\varepsilon}(x+y-x y)+f_{\varepsilon}(x y)-f_{\varepsilon}(x)-f_{\varepsilon}(y)\right| \leq \varepsilon \text { for } x, y \in U
$$

but which can not be "approximated" by any solution of the Hosszú's equation on the unit interval.

We need the following technical lemma.
Lemma 1. Suppose that $F: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies for a certain $L \in \mathbb{R}_{+}$ the inequalities

$$
\begin{align*}
|F(x+y)-F(x)| & \leq L \text { for } x \geq y, x, y \in \mathbb{R}_{+}, \tag{2}\\
|F(x)| & \leq L \text { for } x \in[0,6] \tag{3}
\end{align*}
$$

Let

$$
\begin{aligned}
& g(a):= \begin{cases}-\ln a & \text { for } a \in\left(0, \frac{1}{2}\right] \\
-\ln (1-a) & \text { for } a \in\left[\frac{1}{2}, 1\right)\end{cases} \\
& f(a):=F(g(a)) \quad \text { for } a \in(0,1) .
\end{aligned}
$$

Then

$$
\begin{equation*}
|f(a+b-a b)+f(a b)-f(a)-f(b)| \leq 4 L \text { for } a, b \in(0,1) \tag{4}
\end{equation*}
$$

Proof. Let $a, b \in(0,1)$. We are going to prove that (4) is valid. At first we prove that:
(i). if $\quad a \geq b \geq \frac{1}{2} \quad$ then $\quad g(a+b-a b)=g(a)+g(b)$,
(ii). if $\quad a \geq b, a \geq \frac{1}{2}$ then $|g(a b)-g(b)| \leq 3$,
(iii). if $\quad a \geq b, \frac{1}{2} \geq b$ then $|g(a+b-a b)-g(a)| \leq 3$.
ad (i). We have
$g(a+b-a b)=-\ln ((1-a)(1-b))=-\ln (1-a)-\ln (1-b)=g(a)+g(b)$.
ad (ii). a). Suppose that $b \geq \frac{1}{2}$.
If $a b \leq \frac{1}{2}$ then $b \in\left[\frac{1}{2}, \frac{1}{\sqrt{2}}\right], a b \in\left[\frac{1}{4}, \frac{1}{2}\right]$, so

$$
|g(a b)-g(b)| \leq|g(a b)|+|g(b)| \leq \ln 4+\left|\ln \left(1-\frac{1}{\sqrt{2}}\right)\right| \leq 3
$$

If $a b \geq \frac{1}{2}$ then

$$
\begin{aligned}
|g(a b)-g(b)| & =|\ln (1-a b)-\ln (1-b)|=\left|\ln \left(\frac{1-b+b-a b}{1-b}\right)\right| \\
& =\left|\ln \left(1+b \frac{1-a}{1-b}\right)\right| \leq \ln 2 \leq 3
\end{aligned}
$$

b). Suppose that $b \leq \frac{1}{2}$. Then

$$
|g(a b)-g(b)|=|\ln (a b)-\ln (b)|=|\ln (a)| \leq \ln 2 \leq 3
$$

ad (iii). Let $x^{*}:=1-x$. Then $g(x)=g\left(x^{*}\right)$. Making use of the equality

$$
g(a+b-a b)=g\left(\left(a^{*} b^{*}\right)^{*}\right)=g\left(a^{*} b^{*}\right)
$$

and interchanging the role of a and b we obtain (iii) from (ii).
Now we show that

$$
\begin{equation*}
|F(x)-F(y)| \leq 2 L \text { for } x, y \in \mathbb{R}_{+},|x-y| \leq 3 \tag{5}
\end{equation*}
$$

