Research problems in number theory

By 1. KATAI (Budapest)

'In this paper I state some problems in number theory that 7 was interested in the
last yvears. One part of them was published in [1] written in hungarian.

I. Characterization of additive functions

Let f(n) be a completely additive function, i.e. suppose that the relation

S (mn) = f(m)+f(n)
holds for every m, n.
I raised the following question [2], which we state now as

Conjecture 1. If f(p+1)=0 for every prime p, then f(n)=0 identically.
In the same paper I have proved a little more week assertion, on the assumption
of the Riemann—Piltz conjecture namely

Theorem A. If f(p+1)=0 for every prime p, and Sf(p)=0 for every prime p
less than K—K being an effective numerical constant —, then f(n)=0 identically.

In [3] I proved this assertion with ineffective K, without any condition. The
proof is based on the large sieve’ theorem due to A. 1. VINoGrADOV and E. BOMBIERI.
The ineffectivity ot K has a (near) connection with the problem of effectivization
concerning the Siegel-roots of the L-functions. Presently ELLioTT proved conjec-
ture 1. (See [4].)

Conjecture 2. If
fp+D)=fp'+1) (p=p)

for every pail of primes p, p’, then f(n) is a constant multiple of log n.

This would be a generalization of the well known theorem due to P. ERDGS
states that a monotonic f(n) must be a constant multiple of logn. Furthermore,
if Conjecture 2 is true, then Conjecture 1 is true too. If the equation ap—bp'=1
has an infinity of solutions in primes p, p’, for every relative prime pairs a, b of
integers, then Conjecture 2 is true.
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Presently we can prove only the following assertion: if f(P*+ 1) is monotonic,
where P, runs over the numbers having at most three prime divisors, then f(n) is
a constant multiple of log n. The equation

nPy—(n+1)Py = —1
has an infinity of solutions — as we can see by the Selberg’s sieve — hence
n(Py+1) = (n+1)(Py +1),

Jf(m) =f(n+1).

But a monotonic additive function must be a constant multiple of logn, as
proved P. Erdés.

Conjecture 4. If f(p+1)=0 for every prime p, then f(n)=0 for every natural
number n.

This would be a consequence of the following hopeless conjecture: for every
natural number @, there exists a natural number K, such that the equation

p+l=Ka"

and so

has an infinity of solutions, when n=1,2, ..., and p runs through the primes.

Conjecture 3. Suppose that
(1.1) If(p+1) =Clog(p+1)
for every prime p. Then
(1.2) [f(n)| = AClogn,

where A is a suitable absolute constant.
I have proved [5] the following conditional result.

Theorem B. Assuming the Riemann—Piltz conjecture, from (1.1) it follows that
|f(n) = K, (logn)-loglog 10n
where K, a constant, which depends on f.

Now 7 can prove an unconditional result, but this is very wrong.
Presently Elliott proved Conjecture 4*) and the following Conjecture 5, too.
Let now f(n) denote an arbitiary additive function.

Conjecture 5. Let
E(x) = max|f(p+1)l, M(x) = max|f(n)].
Then there exist absolute numerical constants A, B such that
M(x) = AE(x®).
Perhaps this assertion holds for B=1.

*) P. D. T. A. ELuioT, On two conjoctures of KATAlL, Acra Arithm. 30 (1976), 341—375.
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Conjenture 6. The following inequalities hold:
x~t 2 |f(n) = Ax~®(log x®) ,Z lf(p+1),
n=x p=x®

log x

S+ = 4ax® 3 |0

X P=x . n=x
where A and B are suitable absolute constans.
Conjecture 7. The following inequality is true:

max |f(2n) — f2n—2)| = 4 max|f(p+ D) —f(p— D).

Conjecture 8. The following inequalities hold
x“Hogx Z |f(p+)~f(p-1D)|=
p=x

= Ax? 3 |f@n—f@n-2),

x“h); |f2n)—f(2n—2)| = AxB(logx®) 3 |f(p+1)—f(p-1)),

PE;“

where 4 and B are suitable absolute constants.
Erdss proved that from f(n+1)—f(n)—=0 (n—-<=) it follows that f(n)=c log n.
Generalizing this, / proved that from

lim 4* f(n) = 0

n-—-eco

it follows that f(n)=clogn [6]. The same assertion for k=1 was stated without
proof by P. ErDOs [7], and have been proved by I. KATAr [8], A. MATE [9], too.
I proved that when f(n) and g(n) are additive functions and

