On generalizations of Ingham-Jessen's and Mikolás' inequalities

By J. PEČARIĆ (Zagreb) and D. VELJAN (Zagreb)

Abstract

A generalization of the well-known Ingham-Jessen's inequality is given in terms of certain functionals. It is then used to prove a generalization of Mikolás' inequality and its refinement.

In this paper we shall generalize the well-known Ingham-Jessen's inequality (Theorem 1), and then using this result we shall give a generalization of the Mikolás' inequality (Theorem 2).

Let us point out that the Ingham-Jessen's inequality was proved in [2], where also a type of generalization of this inequality was given. Yet another types of generalizations of this inequality are presented in [3], esp. p. 246. A simple proof of the Mikolás' inequality was shown in [5] and we shall prove its generalization in terms of certain functionals.

The main ingredients of our proofs are some results from [1] about generalized power means, which enable us to give a different (new) proof of our Theorem 1, unlike the one given in [4]. In fact, we will only need generalized Hölder's and Minkowski's inequalities and the monotone property of the generalized power means.

Let us first recall some definitions and facts from [1]. Let S be a nonempty set and L a class of mappings $f: S \longrightarrow \mathbb{R}_{+}$from S into the non-negative reals \mathbb{R}_{+}. We shall consider functionals $A: L \longrightarrow \mathbb{R}_{+}$with the following properties:
a) $f \in L, \lambda>0 \Longrightarrow \lambda f \in L$ and $A(\lambda f)=\lambda A(f)$,
b) $1 \in L$ and $A(1)=1$,
c) $f, g \in L, f \leq g($ i.e. $f(t) \leq g(t), \forall t \in S) \Longrightarrow A(f) \leq A(g)$,
d) $f, g \in L \Longrightarrow f+g \in L$ and $A(f+g) \leq A(f)+A(g)$.
(They are called positive homogeneity, normality, monotonicity and sub-additivity, respectively.)

Throughout this paper we shall always assume that all expressions are well defined. So, for example, whenever we write $A(f g)$ or $A\left(f^{p}\right)$, we shall assume that $f g \in L$ or $f^{p} \in L$.

For any nonzero real number p, define the generalized power mean of f by:

$$
M_{p}(f)=A\left(f^{p}\right)^{1 / p}
$$

Then the following was proved (Theorems 5-8) in [1], assuming that all functions $f, g, g_{1}, \ldots, g_{n} \in L$ and $A: L \longrightarrow \mathbb{R}_{+}$satisfies a) - d):

1) If $k_{1}, k_{2}, \ldots, k_{n}$ are positive numbers with $\sum_{i=1}^{n} 1 / k_{i}=1 / p$, then

$$
M_{p}\left(\prod_{i=1}^{n} g_{i}\right) \leq \prod_{i=1}^{n} M_{k_{i}}\left(g_{i}\right) \text { (generalized Hölder's inequality). }
$$

2) If $p>0, k_{1}>0, k_{2}<0, \ldots, k_{n}<0$ with $\sum_{i=1}^{n} 1 / k_{i}=1 / p$, then the reverse of the above Hölder's inequality holds.
3) If $p, q \neq 0$ and $p \leq q$ are real numbers, then
$M_{p}(f) \leq M_{q}(f)$ (monotone property of power means).
4) If $p>1$ is any real number, then

$$
M_{p}(f+g) \leq M_{p}(f)+M_{p}(g) \text { (generalized Minkowski's inequality). }
$$

Now we shall use these results (in fact only 1) and 4)) to prove the following result (Theorem 2 in [4]).

Theorem 1. For any $r \leq s, r s>0$, the following inequality holds

$$
\begin{equation*}
A\left\{M_{n}^{[r]}(\underline{f} ; w)^{s}\right\}^{1 / s} \leq M_{n}^{[r]}\left\{A\left(\underline{f}^{s}\right)^{1 / s} ; w\right\} \tag{*}
\end{equation*}
$$

Here A is any functional satisfying a)-d) and for given functions $f_{1}, \ldots, f_{n} \in L$, we put $\underline{f}(t)=\left\{f_{1}(t), \ldots, f_{n}(t)\right\}$ and we define

$$
A\left(\underline{f}^{s}\right)^{1 / s}=\left\{A\left(f_{1}^{s}\right)^{1 / s}, \ldots, A\left(f_{n}^{s}\right)^{1 / s}\right\} .
$$