If $x, y \in[0,6]$ then by (3) relation (5) is obvious. In the other case we may assume that $x \geq y, x \geq 6$. Then $x-y \leq 3 \leq y$ and due to (2) we have

$$
|F(x)-F(y)|=|F(y+(x-y))-F(y)| \leq L \leq 2 L
$$

We are going to prove that (4) holds. Without loss of generality we may assume that $a \geq b$. Suppose that $a \geq b \geq \frac{1}{2}$. Then by (i), (ii), (5) and (2)

$$
\begin{aligned}
\mid f(a+b-a b) & +f(a b)-f(a)-f(b) \mid \\
= & |F(g(a+b-a b))+F(g(a b))-F(g(a))-F(g(b))| \\
\leq & |F(g(a+b-a b))-F(g(a)+g(b))| \\
& +|F(g(a)+g(b))-F(g(a))|+\mid F(g(a b)-F(g(b)) \mid \leq 4 L
\end{aligned}
$$

Suppose that $a \geq \frac{1}{2} \geq b$. Then due to (ii), (iii) and (5)

$$
\begin{aligned}
\mid f(a+b-a b) & +f(a b)-f(a)-f(b) \mid \\
= & |F(g(a+b-a b))+F(g(a b))-F(g(a))-F(g(b))| \\
\leq & |F(g(a+b-a b))-F(g(a))|+|F(g(a b))-F(g(b))| \leq 4 L
\end{aligned}
$$

Suppose that $\frac{1}{2} \geq a \geq b$. Then $b^{*} \geq a^{*} \geq \frac{1}{2}$ and we have

$$
\begin{aligned}
\mid f(a+b-a b) & +f(a b)-f(a)-f(b) \mid \\
& =\left|f\left(a^{*} b^{*}\right)+f\left(a^{*}+b^{*}-a^{*} b^{*}\right)-f\left(a^{*}\right)-f\left(b^{*}\right)\right| \leq 4 L
\end{aligned}
$$

Now we are able to prove the main theorem.
Theorem 1. Let U be the unit interval. For every $\varepsilon>0$ there exists a function $f: U \rightarrow \mathbb{R}$ satisfying the inequality

$$
|f(x+y-x y)+f(x y)-f(x)-f(y)| \leq \varepsilon \text { for } x, y \in U
$$

such that for every solution $h: U \rightarrow \mathbb{R}$ of the Hosszú's functional equation

$$
\sup \{|f(x)-h(x)|: x \in U\}=\infty
$$

Moreover, for every $\varepsilon>0$ and every $K>0$ there exists a continuous bounded function $f: U \rightarrow \mathbb{R}$ which satisfies the inequality

$$
|f(x+y-x y)+f(x y)-f(x)-f(y)| \leq \varepsilon \text { for } x, y \in U,
$$

but such that for every solution $h: U \rightarrow \mathbb{R}$ of the Hosszú's functional equation

$$
\sup \{|f(x)-h(x)|: x \in U\} \geq K \varepsilon
$$

Proof. Without loss of generality we may assume that $\varepsilon=1$. To prove the first part of the theorem let

$$
F(x):=\frac{1}{8} \ln (1+x) \text { for } x \in \mathbb{R}_{+}
$$

Then F satisfies (2) and (3) with $L=\frac{1}{4}$. Let

$$
f(x):= \begin{cases}F(g(a)) & \text { for } a \in(0,1) \\ 0 & \text { for } a \in U \backslash(0,1),\end{cases}
$$

where g is the function defined in Lemma 1. We show that

$$
|f(a+b-a b)+f(a b)-f(a)-f(b)| \leq 1 \text { for } a, b \in U
$$

If $a=0$ or $b=0$ then this is obvious. For $a, b \in(0,1)$ the relation holds by Lemma 1. As it is well known (cf. [1], p. 277), an additive function $A: \mathbb{R} \rightarrow \mathbb{R}$ is either continuous or has a dense graph in $\mathbb{R} \times \mathbb{R}$. Since f is continuous on $(0,1)$ and