g+1)—f(n) -0 (n—ee),

then f(n) =g(n)=clogn.
I think holds the following assertion, which we state as

Conjecture 9. Let a;, b;(i=1, ..., k) be distinct pairs of natural numbers, a;=0
(i=1, ..., k), f;(n) be additive functions, such that

k
Zafi@n+b)~0 (1),

€y, ..., ¢; arbitrary constants. Then f;(n)=d,logn+1/;(n), where ;(n) must be of
finite supports, i.e.
L(p?) =0

except at most for a finite set of prime powers p*. Furthermore

k
Sealan+b) =0 (m=1,2,..).
i=1
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Wirsing [10] and 7 [11] proved independently that from

2 fa+1)—f(n) -0

1
X n=x

(1.3)

it follows that f(n)=c log n, which was an old conjecture of P. Erd0s
Later WIRSING deduced this assertion assuming only that

Wenr
liminf— 3 |f(n+1)—f(@m)| =0, y=0, constant.
x=+o X y=p=(1+y)x
WIRSING has proved another old conjecture of P. Erdds, namely that from

| f(n+1)—f(n)| = K(= constant)
it follows that
f(n) = clogn+g(n),

g(n) being a bounded (additive) function.
I stated in [12], that from

gmn+1)—f(m| =K
(f and g are arbitrary additive functions) it follows that
f(n) = clogn+hy(n), g(n) = clopn+ hy(n),

hy(n), hy(n) are bounded functions. This assertion was proved recently by J. MAuc-
LAIRE¥)

Conjecture 10. If for an additive function f the values f(p+1) are integers
for each primes p, then f(n)= integer for all natural number n.

I1. Distribution of additive functions

We say that the additive function f(n) has a limit-distribution on the set of
“prime plus one’’-s, when the frequency

1
TN}N{‘” =N, f(p+1) < x}

tends to a distribution function F(x) at all the continuity points of its. It was proved
in [13] the following analogon of Erd6s—Wintner-theorem. If the series

A)

Ifp)i=1 P

b) 2&

Iftpi=1 P

9 2 1jp
1f(p)|=1

a)

*) J.-L. MAUCLAIRE, On a problem of Katai, Acta. Sci. Marh. 36 (1974), 205—207.
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converge, then f(p+1) has a limit-distribution. The question of the necessity of
these conditions was asked by Erdds and Kubilius.

Conjecture 11. If f(p+1) has a limit-distribution, then the series’ a., b.,c.
are convergent. _

I proved this only on the additional condition |f(g)| is bounded on the set of
primes. Recently D. Elliott proved this for non-negative f(n).

Let A be an infinite sequence of natural numbers. We say that an additive
functions f(n) defined at least on 4 has a I'mit distribution F(x), when

. 1
J1\!rl_.l'l;l‘, WN{GGA, f(a) = x} = F(X),

at every continuity points of F(x). Here

AN)= 31
=

We say that a sequence Q of prime-powers is an “‘unessential sequence’ for
the sequence A, if the existence of the limit distribution of f(n) on A, does not
depend on the values’ f(n) taken on Q. In other words Q is an ““‘unessential se-
quence”, if the following statement is valid: if there exists a limit-distribution for
f(n), then it exists too, when we change the values f(g) for ¢gcQ, arbitrarily.

From the Erd6s—Wintrer theorem we can easily deduce the following assertion.
If A is the sequence of all natural numbers, then Q is an unessential sequence if
and only if

(2.1) 3 1/qg <co.

qeQ

From the previous conjecture it would be follow

Conjecture 12. Q is an unessential sequence for the sequence “prime plus one™ s,
if (2.1) holds.

Let g(n) be an irreducible polynomial of degree k (=2). Let A={g(n),n=
— 3 W A

From a result of P. Erd6s we can deduce easily that (2.1) is not enough for the
QO to be unessential.

HooLey proved the following assertion for k=3. The number of those n=ux,
for which there exists at least one prime p=y(x), p*~*|g(n) is o(x), when y(x)-»oo
arbitrarily slowly.

Conjecture 13. Let Q={p*,x=2}. Then Q is an unessential sequence for
A={gn); n=1,2, ...}.

