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Optimal solutions of an alternative Cauchy equation

By DANIELA RUSCONI (Milano)

Abstract. We consider the alternative Cauchy functional equation

f(x + y)− f(x)− f(y) 6= 0 implies g(x + y)− g(x)− g(y) = 0.

A characterization of new classes of solutions is given, when f and g are real functions.

1. Introduction

In the last years the alternative Cauchy equation

(1) f(x + y)− f(x)− f(y) 6= 0 implies g(x + y)− g(x)− g(y) = 0,

where f, g are unknown functions from a group (X, +) into a group (S, +),
has been extensively studied (see [1], [2], for a rich bibliography). Among
the results concerning the previous equation, some allow to write the local
or global solutions of (1) when (X, +) = (R, +) and g (or f) satisfies a
suitable topological condition ([3]).

In this paper we suppose (X, +) = (R,+) and we give some conditions
which permit to extend a local solution of (1) and to characterize the
solutions of (1) when g (or f) satisfies a weak topological hypothesis.

2. Notations and preliminaries

Denote by Z and N the classes of the integers and non-negative in-
tegers respectively, and by pi : R × R → R, i = 1, 2, 3, the maps given
by

p1(x, y) = x, p2(x, y) = y, p3(x, y) = x + y.
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Given a subset E ⊆ R×R and a function g : p1(E)∪p2(E)∪p3(E) → S

we define

Ωg = {(x, y) ∈ E : g(x + y) 6= g(x) + g(y)},
Ag = {(x, y) ∈ E : g(x + y) = g(x) + g(y)},

and we denote by Ω0
g and A0

g the interior of Ωg and Ag respectively.
Let V be an open real interval; a function g : V → S is said locally

affine in x ∈ V if there exists a ∈ Hom(R, S) such that g(x + u) =
g(x) + a(u) for all u in an open interval U 3 0; g is said locally affine in
V if it is locally affine in each point of V and in this case ([3] prg. 2) we
have g(x) = a(x) + α for some constant α.

Denote by J a real open interval of the form (0, a), 0 < a ≤ +∞, and
let g : J → S, f : J →S. We introduce the following notations:

ξt(x) = g(x) + g(t− x), ϕt(x) = f(x) + f(t− x),

t ∈ 2J, x ∈ J ∩ (t− J);

∆τg(x) = g(x + τ)− g(x), τ ∈ J, x ∈ (0, a− τ);

Ht = Ht(J) = {x ∈ (0, a− t) : g(x + t) = g(x) + g(t)}, t ∈ J ;

rt = {(x, y) : x + y = t}, t ∈ R;

Tt = {(x, y) : x, y, x + y ∈ (0, t)} and Qt = {(0, t)× (0, t)}, t > 0 .

Obviously it is ξt(x) = ξt(t− x) and ϕt(x) = ϕt(t− x).

A pair (f, g) is a solution of (1) in E ⊆ R×R if p1(E)∪p2(E)∪p3(E)
is contained in the domain of f and g and (1) holds for every (x, y) ∈E.

Let (f, g) be a solution of (1) in E and let (f̃ , g̃) be a solution of (1) in
Ẽ with E ⊂ Ẽ; (f̃ , g̃) is an extension of (f, g) if f and g are the restrictions
of f̃ and g̃ to p1(E) ∪ p2(E) ∪ p3(E).

Remark 1. If we study (f, g) as a solution of (1) in a triangle Ta or
in a square Qa, we can assume without loss of generality a = 1 and with
reference to this normalized case we denote I = (0, 1), T = T1, Q = Q1,
ξ = ξ1.

A solution (f, g) of (1) in E is non-trivial if Ωg, Ωf 6= ∅.
A solution (f, g) of (1) in E is optimal if Ag ∩Af = ∅.
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Remark 2. Let E ⊆ R×R; (f, g) is a solution of (1) in E if and only
if ∀t ∈ p3(E) and ∀(x, t− x) ∈ E

(2) ξt(x) 6= g(t) implies ϕt(x) = f(t).

In particular (f, g) is a solution of (1) in T if and only if Gt ∪ Ft = (0, t),
∀t ∈ (0, 1), where

Gt = {x ∈ (0, t) : ξt(x) = g(t)}, Ft = {x ∈ (0, t) : ϕt(x) = g(t)}.
Remark 3. Let (S, +) = (R,+). Since (f, g) is a solution of (1) in R×R

if and only if (h, k) defined by h(x)=λf(αx), k(x)=µg(αx), λ, µ, α 6=0, is,
in the following section 4 we study, without loss of generality, the solutions
of (1) in R×R such that the function g satisfies some regularity-hypothesis
only in a right neighbourhood of the origin.

In order to present the aim of the present paper it is convenient to
state before some considerations.

The previous results ([2]–[4]) which describe the non-trivial solutions
of (1) are obtained starting from the following topological hypothesis on g:

(3) pi(Ωg) = pi(Ω0
g) i = 1, 2.

Thanks to these results we know that:
– ([3]) All solutions (f, g) of (1) in T , that satisfy condition (3), can

be explicitely written and, by virtue of this, we can determine an
extension (f̃ , g̃) to R× R with g̃ still satisfying condition (3).

