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On groups with a locally nilpotent triple
factorization

By BERNHARD AMBERG (Mainz) and YAROSLAV SYSAK (Kiev)

Abstract. The following theorem is proved. Let the group G = AB = AM =
BM be the product of three locally nilpotent subgroups A, B and M , where M is normal
in G. If M has an ascending G-invariant series with minimax factors, then G is locally
nilpotent.

1. Introduction

In the theory of groups which have a factorization, groups of the form
G = AM = BM = AB with two subgroups A and B and a normal sub-
group M of G play a special role. A general construction of such “triply
factorized” groups is due to the second author and can be found in Sec-
tion 6.1 of [2]. There are many situations in which the triply factorized
group G satisfies some nilpotency condition if the three subgroups A, B
and M satisfy this nilpotency condition. For instance, if M is a mini-
max group or if G has finite abelian section rank, then it was shown in
[1] that the local nilpotency of A, B and M implies that of G (see [2],
Theorems 6.3.7 and 6.3.8). The following theorem extends these results.

Theorem 1.1. Let the group G = AB = AM = BM be the product
of three locally nilpotent subgroups A, B and M , where M is normal in
G. If M has an ascending G-invariant series with minimax factors, then
G is locally nilpotent.
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Observe that in Theorem [1] the normal subgroup M of G is hyper-
centrally embedded in G. Therefore, if the subgroups A, B and M are
hypercentral, then also the group G is hypercentral. On the other hand,
there exist non-nilpotent groups which have a triple factorization with
three abelian factors, these groups are even hypercentral with Prüfer rank
2 (see [2], Example 6.3.5). It should also be noted that Theorem 1.1 can-
not be extended to the case when M has an ascending G-invariant series
whose factors have finite Prüfer rank. This can be seen from the example
of a triply factorized group G = AB = AM = BM in [2], Theorem 6.1.2,
where the subgroups A, B and M are abelian and M has Prüfer rank 1,
but G is not locally nilpotent.

Recall that the FC-central series Fα(G) is defined by the rules
F0(G) = 1, Fα+1(G)/Fα(G) is the FC-centre of G/Fα(G) and Fλ(G) =⋃

Fβ(G) (β < λ) where α is an ordinal and λ is a limit ordinal. The group
G is FC-hypercentral if Fα = G for some ordinal α, and it is FC-nilpotent
if α is finite.

If G is FC-nilpotent, M is nilpotent and A and B are hypercentral,
then it was shown in [3] that G is also hypercentral. It was asked whether
this result extends to the case when G is merely FC-hypercentral and M

is hypercentral. The following corollary gives a positive answer to this
question.

Corollary 1.2. Let the FC-hypercentral group G = AB = AM =
BM be the product of three hypercentral subgroups A, B and M , where

M is normal in G. Then G is hypercentral.

Using standard arguments it is easy to deduce the following corollaries
from Theorem 1.1 (see for example [2], proofs of Corollaries 6.3.9 and
6.3.11).

Corollary 1.3. Let the group G = AB be the product of two locally

nilpotent subgroups A and B. If G has an ascending series with minimax

factors, then each term of the Hirsch-Plotkin series of G is factorized.

In particular, the Hirsch-Plotkin radical R of G is factorized, i.e. R =
(A ∩R)(B ∩R) and A ∩B ⊆ R.
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Corollary 1.4. Let the group G = AB be the product of two locally
nilpotent subgroups A and B. If G has an ascending series with minimax
factors, the factorizer X(N) = AN ∩ BN of every normal subgroup N of
G is ascendant in G. In particular, the intersection A ∩ B is ascendant
in G.

The notation is standard and can for instance be found in [6] and
[2]. In particular, the factorizer X(N) of the normal subgroup N of the
factorized group G = AB is the subgroup X(N) = AN ∩ BN ; it is easy
to see that X(N) = A1B1 = A1N = B1N where A1 = A ∩ BN and
B1 = B ∩AN .

2. Some lemmas

We will need several lemmas, some of which are special cases of our
theorem.

Lemma 2.1. Let G be a group and A a torsion-free abelian minimax
normal subgroup of G. Suppose that the factor group G/A is locally
nilpotent and for every non-trivial normal subgroup N of G the factor
group A/(A ∩N) is periodic. Then either G is locally nilpotent or G has
finite Prüfer rank.

Proof. It follows from [6], Theorem 10.35, and the corollary to
Lemma 10.37, that the factor group G/CG(A) is minimax. Let Â be the
radicable hull of A. Then Â has finite Prüfer rank and the action of G on
A induces an action of G on Â and we can construct the product Ĝ = ÂG
in which Â is a normal subgroup and G∩Â = A. Clearly CG(Â) = CC(A).