Conjecture 14. Let g(n) be an irreducible polynomial, 4= {g(p).p prime}.
Then Q={p*, =2} is an unessential sequence for A.
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III. Iteration of multiplicative functions

Let d(n) denote the number of divisors of n, and dy(n)=d(d-,(n)),
(dy(n)=d(n)) the k’th iterative of its. Similarly, let log, n denote the k’th itera-
tive of log n.

Erdés and 7 proved [14] that

dy(n) < exp [(log m)"/h*],
for every sufficiently large n, and
dy(n) = exp [(log m)*/=],
infinitely many times. Here
h=1 L=2 =k s+

Let K(n) denote the smallest & for which d,(n)=2. We think that the fol-
lowing assertion is true

Conjecture 15. The relation

x ' JK@n)=(1+0(1))L(»)

n=x

holds, where L(x) is defined as the integer satisfying

1=logiyx<e

Dy (x) = Zda(")-

n=x

Let

Bellman and Shapiro stated the hypothesis
Dy(x) = (1 +o(1)) xlogex (¢ = 0)

for every k. We proved this for k=2, 3,4. (see e.g. [15])
For k=5, 1 can not prove that

D;(x)
xlog; x

0=<)4, < <= Az (=20).

Let g(n)=dx)-,(n). It is evident that g(n) is a prime-number for n=2.

Conjecture 16. g(n)=3 for almost all ».
Let U(n) denote the number of distinct prime divisors of n, and V(n) the all
prime divisors of n;i.e. for n=p...p* let
Un)=r, V(n)=a,+...+a,.

Lez U,(n), V,(n) denote the iterative functions. We state U(0)= V(0)=0.



Research problems in number theory 269

Let
1 if U;n)=V;(n) for j=k,
0 otherwise,

W(n) = {

{l if p(n) =1 forevery k
#r® =10 otherwise,

My(x) = 2 m(m); Mp(x)= 2 pr(n).

n=x n=x

Conjecture 16. The relation

M, (x) = (1+o0(1)) [%]kx

holds for every k=1.
For k=1 it is well known, I can prove this for k=2,3. The case k=4
seems to be hard.

Conjecture 17. The relation

log x~'*Mz(x) = (1 +o(1)) L(x) Iog;f;
holds.

1V. Local behaviour of number-theoretical functions

4.1. Let f(n) be a completely multiplicative function, i.e. f(mn)=f(m)-f(n)
for every paits of natural numbers. Assume that f(n) does not take on the
value zero and that f(n)#1. I have proved that for n=n,(=n,(f)) the relation

fm) =f@+1)=...=f(n+j) j=4a[yn]

does not hold [16]. The elementary method which was used allows to change the
constant 4 to 2+e.

Especially hence it follows, that a completely multiplicative function having
only two vales — +1, —1 — takes the both values in every interval n, n+(2+s)]-‘ﬁ
for all n large enough.

Although the method is very simple, as 7 know, there no exist better result
for the Liouville function, too.

Conjecture 18. If f(n) is a completely multiplicative function, takes no the
value zero, and f(n)# 1, then it takes on at least two distinct values in every interval
[n, n+nf], whenever n=n,(f, ¢), for every positive constant e.

Perhaps the following more general assertion is valid too.

Conjecture 19. Let f(n) be a completely multiplicative function, that takes no
zeros on, and have at least k distinct values. Then it takes on at least k£ distinct
values in every interval [n, n+n*], whenever n=ny(e, /), ¢ being an arbitrary posi-
tive constant.

Let f(n) be a multiplicative function defined on the set of square-free integers.
I have proved [17] that every f(n) which is not identically equal to 1, and never
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zero takes on at least two values in the interval N, N+N* 3=0, 62, whenever
N=N,( 1, ).

Perhaps the following assertion holds too.

Conjecture 20. If f(n) is a multiplicative function, never zero, and takes on at

least two values, then f(n) takes on at least two values in every interval [N, N+ clr"—}ﬂs
if N=N,(f). ¢ being a suitable absolute positive constant.
Let Z4(n) denote the Liouville-function, and m(n) the least positive A, such

that A(n+k)=—A(n). From the cited theorem it follows that m(n)<4 yn for
n=n,.

Conjecture 21. The relation

m(n) = 0(log n)
holds.
On the opposite side 7 could not prove presently that [im m(n)=3.

Conjecture 22. The relation
[im m(n) =oo,
-]

holds.