Furthermore, for a positive sequence $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)$ with (positive) weights $w=\left(w_{1}, \ldots, w_{n}\right)$ with $\sum_{i=1}^{n} w_{i}=1$, the power mean of order r of \underline{a} with weight w is defined by

$$
\begin{aligned}
M_{n}^{[r]}(\underline{a} ; w) & =\left(\sum_{i=1}^{n} w_{i} a_{i}^{r}\right)^{1 / r}, & & \text { if } r \neq 0, \\
& =\prod_{i=1}^{n} a_{i}^{w_{i}}, & & \text { if } r=0 .
\end{aligned}
$$

Proof. First of all, for $r=0, s=1$, the inequality ($*$) follows immediately from inequality 1) by taking $g_{i}=f_{i}^{w_{i}}, k_{i}=1 / w_{i}, i=1, \ldots, n$, and $p=1$. In this case, $(*)$ is simply

$$
A\left(\prod_{i=1}^{n} f_{i}^{w_{i}}\right) \leq \prod_{i=1}^{n} A\left(f_{i}\right)^{w_{i}} .
$$

To prove $(*)$ in the case $r=0$ and $s>0$ any number, we take this time $g_{i}=f_{i}^{w_{i} s}, k_{i}=1 / w_{i}, i=1, \ldots, n$ and $p=1$ in 1$)$.

Now we consider the case $r \neq 0, s \neq 0, r<s$. The generalized Minkowski's inequality 4) for any $p>1$, reads as follows

$$
A\left((f+g)^{p}\right)^{1 / p} \leq A\left(f^{p}\right)^{1 / p}+A\left(g^{p}\right)^{1 / p} .
$$

By induction on n, it follows at once from here that for any positive functions g_{1}, \ldots, g_{n} we have

$$
A\left(\left(\sum_{i=1}^{n} g_{i}\right)^{p}\right)^{1 / p} \leq \sum_{i=1}^{n} A\left(g_{i}^{p}\right)^{1 / p}
$$

By taking here $g_{i}=w_{i} F_{i}$, with $\sum_{i=1}^{n} w_{i}=1$, we get

$$
A\left(\left(\sum_{i=1}^{n} w_{i} F_{i}\right)^{p}\right)^{1 / p} \leq \sum_{i=1}^{n} w_{i} A\left(F_{i}^{p}\right)^{1 / p}
$$

If $0<r<s$, set $p=s / r$ and $F_{i}=f_{i}^{r}$. Then we get from here

$$
A\left(\left(\sum_{i=1}^{n} w_{i} f_{i}^{r}\right)^{s / r}\right)^{r / s} \leq \sum_{i=1}^{n} w_{i} A\left(f_{i}^{s}\right)^{r / s}
$$

By raising both sides to the power $1 / r$, we obtain exactely (*). Similarly, for $r<s<0$, set $p=r / s$ and $F_{i}=f_{i}^{s}$, and then raising both sides to the power $1 / s$ gives again $(*)$.

Now using Theorem 1 and monotone property of power means (i.e. inequality 3), we shall prove a generalization of Mikolás' inequality and its refinement as given by Alzer in [5], for functionals.

Theorem 2. Let $A: L \longrightarrow \mathbb{R}_{+}$be any functional satisfying conditions a), c) and d) with $A(1) \neq 0$ and let p, r, t be positive numbers such that $r p \leq t, r \leq t$. Then for any $\underline{f}=\left(f_{1}, \ldots, f_{n}\right), f_{1}, \ldots, f_{n} \in L$, and weight $w=\left(w_{1}, \ldots, w_{n}\right)$ we have

$$
\begin{aligned}
A\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{p}\right\} & \leq A(1)^{1-r p / t} A\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{t / r}\right\}^{r p / t} \\
& \leq A(1)^{1-r p / t}\left(\sum_{j=1}^{n} w_{j} A\left(f_{j}^{t}\right)^{r / t}\right)^{p}
\end{aligned}
$$

Proof. Let A^{\prime} be a functional satisfying conditions a)-d). Then by monotone property 3) and Theorem 1 we have

$$
\begin{aligned}
A^{\prime}\left\{M_{n}^{[r]}(\underline{f} ; w)^{r p}\right\}^{1 / r p} & \leq A^{\prime}\left\{M_{n}^{[r]}(\underline{f} ; w)^{t}\right\}^{1 / t} \\
& \leq M_{n}^{[r]}\left\{A^{\prime}\left(\underline{f}^{t}\right)^{1 / t} ; w\right\} .
\end{aligned}
$$