– ([4]) We can write the class of solutions of (1) in R × R satisfying
condition (3) in T but not in Q and we know that their form depends
on the group S.
As shown by an example in [2], the description of the solutions of

equation (1) without any additional condition seems hopeless. Thus in the
present paper we substitute condition (3) with some other algebraic and
topological conditions.

In section 3 the problem of extending a solution of (1) given in T is
treated and particular theorems, when g satisfies the condition

(4) ∃τ ∈ (0, 1) : g(x + τ) = g(x) + g(τ), x ∈ (0, 1− τ)

are stated. To this purpose it is convenient to remark that if (f, g) is a
solution of (1) in T then we know the values f(x) + f(y) and g(x) + g(y)
also when (x, y) ∈ Q\T.

In section 4, we characterize classes of real and optimal solutions of
(1) in R× R, when g satisfies the following condition

Lt = {t > 0 : Tt ⊂ Ag} 6= ∅ and Hα(R+) ⊃ U+(0)(5)
where α = Sup Lt.
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3. On the extension of a solution (f, g)

In this section (f, g) denotes a non-trivial solution of (1) in T .

Lemma 1. Let t ∈ [1, 2).
i) There exists an extension (f̃ , g̃) of (f, g) to T ∪ (Q ∩ rt) if and

only if there exists at least a couple of constant ct and kt such

that, for every x ∈ (t − 1, 1), ξt(x) 6= ct implies ϕt(x) = kt; in

this case we may assume g̃(t) = ct and f̃(t) = kt.

ii) If ξt (or ϕt) is constant on (t − 1, 1), then there exist infinitely

many solutions in T ∪ (Q∩ rt); otherwise there exist at most two

solutions.

Proof. Since (f̃ , g̃) is a solution of (1) in Q∩rt if and only if ξt(x) 6=
g̃(t) implies ϕt(x) = f̃(t) ∀x ∈ (t− 1, 1) , i) follows easily.

ii). If ξt(ϕt) is a constant function on (t − 1, t), all solutions are
obtained by setting g̃(t) = ξt and f̃(t) arbitrarily chosen (or vice-versa). If
there exists a solution in Q ∩ rt when ξt and ϕt are not constant then, as
a consequence of (i), there are two sets F and G with F ∪ G = (t − 1, 1)
such that ϕt and ξt are constant functions on F and G respectively; as it
is easy to see, this solution is not unique if and only if F ∩G = ∅; in this
last case, ϕt and ξt are constant functions on G and F respectively. ¤

Lemma 2. Suppose ξ(x) = c, x ∈ I.

i) Let (f̃ , g̃) be an extension of (f, g) to T2 with g̃ such that

g̃(t) = g(t− 1) + c, t ∈ (1, 2) and g̃(1) = c;

then

f̃(t) = f(t− 1) + ϕ(t− 1), t ∈ pi(Ωg̃) ∩ (1, 2), i = 1, 2, 3.

ii) Let n ∈ Z and let (f̃ , g̃) be defined by
{

f̃(t) = f(t− n) + nϕ(t− n); t ∈ (n, n + 1)
g̃(t) = g(t− n) + nc

and f̃(n) arbitrary, g̃(n) = nc;

then (f̃ , g̃) is an extension of (f, g) to R× R.

Proof. i). Since T2 = Q∪(T2\Q) and pi(Ωg̃∩Q)∩(1, 2) = ∅, i = 1, 2,
first we prove that i) holds with t ∈ p3(Ωg̃ ∩Q) ∩ (1, 2). Let x, y ∈ I with
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x+y = t , t ∈ p3(Ωg̃ ∩Q)∩ (1, 2), then g̃(t) = g̃(x+y) = g(x+y−1)+ c 6=
g(x) + g(y); from ξ|I = c it follows





g(x + y − 1) + g(1− x) 6= g(y)

g(x + y − 1) + g(1− y) 6= g(x)

g(1− x) + g(1− y) 6= g(2−x−y)

therefore 



f(x + y − 1) + f(1− x) = f(y)

f(x + y − 1) + f(1− y) = f(x)

f(1− x) + f(1− y) = f(2−x−y).

Considering the above equations, we deduce ϕ(x) = ϕ(y) = ϕ(x + y − 1);
the previous considerations and our hypothesis imply that

f̃(t) = f̃(x + y) = f(x) + f(y) = ϕ(x)− f(1− x) + ϕ(y)− f(1− y)

= 2ϕ(x + y − 1)− f(2− x− y) = ϕ(x + y − 1) + f(x + y − 1)

= f(t− 1) + ϕ(t− 1).

Now, we prove i) with t ∈ pi(Ωg̃ ∩ (T2\Q)) ∩ (1, 2). Considering that if
i = 3 then ∃x ∈ (1, 2), y ∈ I with t = x + y and g̃(t) 6= g̃(x) + g(y) and if
i = 1, 2 then ∃y ∈ I with t+y = x and g̃(x) 6= g̃(t)+g(y), it is sufficient to
prove that g̃(t) = g̃(x + y) 6= g̃(x) + g(y) with y ∈ I, x, t ∈ (1, 2), implies

f̃(t) = f(t− 1) + ϕ(t− 1) and f̃(x) = f(x− 1) + ϕ(x− 1).