4.2. For additive functions we can prove similar results.

IvAnyl and I proved the following assertion. If f(n) is a completely additive
function, N,<N,<... an infinite sequence of integers, £=0 an arbitrary positive
constant, such that

fm) =f(m+1) when ne[N;,, Ny+Q2+¢e)VN,]

Jj=1,2, ... then f(n) is a constant multiple of log #. [18].
We think that the following assertion holds.

Conjecture 23. If f(n) is an additive function such that
fn)=f(@n+1) ne[N;, N;+Nj,

for an infinite sequence N,<=N,<..., and ¢ s an arbitrary positive constant, then

f(n) is a constant multiple of log n.
Let f(n) denote a number-theoretical function having only two values +1, —1.

Let
Ne(x; &, &) =N{n=x; fn+d}=¢, i=0,..,k

=2l el Lk
We say that the function f(n) is of a normal type, if
XN (5 85 ceis i) > 2% (x> 0)
for every k, and every choice of the values g=+1, (i=0, ..., k).

Now we define a metrization on the set of completely multiplicative functions
which take the values +1 and —1 only.
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Let p, denote the n-th prime number. Let (2, 4, P) be a probability space
and &,=¢,(w) (n=1,2,...) be a sequence of independent random variables with
the distribution P(¢,=+1)=P(¢,=—1)=1/2. Let f(n:®) denote the completely
multiplicative function which we define on the set of primes by f(p,: ®)=¢,(w).
We have proved that for almost all o, f(n, @) is a function of normal type [19].

Conjecture 24. The Liouville-function A(n) is of normal-type.
We could not give a construction for a multiplicative function of normal type.

Conjecture 25. Let f(n) be a completely multiplicative function which takes
the values +1 and —1 only. If

(41) Z UP N

f(p)=-1
then

%Nf(x,al, 82) e 1/4

for every choice of g =+1, gg=+1.
This would be a generalization of a result due to WIRSING [20].
Presently 7 can prove only, that from (4.1), the inequalities

lim inf — N, (x, 1, 1) = 1/12

X - oo

lim inf-j?Nf(x, -1, -1)=1/12

X > o0

follows. For &, &, I can prove only the infinity of n’s satisfying f(n)=¢, f(n+1)=¢,.
Let f(n) n=1, 2, ... be an arbitrary sequence of the values +1, —1, and take

n—1
hy(n) = vg; SO)-f(n—v).

Corradi and I proved easily that

Iim V’—f(_i)l =1 ([21]).
n-—+-oo V"

Furthermore we believe that the following assertion holds.

Conjecture 26. .
e (| _
n—+~e n

for every f(n).
I think the following assertion is valid.

Conjecture 27. If f(n) is a completely multiplicative function, and (4.1) is
divergent, then
lim h (n) = — .

1--o0
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Let
hn) = 31y 1(%),

din
where /(m) is an arbitrary number-theoretical function which takes the values
+1, —1 only. I have proved the inequality

F R o 200 G

a
n=1 n=1

where t(n) is the number of divisors of n. Hence we can deduce easily that

fim o,
== Viogn

Conjecture 28. The relation

TN ..

n=2= 1(n)+ logn
holds.

V. The values of multiplicative functions on special sequences

Chowla stated the following conjecture. If g(x) is a polynomial with integer
coefficient and it can not be represented as ch*(x), then i(g(n))=1, and Ai(g(n)=
= —1, for infinitely many n. 4 denotes the Liouville function.

To prove that the sequence has an infinity of sign-changes is very simple. The
Pell-equation n*+1=2(m*+1) has an infinity of solutions (n, m), and for these
values A(n*+1)=—Ai(m*+1). After CHowLA 7 think that the following conjecture
18 true.

Conjecture 29. If a is an arbitrary positive integer, then the sequence A(n*+a)
n=1,2, ... takes both of the values +1, —1 infinitely many times.
Perhaps the following assertion is true.

Conjecture 30. If a is an arbitrary positive integer, then
I Y 2
— 2 A +a) +~0 (x =)
X n=x

Presently I/ do not prove that
i i %0
liminf —| 3 A(n*+ 1) < 1.
X n=x

Conjecture 31. Let & be an arbitrary positive number. Then A(n®+1) takes
both of the values +1, —1 in the interval [x,(1+¢)x], if x is large enough.

It would be interesting to get results for the values of 4 on the set of shifted
primes.
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Conjecture 32. The sequence A(p+1) takes the values +1, —1 infinitely
many times, when p runs over the primes.

Let /.(n), and /_(n) denote the number of those primes p<n, for which
An—p)=1, A(n—p)=—1, respectively.