$$
\lim _{a \rightarrow 0} f(a)=\lim _{a \rightarrow 1} f(a)=+\infty
$$

this implies that

$$
\begin{equation*}
\sup \{|f(a)-A(a)-C|: a \in(0,1)\}=\infty \tag{6}
\end{equation*}
$$

for every additive function A and every constant C. This means that for every solution $h: U \rightarrow \mathbb{R}$ of the Hosszús functional equation

$$
\sup \{|f(a)-h(a)|: a \in U\}=\infty
$$

Now we prove the second part of the theorem. Let

$$
F_{n}(x):= \begin{cases}\frac{1}{8} \ln (1+x) & \text { for } x \in[0, n] \\ \frac{1}{8} \ln (1+n) & \text { for } x \in(n, \infty)\end{cases}
$$

and let

$$
f_{n}(a):= \begin{cases}F_{n}(g(a)) & \text { for } a \in(0,1) \\ F_{n}(n) & \text { for } a \in U \backslash(0,1)\end{cases}
$$

One can easily notice that f_{n} is continuous and by Lemma 1

$$
\left|f_{n}(a+b-a b)+f_{n}(a b)-f_{n}(a)-f_{n}(b)\right| \leq 1 \text { for } a, b \in U
$$

We claim that for every $K>0$ there is an $n \in \mathbb{N}$ such that

$$
\sup \left\{\left|f_{n}(a)-h(a)\right|: a \in U\right\} \geq K
$$

for all solutions h of Hosszú's equation.
Otherwise, for all $n \in \mathbb{N}$ there were solutions h_{n} of Hosszú's equation such that

$$
\begin{equation*}
\sup \left\{\left|f_{n}(a)-h_{n}(a)\right|: a \in U\right\}<K \tag{7}
\end{equation*}
$$

Since h_{n} satisfies the Hosszú's equation, by (1) it has the form

$$
\begin{equation*}
h_{n}(a)=A_{n}(a)+C_{n} \quad \text { for } a \in(0,1), \tag{8}
\end{equation*}
$$

where A_{n} is an additive function and C_{n} is a constant. As f_{n} is continuous, by (7) and (8) we obtain that A_{n} is bounded in the interval $\left[\frac{1}{3}, \frac{2}{3}\right]$, so there exists $L_{n} \in \mathbb{R}$ such that $A_{n}(a)=L_{n} a$. One can easily check that
$\left\{f_{n}\left(\frac{1}{3}\right)\right\}$ and $\left\{f_{n}\left(\frac{2}{3}\right)\right\}$ are bounded sequences. This and (7) implies that $\left\{C_{n}\right\},\left\{L_{n}\right\}$ are bounded sequences. Hence there exist $C, L \in \mathbb{R}$ and an increasing sequence $\left\{k_{n}\right\} \subset \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty} C_{k_{n}}=C \text { and } \lim _{n \rightarrow \infty} L_{k_{n}}=L
$$

Since

$$
\lim _{n \rightarrow \infty} f_{n}(a)=f(a) \text { for } a \in(0,1)
$$

we obtain that

$$
|f(a)-L a-C| \leq K \text { for } a \in(0,1)
$$

which contradicts (6).

References

[1] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Publishers and Silesian University Press, Warszawa-Kraków -Katowice, 1985.
[2] K. Lajkó, Applications of Extensions of Additive Functions, Aequationes Math. 11 (1974), 68-76.
[3] L. Losonczi, On the Stability of Hosszú's Functional Equation, Proceedings of the 5-th International Conference on Functional Equations and Inequalities, Annales de l'Ecole Normale Supérieure a Cracovie (to appear).
[4] Jacek Tabor, Hosszú's Functional Equation on the Unit Interval is not Stable, Proceedings of the 5-th International Conference on Functional Equations and Inequalities, Annales de l'Ecole Normale Supérieure a Cracovie (to appear).

JACEK TABOR
SŁOMIANA 20/31
30-316 CRACOW
POLAND
(Received November 6, 1995; revised February 9, 1996)