Since G/A is locally nilpotent, the factor group G/CG(A) is hyper-
central. If CG(A) = G, then G is locally nilpotent and the lemma is proved.
Let CG(A) 6= G and gCG(A) be a non-trivial central element of G/CG(A).
Clearly the centralizer CA(g) is a normal subgroup of G, and the factor
group A/CA(g) is periodic if CA(g) 6= 1. Since A/CA(g) is isomorphic
with [A, g] and A is torsion-free, this implies CA(g) = 1 and hence also
CÂ(g) = 1. Thus [Â, g] is isomorphic with Â so that Â = [Â, g] (see [5],
Vol. 2, p. 153). In particular Â = [Â,G]. By Robinson [7], Theorem 4.5,
the group Ĝ splits over Â so that there exists a subgroup H of Ĝ such
that Ĝ = H n Â is a semi-direct product of a subgroup H and the normal
subgroup Â. Obviously CH(Â) is a normal subgroup of Ĝ and by the hy-
pothesis of the lemma CH(Â) ∩ G = 1. Since the factor group H/CH(Â)
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is isomorphic with Ĝ/CĜ(Â) and so also with G/CG(A), it is minimax.
Therefore the factor group Ĝ/CH(Â) and thus also G have finite Prüfer
rank. The lemma is proved.

Lemma 2.2. Let G be an extension of a torsion-free abelian minimax

group by a locally nilpotent group and suppose that G = MA = MB =
AB with three locally nilpotent subgroups A, B and M , where M is normal

in G. Then the group G is locally nilpotent.

Proof. Let X be an abelian minimax normal subgroup of G with
minimal finite Prüfer rank such that the factor group G/X is locally
nilpotent. If N is a normal subgroup of G which is maximal with the
conditions that N ∩ X ⊂ X and X/(N ∩ X) is torsion-free, then the
factor group Ḡ = G/N satisfies the hypothesis of Lemma 2.1. It fol-
lows that Ḡ has finite Prüfer rank. Moreover, Ḡ has a triple factorization
Ḡ = M̄Ā = M̄B̄ = ĀB̄ with three locally nilpotent subgroups Ā, B̄ and
M̄ . Hence Ḡ is locally nilpotent by [2], Theorem 6.3.8. But then the factor
group G/(N ∩ X) is also locally nilpotent, since it is embedded into the
direct product (G/N) × (G/X) of two locally nilpotent subgroups G/N

and G/X. As X/(N ∩X) is torsion-free and non-trivial, the Prüfer rank
of N ∩X is less than the Prüfer rank of X. This contradicts the choice of
X. The lemma is proved.

Lemma 2.3. Let the group G be an extension of a finite abelian group

by an locally nilpotent group and suppose that G = MA = MB = AB

with three locally nilpotent subgroups A, B and M . Then G is locally

nilpotent.

Proof. Let X be a finite abelian normal subgroup of G with minimal
order such that the factor group G/X is locally nilpotent. Then [X, G] =
X and by a theorem of Robinson (see [7], Corollary 3.5) the group G splits
over X. Therefore there exists a subgroup H of G such that G = H nX.
Obviously CH(X) is a normal subgroup of G and the factor group Ḡ =
G/CH(X) is finite. Since Ḡ = M̄Ā = M̄B̄ = ĀB̄ is a trifactorized group
with nilpotent subgroupsĀ, B̄ and M̄ , the group Ḡ is nilpotent by a result
of Kegel (see [2], Corollary 2.5.11). Hence G is locally nilpotent, because
it is embedded in the direct product (G/X)× (G/CH(X)). The lemma is
proved.

The proof of the following lemma can be found in [4], Lemma 7.
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Lemma 2.4. Let G = AM be the product of a subgroup A and a
locally nilpotent normal subgroup M , and let M1 and M2 be subgroups
of M such that 〈M1, A〉 and 〈M2, A〉 are locally nilpotent. Then also
〈M1, M2, A〉 is locally nilpotent.

Lemma 2.5. Let the group G = MA = MB = AB be the product
of three locally nilpotent subgroups A, B and M , where M is normal in
G. If M has an ascending G-invariant series with minimax factors and the
factors A/(A∩M) and B/(B∩M) are finitely generated, then G is locally
nilpotent.

Proof. By hypothesis the subgroup M has an ascending G-invariant
series 1 = M0 ⊆ M1 ⊆ . . . ⊆ Mγ = M whose factors are abelian and either
finite or torsion-free minimax groups. There exists a least ordinal α such
that G/Mα is locally nilpotent. If α = 0, then G is locally nilpotent
and the lemma is proved. Therefore let α > 0. If α is not a limit ordinal,
G/Mα−1 is an extension of an abelian minimax group which is either finite
or torsion-free by a locally nilpotent group. By Lemma 2.2 and Lemma 2.3
the factor group G/Mα−1 is locally nilpotent, a contradiction. Hence α
must be a limit ordinal and Mα =

⋃
Mβ where β < α.