By definition of $M_{n}^{[r]}$, this implies

$$
\begin{aligned}
A^{\prime}\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{1 / r \cdot r p}\right\}^{1 / r p} & \leq A^{\prime}\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{t / r}\right\}^{1 / t} \\
& \leq\left\{\sum_{j=1}^{n} w_{j} A^{\prime}\left(f_{j}^{t}\right)^{r / t}\right\}^{1 / r}
\end{aligned}
$$

By raising this to the power $r p$ we get

$$
\begin{aligned}
A^{\prime}\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{p}\right\} & \leq A^{\prime}\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{t / r}\right\}^{r p / t} \\
& \leq\left\{\sum_{j=1}^{n} w_{j} A^{\prime}\left(f_{j}^{t}\right)^{r / t}\right\}^{p}
\end{aligned}
$$

Now we take A^{\prime} defined by $A^{\prime}(f)=A(f) / A(1)$. Then these inequalities yield

$$
\begin{aligned}
\frac{1}{A(1)} A\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{p}\right\} & \leq \frac{1}{A(1)^{r p / t}} A\left\{\left(\sum_{j=1}^{n} w_{j} f_{j}^{r}\right)^{t / r}\right\}^{r p / t} \\
& \leq \frac{1}{A(1)^{r p / t}}\left(\sum_{j=1}^{n} w_{j} A\left(f_{j}^{t}\right)^{r / t}\right)^{p}
\end{aligned}
$$

By multiplying with $A(1)$, we obtain Theorem 2.
Corollary (Mikolás' inequality). Let $x_{i j} \geq 0, i=1, \ldots, m, j=$ $1, \ldots, n$, and let p, r, t be positive numbers such that $r p \leq t$ and $r \leq t$. Then

$$
\begin{aligned}
\sum_{i=1}^{m}\left(\sum_{j=1}^{n} x_{i j}^{r}\right)^{p} & \leq m^{1-r p / t}\left[\sum_{i=1}^{m}\left(\sum_{j=1}^{n} x_{i j}^{r}\right)^{t / r}\right]^{r p / t} \\
& \leq m^{1-r p / t}\left[\sum_{j=1}^{n}\left(\sum_{i=1}^{m} x_{i j}^{t}\right)^{r / t}\right]^{p}
\end{aligned}
$$

(In fact, only the case $t=1$ was considered in [5].)
Proof. Let $S=\left\{x=\left(x_{11}, \ldots, x_{1 n}, \ldots, x_{m 1}, \ldots, x_{m n}\right) \in \mathbb{R}^{m n} \mid\right.$ $\left.x_{i j} \geq 0, \forall i, j\right\}$ and for any function $f: S \longrightarrow \mathbb{R}_{+}$, let $A(f)=\sum_{i=1}^{m} A_{i}(f)$, where A_{i} 's satisfy a)-d). Then A satisfies a), c) and d) and $A(1)=m$. Now let $f_{1}, \ldots, f_{n}: S \longrightarrow \mathbb{R}_{+}$be given functions and $w_{1}=\cdots=w_{n}(=1 / n)$.

By putting $A_{i}\left(f_{j}\right)(x)=x_{i j}, i=1, \ldots, m, j=1, \ldots, n$, the claim follows immediately from Theorem 2.

As it was noticed in [5] for $t=1$, if $r \geq t$ and $r p \geq t$, the converse of the above inequalities hold and the case of equality can be easily obtained.

As a final remark, note that if we take in Theorem 2 for the functional A to be a certain integral, and/or if summations we transform into integrals, we will obtain some interesting integral inequalities, but we shall not consider it here.

References

[1] J. E. Pečarić, Generalization of the power means and their inequalities, J. Math. Anal. Appl. 1612 (1991), 395-404.
[2] Zs. Páles, Ingham-Jessen's inequality for deviation means, Acta Sci. Math. 49 (1985), 131-142.
[3] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and Their Inequalities, D. Reidel Publ. Comp., Dordrecht, 1988.
[4] J. E. Pečarić and D. Veljan, On Maligranda's generalization of Jensen's inequality, J. Math. Anal. Appl. 200 (1996), 121-125.
[5] H. Alzer, A remark on an inequality of M. Mikolás, Annales Univ. Sci. Budapest 34 (1991), 137-138.

JOSIP PEČARIĆ

FACULTY OF TEXTILE AND TECHNOLOGY
UNIVERSITY OF ZAGREB
10000 ZAGREB, PIEROTTIJEVA 6
CROATIA

DARKO VELJAN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ZAGREB
10000 ZAGREB, BIJENIČKA 30
CROATIA
(Received October 10, 1995; revised August 5, 1996)