Conjecture 33. The relation

def

I(my=min (I, (n), 1_(n)) === (n =)
holds.
Presently 7 can not prove the more weak assertion 4(n)=0 for n large enough.
It is well-known that
2 Alkn+1) = o(x)

n=x

for every k and /, and hence it follows that the function 4(n) takes both of the
possible values in every arithmetical progression.

Let L(k) denote the smallest integer x so that for every /=0,1,...,k—1
in the arithmetical progiession kn+/=x the function A(n) takes both of its possible
values. Using the theorem of Linnik on the smallest prime in arithmetical prog-
ression we get immediately that

L(k) < k©,
¢ being a constant.

Conjecture 34. The relation

L(k) < cklogk
holds.
If k is a prime number then by the result of Burgess, and of Linnik — A. L.
Vinogradov on the least quadratic non residue and on the least prime quadratic
residue we can deduce easily that

L(k) < k*+14

On the opposite side 7 think that the following assertion is true.

Conjecture 35. The relation

g LK) _
k-eo Kk

is true.

This would be a consequence of the assertion that the sequence of prime numbers
have an arithmetical progression of arbitrary length. However the last conjecture
seems to be easier.

Similar questions can be raised for the Moebius-function, and other functions,
instead of A(n). :

5D
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V. On the additive representation of natural numbers

5.1. Let A={l1=a,, a,, ...} be an infinite sequence of integers. Every natural
number can be written in the form

(5.1) n=a,+a,+...+a;,

where a;, is the greatest element of A not greater than »n. and in general a,
is the greatest element of 4 not greater than n—(a;, +...+a;__,). This represen-
tation is unique.

Let us denote by x«(n) the length of this representation, i.e. for n in (5.1)

let a(n)=v.
Let
Bi(x) = Zat(m), eu(x)= 2 1
nEx a; o y—ag=d
a4 1=X

I proved [22] that on the assumption of the existence of the limits lim x~1g,(x)=
=g,, and Zd g,=1, there exist the limits

lim x~1B,(x)

for every natural number A, furthermore the limits

limx-*N{e = x; a(n) =k} =c;

there exist for every k, and X ¢, =1.

The assumptions are satisfied for example for the set of square-free numbers.

It is evident that a(#n) is bounded if and only if g;,;—a; is a bounded sequence.
The question of the connection of the maximal order of «(n) and of a4;,,—aq;
is open.

5.2. I could not give a good estimation for the maximal order of «(n), when
A is the sequence of square free numbers. Perhaps the following assertion is true.

Conjecture 36. If A is the set of square-free numbers, then

a(n)

loglogn W=l

The assertion a(n)<cloglogn is a straightforward consequence of the fact
a,-+1—ﬂifca? With 6“:].

5.3. I considered the case, when A is the set of square numbers, and proved
that

2
> |(n)— loig log x* = O(x)

nEx

for every fixed k, and furthermore that

2 2
a(n) < 10g 1og n+ 5.
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Erdés raised the question whether there exists a constant ¢ such that x(n)=
2 2
>16g1ogn—c for all but o(x) of n=x, or not. This question is open presently.

2 2
An other question due to Erdss that «(n)—[log1ogn] have a limit distribution
in some sense, or not.

54. Let now A be the set of the prime numbers and 1:A={l<=p,=p,<...}.
From the theorem of Hoheisel we get immediately that

a(n) = cloglogn.

The following conjecture seems to be hard.

Conjecture 37. The relation

a(n)
loglog n
holds.
Conjecture 38. The relation
) o(m)
(5.2)a lu:n_’sal.xp a0 =

holds, where L(x) denotes the integer for which 1=log; ,)x=e.

This would be a consequence of the Cramer’s hypothesis stating that p, ., —p,<
<(log p,)*.

It is easy to prove that the constant 1 cannot be substitute by a smaller one
in the right hand side of (5.2). It is an immediate consequence of the inequality

lim By (x)/x L*(x) = 1,

X—+eo

which we can deduce easily by using the Brun’s sieve.

Conjecture 39. For every k the relation

By(x) = (1+0() x [*(x) (x ~=)
holds.
I can deduce this relation from the Riemann hypothesis [23]. Hence it would
be follow the assertion which we state as

Conjecture 40. Leaving a set of zero-density of integers n, on the remainder
set the relation

. o(m) 5
,!Ln.l L(n)

154
holds.

5
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