Since g̃(x + y) = g(x + y − 1) + c 6= g(x − 1) + c + g(y) and ξ(t) = c,
then 




g(1− y) 6= g(x− 1) + g(2−x−y)

g(2− x) 6= g(2− x− y) + g(y)

g(x + y − 1) + g(1− y) 6= g̃(x)

hence 



f(1− y) = f(x− 1) + f(2−x−y)

f(2− x) = f(2− x− y) + f(y)

f(x + y − 1) + f(1− y) = f̃(x).

By these equations it follows ϕ(y) = ϕ(x−1) and f̃(x) = f(x−1)+ϕ(x+
y−1) and by virtue of f̃(x+y) = f̃(x)+f(y), f(x+y−1) = f(x−1)+f(y)
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and the previous considerations we have

f̃(t) = f̃(x) + f(y) = f(x− 1) + ϕ(x + y − 1) + f(y)

= f(x + y − 1) + ϕ(x + y − 1) = f(t− 1) + ϕ(t− 1),

ϕ(x + y − 1) = f(x + y − 1) + f(2− x− y)

= f(x− 1) + f(y) + f(2− x− y) = ϕ(y) = ϕ(x− 1)

and so f̃(x) = f(x− 1) + ϕ(x− 1).

ii). By the definition of g, it is easy to see that

(x, y) ∈ Ωg̃ ⇐⇒ (x− n, y −m) ∈ Ωg̃ n,m ∈ Z and

{(x, y) : x or y or x + y belongs to Z} ⊆ Ag̃

hence, it is sufficient to show that (f̃ , g̃) is a solution in Q\T .
So, let x, y ∈ I, x + y = t ∈ (1, 2) with g̃(x + y) 6= g(x) + g(y) : as

shown in i), this implies




f(x + y − 1) + f(1− x) = f(y)
f(x + y − 1) + f(1− y) = f(x)
f(1− x) + f(1− y) = f(2− x− y)

hence it follows ϕ(x) = ϕ(y) = ϕ(x + y − 1) and then

f̃(x + y) = f(x + y − 1) + ϕ(x + y − 1) = f(x + y − 1) + ϕ(y) =

= f(x)− f(1− y) + ϕ(y) = f(x) + f(y).

Thus the lemma is proved. ¤

Theorem 1. Suppose ξ(x) = c, x ∈ I and let g̃ be defined by

g̃(t) = g(t− n) + nc, n ≤ t < n + 1; g̃(0) = 0.

The pair (f̃ , g̃) is an extension of (f, g) to R× R if and only if

f̃(t) = f(t−n)+nϕ(t−n), t ∈ pi(Ωg̃), i = 1, 2, 3, n < t < n+1, n ∈ Z.

Proof. ii) of Lemma 2 shows that the condition is sufficient. Now
we prove that it is also necessary.

By the definition of g and by ξ(x) = c it follows easily that

t ∈ pi(Ωg̃) ⇐⇒ (t + n) ∈ pi(Ωg̃) ∀n ∈ Z, i = 1, 2, 3.
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Furthermore, we have g̃(x) + g̃(n− x) = nc ∀n ∈ Z: indeed it is trivial if
x ∈ Z and if p < x < p + 1 with p ∈ Z we have

g̃(x) + g̃(n− x) = g(x− p) + pc + g(p + 1− x) + (n− p− 1)c

= g(x− p) + g(1− (x− p)) + (n + 1)c.

Hence we can prove that t ∈ pi(Ωg̃) for some i = 1, 2, 3 if and only if
(n − t) ∈ pk(Ωg̃), ∀n ∈ Z, for some k = 1, 2, 3. To this purpose it is
sufficient to observe that if g̃(x+y) 6= g̃(x)+ g̃(y) then nc− g̃(n−(x+y)) 6=
nc− g̃(n− x) + g̃(y), hence g̃(n− (x + y)) + g̃(y) 6= g̃(n− x); this implies
the previous property by putting t = x + y or t = x.

To verify the necessary condition at first we show that the assertion
is true

∀t ∈ pi(Ωg̃) ∩ (n, n + 1), n ≥ 0, i = 1, 2, 3.

We proceed by induction. For n = 0 it is trivial, for n = 1 it is a con-
sequence of ii) of Lemma 2. Assume it is true for n − 1, n ≥ 2, and let
t ∈ pi(Ωg̃) ∩ (n, n + 1). The pair (f̃ , g̃) is an extension of (f̃ , g̃)|Tn

and
ξn(x) = nc ∀x ∈ (0, n); hence, using i) of Lemma 2 as in Remark 1
concerning the “normalized case”, we can write

f̃(t) = f(t− n) + ϕn(t− n), t ∈ pi(Ωg̃) ∩ (n, 2n), i = 1, 2, 3;

that is f̃(t) = f(t− n) + f(t− n) + f(2n− t); since 2n− t ∈ (n− 1, n), it
follows

f̃(t) = f(t− n) + f(t− n) + f(1 + n− t) + (n− 1)ϕ(1 + n− t)

= f(t− n) + ϕ(t− n) + (n− 1)ϕ(t− n) = f(t− n) + nϕ(t− n).