By hypothesis there exist elements a1, . . . , as of A and b1, . . . , bt of B
such that A = (A ∩M)〈a1, . . . , as〉 and B = (B ∩M)〈b1, . . . , bt〉. More-
over, there exist elements a′1, . . . , a

′
t of A, b′1, . . . , b

′
s of B and m1, . . . ,ms,

m′
1, . . . , m

′
t of M such that b′i = aimi and bj = a′jm

′
j for 1 ≤ i ≤ s and

1 ≤ j ≤ t. Put A∗ = 〈a1, . . . , as, a
′
1, . . . , a

′
t〉, B∗ = 〈b1, . . . , bt, b

′
1, . . . , b

′
s〉

and M∗ = 〈m1, . . . , ms, m
′
1, . . . ,m

′
t〉. Then we have

〈A∗, B∗〉 = 〈A∗,M∗〉 = 〈B∗,M∗〉.
Since G/Mα is locally nilpotent, the group 〈A∗,M∗〉/〈A∗,M∗〉 ∩ Mα is
nilpotent and so the intersection 〈A∗,M∗〉∩Mα is finitely generated as an
〈A∗,M∗〉-operator group. Hence 〈A∗,M∗〉∩Mα = 〈A∗,M∗〉∩Mβ for some
ordinal β < α. Then the factor group 〈A∗,M∗〉Mβ/Mβ is nilpotent. Pass-
ing to the factor group G/Mβ we may even suppose that Mβ = 1. Then the
subgroup 〈A∗,M∗〉 is nilpotent and hence the subgroup 〈A ∩M, A∗,M∗〉
is locally nilpotent by Lemma 2.4. Similarly also 〈B∩M,A∗, B∗〉 is locally
nilpotent. Since 〈B ∩M, B∗,M∗〉 = 〈B ∩M,A∗,M∗〉, another application
of Lemma 2.4, yields that the subgroup 〈A∩M,B∩M, 〈A∗,M∗〉〉 is locally
nilpotent. Now we have A = (A ∩M)A∗, B = (B ∩M)B∗ and

〈A ∩M, B ∩M, 〈A∗,M∗〉〉 = 〈A ∩M, B ∩M, 〈A∗, B∗〉〉 = G.

Thus G is locally nilpotent. This contradiction proves the lemma.
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Lemma 2.6. Let the group G = MA = MB = AB be the product

of three locally nilpotent subgroups A, B and M , where M is normal

in G and has an ascending G-invariant series with minimax factors. If

M is non-trivial, then there exists a non-trivial normal subgroup K of G

which is contained in M such that its factorizer X = X(K) in G is locally

nilpotent. If G is locally nilpotent, then K can be chosen as a cyclic central

subgroup of G.

Proof. It follows from the hypothesis that the subgroup M is hyper-
central and has a non-trivial center Z if M 6= 1. Moreover, there exists a
subgroup K of Z such that K is either a finite minimal normal subgroup of
G or a torsion-free minimax group on which G acts rationally irreducibly.
The factorizer X(K) in G is locally nilpotent by [2], Theorem 6.3.7. In
particular, if G is locally nilpotent, then K is a cyclic central subgroup
of G.

3. Proof of the theorem

Let L be a normal subgroup of G contained in M such that the fac-
torizer F of L in G is locally nilpotent, and L is maximal with these
properties. If L = M we are done. Assume that L ⊂ M and consider the
factor group Ḡ = G/L. Then Ḡ = ĀB̄ = ĀM̄ = B̄M̄ , where the images
modulo L are indicated by bars. By Lemma 2.6 there exists a subgroup K

of M which is normal in G and properly contains L such that the factorizer
X̄ = X(K̄) in Ḡ is locally nilpotent. Let X denote the full preimage of
X̄ in G. Then the subgroup X is the factorizer of K in G which satisfies
the hypotheses of the theorem and is not locally nilpotent. Thus, without
loss of generality we may assume that G = X. Then the factor group
Ḡ = ĀB̄ = ĀK̄ = B̄K̄ is locally nilpotent. Repeating the above argu-
ments we may assume by Lemma 2.6 that K̄ is a cyclic central subgroup
of Ḡ. Obviously in this case the intersection Ā∩B̄ is a normal subgroup of
Ḡ. Therefore its full preimage F = AL ∩BL is a locally nilpotent normal
subgroup of G and so is contained in the Hirsch-Plotkin radical R of G. In
particular the intersection A∩B lies in R. Clearly G = AB = AR = BR.
It is easy to see that the factor groups Ā/(Ā∩B̄) and B̄/(Ā∩B̄) are cyclic.
Therefore the factor groups A/(A∩R) and B/(B ∩R) are also cyclic and
hence the group G is locally nilpotent by Lemma 2.5. This contradiction
proves the theorem.
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