This proves the assertion ∀t ∈ pi(Ωg̃) ∩ (0, +∞).
The next step is to show that

(x, y) ∈ Ωg̃ =⇒ ϕ(x− n) = ϕ(y −m) = ϕ(x + y − r)

where n,m, r ∈ Z : n < x < n + 1, m < y < m + 1, r < x + y < r + 1.
In fact by the property of g̃ we get

{
g̃(x + y − n−m− 1) + g(n + 1− x) 6= g(y −m)
g̃(x + y − n−m− 1) + g(m + 1− y) 6= g(x− n)

then {
f̃(x + y − n−m− 1) + f(n + 1− x) = f(y −m)

f̃(x + y − n−m− 1) + f(m + 1− y) = f(x− n)
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and this implies ϕ(x − n) = ϕ(y − m); moreover, we can deduce that if
r = n + m

{
g(x + y − n−m) 6= g(x− n) + g(y −m)
−g[1− (x + y − n−m)] 6= g(x− n)− g[1− (y −m)],

that is
{

f(x + y − n−m) = f(x− n) + f(y −m)
f [1− (x + y − n−m)] = −f(x− n) + f [1− (y −m)],

hence ϕ(x + y − r) = ϕ(y −m). If r = n + m + 1
{

g(x + y − n−m− 1) + g(1 + m− y) 6= g(x− n)
−g[1− (x + y − n−m− 1)] + g(1 + m− y) 6= −g(1− (x− n)],

and so, by proceeding in the same way, we obtain ϕ(x+ y− r) = ϕ(x−n).
At last we show the assertion for

t ∈ pi(Ωg̃) ∩ (−∞, 0), i = 1, 2, 3; −n < t < −n + 1, n ≥ 1.

If i = 1, 2 then ∃y ∈ (n, n + 1) : (t, y), (t + n, y − n) ∈ Ωg̃; therefore

f̃(t + y) = f̃(t) + f̃(y) and f̃(t + y) = f(t + n) + f(y − n) hold; this

implies f̃(t) − f(t + n) = f(y − n) − f̃(y) and, having y > 0 , f̃(y) =

f(y−n)+nϕ(y−n) = f(y−n)+nϕ(x+n) and so f̃(t) = f(t+n)−nϕ(t+n).
If i = 3 then ∃(x, y) ∈ Ωg̃, x+y = t with r < x < r+1, s < y < s+1

and −n = r + s, r + s + 1 for suitable r, s ∈ Z; since (x− r, y− s) is in Ωg̃

as well, by virtue of the previous property we can write

f̃(t) = f̃(x) + f̃(y) = f(x− r) + rϕ(x− r) + f(y − s) + sϕ(y − s)

= f̃(x + y − r − s) + (r + s)ϕ(t + n)

hence we obtain f̃(t) = f(t + n)−nϕ(t + n) in the case −n = r + s; in the
case −n = r + s + 1 we deduce

f̃(t) = f̃(t + 1 + n)− (n + 1)ϕ(t + n) = f(t + n)− nϕ(t + n).

The necessary condition is so proved. ¤
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Lemma 3. Let 0 < x < t < 1 − τ and assume condition (4) holds;
then

i) ξt+τ (x) = ξt+τ (x + τ) = ξt(x) + g(τ), ϕt+τ (x) = ϕt(x) + ∆τf(t − x)
and ϕt+τ (x + τ) = ϕt(x) + ∆τf(x).

ii) x 6∈ Gt ⇒ ∆τf(x) = ∆τf(t) = ∆τf(t− x)

Proof. i) is easily verified.
ii). By i) and Remark 2, we have x ∈ Gt ⇔ x ∈ Gt+τ ⇔ x + τ ∈ Gt+τ

therefore x 6∈ Gt implies that f(t) = ϕt(x), f(t+τ) = ϕt+τ (x) = ϕt+τ (x+
τ) hold and then f(t+ τ)−f(t) = ϕt+τ (x)−ϕt(x) = ϕt+τ (x+ τ)−ϕt(x),
so by i) and by the definition of ∆τ we deduce ii). ¤

Lemma 4. Let nτ < 1, n ≥ 2 and assume condition (4) holds; then

f(t + qτ) = f(t) + q∆τf(t), t ∈ p3(Ωg), t + qτ ∈ (0, 1), q ∈ Z.

Proof. In this case the functions ∆τg and ∆τf are obviously defined
in (0, τ ] ⊂ (0, 1− τ) and ∆τg(x) = g(τ).

The assertion is trivial if q = 0 or q = 1.
Let t ∈ p3(Ωg), t+qτ ∈ (0, 1), q ≥ 2; by (4) we can suppose t ∈ p3(Ωg∩

Qτ ). So, ∃(x, y) ∈ (0, τ), x + y = t : x, y 6∈ Gt; x, x + τ, x + 2τ 6∈ Gt+2τ

and then

f(t + 2τ) = ϕt+2τ (x + τ) = f(x + τ) + f(t + τ − x)

= f(x) + ∆τf(x) + f(t− x) + ∆τf(t− x)

= ϕt(x) + ∆τf(x) + ∆τf(t− x)

and, by Lemma 3, f(t + 2τ) = f(t) + 2∆τf(t).
As a consequence of i) of Lemma 3, we can write

f(t + 2τ) = ϕt+2τ (x + 2τ) = ϕt+τ (x + τ) + ∆τf(x + τ)

= ϕt(x) + ∆τf(x) + ∆τ [f(x) + ∆τf(x)]

= f(t) + 2∆τf(x) + ∆τ [f(x + τ)− f(x)]

= f(t) + 2∆τf(t) + ∆τ [f(t + τ)− f(t)]

and therefore ∆τ [f(t + τ)− f(t)] = 0.
Now we proceed by induction; let the assertion be true for q ≥ 2; since

for t + (q + 1)τ ∈ (0, 1) we have

f(t + (q + 1)τ) = f(t + qτ) + ∆τf(t + qτ)

= f(t) + q∆τf(t) + ∆τ [f(t) + q∆τf(t)]

= f(t) + (q + 1)∆τf(t) + q∆τ [f(t + τ)− f(t)]

= f(t) + (q + 1)∆τf(t)
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and the lemma is so proved. ¤

Theorem 2. Let ∆τf = k, k constant, and assume that condition (4)
holds with τ ≤ 1

2 . Then (f̃ , g̃) defined by

(6)

{
f̃(t) = f(t− nτ) + nk

g̃(t) = g(t− nτ) + ng(τ)
nτ < t ≤ (n + 1)τ, n ∈ Z

is an extension of (f, g) to R× R.

Proof. It is easy to see that f̃|I = f and g̃|I = g. Now, if (f̃ , g̃) is a
solution in T 2τ then it is also a solution in R×R; indeed g̃(x+y) 6= g̃(x)+
g̃(y), with nτ < x ≤ (n+1)τ, mτ < y ≤ (m+1)τ, (n+m)τ < x+y ≤ (n+
m+2)τ, n, m ∈ Z implies that g̃(x+y−(n+m)τ)) 6= g(x−nτ)+g(y−mτ),
therefore f̃(x+ y− (n+m)τ)) = f(x−nτ)+ f(y−mτ) and so, by adding
to both sides of this equality nk + mk, we get f̃(x + y) = f̃(x) + f̃(y).

Thanks to the previous consideration, the theorem is proved when
τ < 1

2 , because in this case (f̃ , g̃)|T 2τ = (f, g) holds; when τ = 1
2 it is

sufficient to verify that (f̃ , g̃) is a solution on {x, y > 0 : x + y = 1}. To
this purpose, by using (2), we can show that

ξ(x) 6= g̃(1) = g(1− τ) + g(τ) implies ϕ(x) = f̃(1) = f(1− τ) + k.

Let x ∈ (0, 1) : ξ(x) 6= g̃(1), it is obviously x 6= k and we can suppose
x ∈ (0, τ), having ξ(x + τ) = ξ(x);

g(x) + g(1−x) 6= g(τ) + g(1− τ) implies g(x) + g(1− τ −x) 6= g(1− τ)

and the following equality

f(x)+f(1−τ−x) = f(1−τ), f(x)+f(1−x)−∆τf(1−x−τ) = f(1−τ)

that is ϕ(x) = f(1− τ) + k = f̃(1). ¤

Remark 4. Let (f, g) be the solution in T with g and f defined by

g(x) =





0, x ∈ [0, 3/5)
1, x ∈ [3/5, 4/5)
0, x ∈ [4/5, 1)

. f(x) =





1, x ∈ [0, 3/5)
2, x ∈ [3/5, 4/5)
3, x ∈ [4/5, 1).

In this case (4) holds with τ = 4/5 , and ∆τf = 2 is a constant function;
since (3/5, 3/5) ∈ Ωg̃ ∩Ωf̃ this example shows that Theorem 2 is not true
if τ > 1/2.
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Theorem 3. Let (f, g) be such that

(x, y) ∈ Ωg ∩ (Qτ\Tτ ) =⇒ x, y ∈ Gτ or x, y, x + y 6∈ Gτ

and assume (4) holds with τ < 1/2. Then (f̃ , g̃) defined by

{
f̃(t) = f(t− nτ) + n∆τf(t− nτ)

g̃(t) = g(t− nτ) + ng(τ)
(6’)

nτ < t ≤ (n + 1)τ, n ∈ Z, t ≥ 1

is an extension of (f, g) to R× R.

Proof. Let (x, y) ∈ Ωg̃ ; (4) and (6’) imply that x, y 6= nτ ∀n ∈ Z.
Let nτ < x < (n + 1)τ, mτ < y < (m + 1)τ, (m + m)τ < x + y <
(m + m + 2)τ ; since (x − nτ, y −mτ) ∈ Ωg then f(x + y − (n + m)τ) =
f(x− nτ) + f(y −mτ).

If x + y ≤ (m + m + 1)τ , it follows

f̃(x + y) = f(x + y − (n + m)τ) + (n + m)∆τf(x + y − (n + m)τ)

= f(x− nτ) + f(y −mτ) + (n + m)∆τf(x + y − (n + m)τ)

and, by virtue of ii) of Lemma 3

∆τf(x + y − (n + m)τ) = ∆τf(x− nτ) = ∆τf(y −mτ)

and so (x, y) ∈ Af̃ .
If x + y > (m + m + 1)τ , it follows

f̃(x + y) = f(x + y − (n + m + 1)τ)

+ (n + m + 1)∆τf(x + y − (n + m + 1)τ)

= f(x + y − (n + m)τ) + (n + m)∆τf(x + y − (n + m + 1)τ)

= f(x− nτ) + f(y −mτ) + (n + m)∆τf(x + y − (n + m + 1)τ)

and the assertion proving that

∆τf(x + y − (n + m + 1)τ) = ∆τf(x− nτ) = ∆τf(y −mτ).

To this purpose, let u = x− nτ, v = y −mτ ; the previous considerations
imply that (u, v) ∈ Ωg ∩ (Qτ\Tτ ), g(u + v− τ) + g(τ) 6= g(u) + g(v) and
by the hypothesis that u, v ∈ Gτ or u, v, u + v − τ 6∈ Gτ .

In the first case, when ξτ (u) = ξτ (v) = g(τ), we obtain

g(u + v − τ) + g(τ − u) 6= g(v), g(u + v − τ) + g(τ − v) 6= g(u)
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and as consequence of ii) of Lemma 3 ∆τf(u+v−τ) = ∆τf(u) = ∆τf(v).
In the second case, by virtue of ii) of Lemma 3, we have

∆τf(u), ∆τf(v),∆τf(u + v − τ) = ∆τf(τ).

The theorem is so proved. ¤

4. Optimal solutions of (1) in R × R

In this paragraph we suppose (X, +) = (S, +) = (R, +). In the fol-
lowing [t] denotes the integral part of t and [t]∗ = −(1 + [−t]).

Lemma 5. Let α, β, c, d ∈ R : 0 < α < β ; c, d 6= 0. The pair (f, g)
defined by

(7)





f(x) =
([

x
α

]
+

[
x
β

]
+ 1

)
d

g(x) =
([

x
α

]−
[

x
β

])
c

or by

(8)





f(x) =
([

x
α

]
+

[
x
β

]
∗

+ 1
)

d

g(x) =
([

x
α

]−
[

x
β

]
∗

)
c

is a non-trivial optimal solution of (1) in R× R.

Proof. Let (f, g) be of the form (7) (the proof is the same for the
form (8)) and let

x ∈ [iα, (i + 1)α) ∩ [rβ, (r + 1)β), y ∈ [jα, (j + 1)α) ∩ [sβ, (s + 1)β),
i, j, r, s ∈ Z.

So x+ y ∈ [mα, (m+1)α)∩ [nβ, (n+1)β) with m = i+ j or m = i+ j +1
and n = r + s or n = r + s + 1.

Now, since

g(x) + g(y) = (i + j − r − s)c, f(x) + f(y) = (i + j + 2 + r + s)d

g(x + y) = (m− n)c, f(x + y) = (m + n + 1)d

we obtain

g(x + y) 6= g(x) + g(y) ⇐⇒
{

m = i + j

n = r + s + 1
or

{
m = i + j + 1
n = r + s

therefore, g(x+y) 6= g(x)+g(y) if and only if f(x+y) = f(x)+f(y). ¤
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Definition. Two solutions (f1, g1), (f2, g2) of equation (1) are equiv-
alent if f2 − f1 and g2 − g1 are additive functions.

Lemma 6. Any non-trivial optimal solution of (1) in R×R, for which

condition (5) with Hα 6= R+ holds, is equivalent to a solution of the form

(7) or (8).

Proof. By the condition (5) and the results in [3], we may assume
g(x) = 0 and so

ξα(x) = g(x) + g(α− x) = 0 , x ∈ (0, α).

Let g(α) = c and let α′ be defined by α′ = Sup{t > 0 : (0, t) ⊂ Hα}.
From the definition of α and the assumption Hα 6= R+, it follows

g(x) = ic, x ∈ [iα, (i + 1)α) ∩ (0, α + α′) with c 6= 0 and α′ < +∞.

Let β = α + α′ and N0 ∈ N, N0 ≥ 1 : N0α ≤ β < (N0 + 1)α ; the form
of g implies that Ωg(= Af ) contains all points (x, y) ∈ Tβ such that

x ∈ [iα, (i + 1)α), y ∈ [jα, (j + 1)α), x + y ∈ [(i + j + 1)α, (i + j + 2)α)

with i, j ≥ 0 : i + j = 0, 1, . . . , N0 − 1. Therefore ([3]) we may assume
f(x) = (i+1)d , x ∈ [iα, (i+1)α)∩(0, β) with d 6= 0 and f(α) = ϕα(x) =
2d, x ∈ (0, α). Now, let x, y ∈ (0, β), x ∈ [iα, (i + 1)α), y ∈ [jα, (j + 1)α);
since we have

g(x) + g(y) = (i + j)c, f(x) + f(y) = (i + j + 2)d,

if t ∈ [β, 2β) ∩ [mα, (m + 1)α), t = x + y, (x, y) ∈ Qβ\Tβ , we have that

(ξt, ϕt) ∈ {(mc, (m + 2)d) ; ((m− 1)c, (m + 1)d)}.
So, by virtue of ii) of Lemma 1, necessarily it is

(9)

{
f(t) = (m + 2)d

g(t) = (m− 1)c
or (9’)

{
f(t) = (m + 1)d

g(t) = mc

Now we prove that if t ∈ (β, 2β) then (9) holds.
The definition of β implies that ∀ε > 0 ∃γ ∈ [β, β + ε)∩ [N0α, (N0 + 1)α))
such that g(γ) 6= g(γ−α)+ g(α), therefore f(γ) = f(γ−α)+ f(α) and so

{
f(γ) = (N0 + 2)d
g(γ) = (N0 − 1)c.
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Suppose, ab absurdo, that ∃t0 ∈ (β, 2β) ∩ [mα, (m + 1)α) such that
{

f(t0) = (m + 1)d
g(t0) = mc.

It follows t0−γ ∈ (lα, (l +1)α)∩ (0, β) with l = m−N0− 1 or l = m−N0

and therefore we have

f(t0 − γ) + f(γ) = (m + 2)d or f(t0 − γ) + f(γ) = (m + 3)d

and

g(t0 − γ) + g(γ) = (m− 2)c or g(t0 − γ) + g(γ) = (m− 1)c;

so (t0 − γ, γ) ∈ Ωg ∩ Ωf contrary to the hypothesis.
Now, since

{
f(β) = (N0 + 2)d

g(β) = (N0 − 1)c
or

{
f(β) = (N0 + 1)d

g(β) = N0c,

by virtue of the previous considerations we see that (f, g)|T2β
is of the

form (7) or (8) respectively. The next step is to show that if (f, g)|T2β
is

of the form (7), then (f, g)|Tnβ
, n ≥ 2, is of the same form and so is (f, g)

on the whole R × R. By induction, let (f, g)|Tnβ
be of the form (7) and

consider t ∈ [mα, (m + 1)α) ∩ [nβ, (n + 1)β) ; since if (x, y) ∈ {T(n+1)β ∩
Qnβ}\Tnβ is such that

x ∈ [iα, (i + 1)α) ∩ [rβ, (r + 1)β), y ∈ [jα, (j + 1)α) ∩ [sβ, (s + 1)β)

with 0 ≤ r, s < n, we obtain m = i + j or m = i + j + 1, n = r + s or
n = r + s + 1 and

g(x) + g(y) = (i + j − r − s)c; f(x) + f(y) = (i + j + 2 + r + s)d;

we can remark, as above in Qβ\Tβ , that

(ξt, ϕt) ∈
{(

(m− n)c, (m + n + 2)d
)

;
(
(m− n + 1)c, (m + n + 1)d

)
;

(
(m− 1− n)c, (m + n + 1)d

)
;

(
(m− n)c, (m + n)d

)}

and therefore, by virtue of Lemma 1, f(t) = (m + n + 1)d and g(t) =
(m− n)c necessarily holds.

So (f, g)|T(n+1)β
is of the form (7) and therefore (f, g)|R+×R+ as well.

At last, if (f, g) is of the form (7) in R+ × R+ we prove that (f, g) is
of the same form in R× R.
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Let y < 0, y ∈ [jα, (j + 1)α)∩ [sβ, (s + 1)β), j, s < 0. Since ∀x > −y with
x ∈ [iα, (i + 1)α) ∩ [rβ, (r + 1)β), x + y ∈ [mα, (m + 1)α) ∩ [nβ, (n + 1)β)
we have

g(x+y)−g(x) = (m−n− i+r)c and f(x+y)−f(x) = (m+n− i−r)d

with j = m− i or j = m− i−1, s = n− r or s = n− r−1; we can remark
that

(
g(x + y)− g(x), f(x + y)− f(x)

) ∈ {(
(j − s)c, (j + s)d

)
;

(
(j − s− 1)c, (j + s + 1)d

)
;
(
(j + 1− s)c, (j + s + 1)d

)
;

(
(j − s)c, (j + s + 2)d

)}

and consequently f(y) = (j +s+1)d and g(y) = (j−s)c necessarily holds.
So (f, g) is of the form (7) in (R\{0})× (R\{0}). With similar considera-
tions, as consequence of the following equalities

g(x) + g(−x) = 0, f(x) + f(−x) = 0, x ∈ (0, α)

g(α) + g(−α) = c, f(α) + f(−α) = d

g(β) + g(−β) = −c, f(β) + f(−β) = d, if N0α < β < (N0 + 1)α

g(β) + g(−β) = 0, f(β) + f(−β) = 2d, if β = N0α

we obtain g(0) = 0 and f(0) = d; so (7) holds in R × R. With a similar
prove we show that if (f, g)|T2β

is of the form (8) then (f, g) is of the same
form in R× R. ¤

Theorem 4. The pair (f, g) is a non-trivial optimal solution of (1) in

R × R, satisfyng (5) with Hα 6= R+, if and only if it is equivalent to a

solution of the form (7) or (8).

Proof. Lemma 6 proves the necessary condition.
Let (f, g) defined by (7) or (8); by Lemma 5, (f, g) is a solution of (1),
furthermore it is easy to see that (5) holds with Hα ⊃ (0, β − α) and we
have R+ 6= Hα because Hα ∩ (β − α, 2β − α) = ∅; hence the sufficient
condition is proved. ¤

Remark 5. Let β = p
q α, p, q ∈ N, p > q and τ = qβ = pα; then

if (f, g) is defined by (7) it follows g(x + τ) = g(x) + g(τ), x ∈ R;

if (f, g) is defined by (8) it follows f(x + τ) = f(x) + f(τ), x ∈ R.
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Indeed, in the first case x ∈ [iα, (i + 1)α) ∩ [rβ, (r + 1)β) implies

x + τ ∈ [(i + p)α, (i + p + 1)α) ∩ [(r + q)β, (r + q + 1)β)

and therefore

g(x + τ) = (i + p− r − q)c = g(x) + g(τ);

in the second case x ∈ [iα, (i + 1)α) ∩ (rβ, (r + 1)β] implies

x + τ ∈ [(i + p)α, (i + p + 1)α) ∩ ((r + q)β, (r + q + 1)β]

and therefore

f(x + τ) = (i + p + 1 + r + q)d = (i + r + 1)d + (p + q)d = f(x) + f(τ).

Remark 6. By Remark 3 and Theorem 4, we can characterize in a
similar way the solutions of (1) in R× R having the form

(7’)





f(x) =
([x

α

]
∗

+
[

x

β

]

∗
+ 1

)
d

g(x) =
([x

α

]
∗
−

[
x

β

]

∗

)
c

or

(8’)





f(x) =
([x

α

]
∗

+
[

x

β

]
+ 1

)
d

g(x) =
([x

α

]
∗
−

[
x

β

])
c

Remark 7. For the solutions of (1), characterized by Theorem 4, con-
dition (3) is not satisfied because

{x = pα : pα 6= qβ, p, q ∈ N} ⊂ (pi(Ωg)\pi(Ωg)0) i = 1, 2.

Remark 8. If β = N0α = 1, N0 > 1, then (f, g) defined by (7) or (7’)
satisfies the condition (3) in T but not in Q([4]).

Lemma 7. Any non-trivial optimal solution of (1) in R×R, for which
condition (5) with Hα = R+ holds, is equivalent to a solution having one
of the following forms (10) or (11):





f(x) =
([x

α

]
+ 1

)
d

g(x) =
[x

α

]
c

(10)
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f(x) =
[x

α

]
d

g(x) =
([x

α

]
+ 1

)
c

for x < 0,(11)





f(x) =
([x

α

]
+ 1

)
d

g(x) =
[x

α

]
c

for x > 0

{
f(0) = d

g(0) = 0
or

{
f(0) = 0
g(0) = c,

α, c, d ∈ R with α > 0 and c, d 6= 0.

Proof. Proceeding as in Lemma 6, it is easy to see that Hα = R+

implies α′ = +∞ = β, Tβ = Qβ = R+ × R+ and since in R+ × R+ (10)
and (11) coincide, the assertion is proved in R+ × R+.

To prove the assertion in R × R, let y < 0, y ∈ [jα, (j + 1)α); since
∀x > −y with x ∈ [iα, (i + 1)α), x + y ∈ [mα, (m + 1)α) we have

g(x + y)− g(x) = (m− i)c and f(x + y)− f(x) = (m− i)d

with j = m− i or j = m− i− 1, we can remark that

(g(x + y)− g(x), f(x + y)− f(x)) ∈ {(jc, jd); ((j + 1)c, (j + 1)d)}
and consequently

(10”)

{
f(y) = (j + 1)d

g(y) = jc
or (11”)

{
f(y) = jd

g(y) = (j + 1)c.

Let A and B be the subsets of R− in which (10”) and (11”) are verified
respectively; it is A ∩B = ∅ and A ∪B = R− manifestly.
Since we can remark that if x, y < 0 then

(g(x) + g(y), f(x) + f(y)) = ((i + j)c, (i + j + 2)d) in A×A,

(g(x) + g(y), f(x) + f(y)) = ((i + j + 2)c, (i + j)d) in B ×B,

(g(x) + g(y), f(x) + f(y)) = ((i + j + 1)c, (i + j + 1)d) in A×B;

we deduce B = ∅ or A = ∅, that is (10) or (11) holds in (R\{0})×(R\{0}).
If (10) is true in (R\{0})× (R\{0}), the following equalities

g(x) + g(−x) = −c, f(x) + f(−x) = d, x ∈ (iα, (i + 1)α)
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and
g(iα) + g(−iα) = 0, f(iα) + f(−iα) = 2d

imply that g(0) = 0 and f(0) = d necessarily holds, so (10) is true in
R× R.

If (11) is true in (R\{0})× (R\{0}), the following equalities

g(x) + g(−x) = 0, f(x) + f(−x) = 0, x ∈ (iα, (i + 1)α);

and
g(iα) + g(−iα) = c, f(ia) + f(−iα) = d

imply that g(0) = 0 and f(0) = d or g(0) = c and f(0) = 0 necessarily
holds, so the assertion is true. ¤

Theorem 5. The pair (f, g) is a non-trivial optimal solution of (1) in
R × R, satisfyng (5) with Hα = R+, if and only if it is equivalent to a
solution of the form (10) or (11).

Proof. Lemma 7 proves the necessary condition. It is easy to verify
the sufficient condition.

Remark 9. Let (10’) and (11’) be obtained by exchanging in (10) and
(11) the symbols [ ] and [ ]∗.

As in Remark 6, we can characterize in a similar way the solutions of
(1) in R× R defined by (10’) or (11’).

Remark 10. Theorem 5 gives, besides the solutions defined by (10)
(and already determined in [3] under the condition (3)), also the solutions
defined by (11) for which

{x = iα : i ∈ Z\{0}} ⊂ (pi(Ωg)\pi(Ω0
g)), i = 1, 2.
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