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1. Introduction

In this paper we generalize Baker’s famous theorem on the Thue equation [2]
to diophantine equations in an arbitrary number of unknowns. Our main result
(Theorem 1) includes Baker and Coates’s theorem on the generalized Thue equa-
tion [6] (see also BAKER [3], [4]) and implies a general result of the first named
author [13] (see also [14]) concerning discriminant form equations. As a con-
sequence of Theorem 1 we make effective, for a wide class of norm forms, a well-
known ineffective theorem of Schmidt on norm form equations [25].

p-adic generalizations and further applications are given in our joint papers
[20] and [21].

The proof of our Theorem 1 depends on a recent result on linear diophantine
equations in algebraic integers of bounded norm [18] whose proof is based on an
explicit estimate of VAN DER POORTEN and LoxTtoN [23] for linear forms in the
logarithms of algebraic numbers. Our explicit bounds given for the sizes of the
integer solutions of the discussed equations are, in some respects, the best possible
in terms of certain parameters.

2. Representation of algebraic numbers by decomposable forms
in several variables

Let F(x,y)=aox"+a;x""'y+...+a,y"¢ Z[x, y] be an irreducible binary form
of degree n=3 with Mmax la;;=H, and let b be a non-zero rational integer. By

a celebrated theorem of BAKER [2] all solutions in integers x, y of the Thue equation

(1) F(x,y)=0»b
satisfy
) max (|x], |y]) < exp {n"*H*"* +(log |b|)"*2},

where v=32n(n+2)®. (2) was later considerably improved in b and H among
others by FELDMAN [10], SpRINDZUK [29], [30] and STARK [33].

Let now K be an algebraic number field with degree &, let «,, ..., a, be n=3
distinct algebraic integers in K, and let f be any non-zero algebraic integer in K.
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As a generalization of the above result BAKER and COATES [6] (see also BAKER [3], [4])
showed that all solutions of the generalized Thue equation

(3) (x—y))...(x—0,y) = B
in algebraic integers x, y of K satisfy?)
(4) max ([x], [7]) < exp {(ko#)100°},

where # denotes the maximum of the heights®) of «,, ..., o,, f and some algebraic
integer generating K. p-adic generalizations have been obtained by SPRINDZUK
and Kotov [31], [32] and KoTov [22].

Our Theorem 1 generalizes the above-quoted theorems of BAKER [2] and
BAKER and COATEs [6] to diophantine equations in an arbitrary number of unknowns.
To state our main result we need the following definition. A4 system £ of n=2
linear forms L,(X), ..., L,(X) in xX=(xy, ..., Xx,,) with algebraic coefficients will be
called triangularly connected or / -connected, if for any distinct i, j with 1=i, j=n
there is a sequence Ly=L;, L, ..., L, =L; in & such that for each t with 1=t=
=s—1 L;,L,,, have a linear combination with non-zero algebraic coefficients
which belongs to % ®). In particular when m=2, every system % which contains
at least three pairwise nonproportional linear forms is 2 -connected.

Theorem 1. Let LS K be algebraic number fields and let 0=£BcZg ) with
|B|=B, |Npp)o(B)|=B*. Further, let m,n=2 be integers and let o (1=i=n,
1=j=m) be algebraic integers in K with sizes at most A (=2). Let N (=2), R and
D (=2) denote upper bounds for the degrees, the regulators and the absolute values of
the discriminants of the fields Kijy=L(%y, ..y Oims %15 coos Cjms Bpys ooes Ggm)s by Jy [=
=1, ..., n. Suppose that the linear forms L;(X)=0uX;+...+ %Xy (1=i=n) form
a »-connected system, and that the system of equations

(5 L(x)=0, i=1,..,n

has no solutions x=0 with components in L. Then all solutions x=(x,, ..., x,)€ L}
of the equation

(6) Ly(x)...L,(x) = B

satisfy

(7) jmax X < B'"exp {mn(8 N)**¥*V(Rlog R*)*(R+log AB*)}

and

(8) max [xj < B'/"exp {mn(8N)**¥+V D(log D)**~1(D'*+log AB*)},

where R*=max (R, e).

') |&| denotes, as usual, the maximum absolute value of the conjugates of an algebraic number
a. If @ 1s an algebraic integer, [x] is called the size of a.

?) The height H(x) of an algebraic number « is defined as the maximum absolute value of the
relatively prime integer coefficients in its minimal defining polynomial.

?) This obviously holds if Ly, ,=Ais, Li, with some algebraic number A, 0.

%) Zx and Z. denote the rings of integers of K and L, respectively.
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Theorem 1 remains valid for any (i.e. not necessarily integer) elements o,
B(#0) of K with heights H(x;)=./ and H(f)=2%. Then we have

©) max T < exp {(mn)*(8N)*~+V(Rlog R*)*(R+log /A)}
and
(10) max X = exp {(mn)*(8N)*N+V D(log D)*¥ -1 (D2 +log %)}

for all solutions of (6).

Under the assumptions of Theorem 1 (6) possesses only finitely many solu-
tions in algebraic integers of L and they can be effectively determined.

We remark that FELDMAN [8], [9] also obtained effective results on the equation
(6) with certain rather special linear forms and with § replaced by any polynomial
feZi[x, ..., x,,) of small degree relative to n®). Our Theorem 1 contains the
special case f=constant of Feldman’s theorems.

Since the linear factors x—a,y, ..., x—a,y occurring in (3) satisfy obviously
the conditions of our above theorem, from (9) and (10) we get, as a special case
of Theorem 1, the following improvement of the above-quoted result of BAKER
and CoOATES [6]. '

Corollary 1.1. Let K be an algebraic number field of degree k=2 with dis-
criminant Dy and regulator Rg. Let oy, ..., o, be elements of K with heights =sf
such that among them at least three are distinct, and let B be a non-zero element in
K with height=2. Then all solutions (x,y)€ Zx of (3) satisfy
(11) max ([x], [J]) = exp {4n*(8k)***+V (R log Rx)*(Rx + log o/ %)}
and
(12)  max (x], 7)) < exp {4n*(8k)****? |Dg|(log |Dx|)*~*(|Dx|"*+log #B)},
where Ri = max (Rg, e).

(11) and (12) furnishe the best known bounds for the solutions of (3). When
K is a totally imaginary quadratic extension of a totally real number field, much
sharper estimate has been established in [17] for the solutions of (3) in real algebraic
integers x, y of K.

The next corollary includes Baker’s theorem on the Thue equation [2].

Corollary 1.2. Let L be an algebraic number field with degree | and discriminant
Dy. Let F(x, y)eZ,[x,y] be a binary form of degree n=3 with méﬂ such
that F(1,0)=0 and F(x, 1) has at least three distinct zeros®). Suppose b is a non-
zero algebraic integer in L with b|=B and INpjo(b)|=B*. Then all solutions
(x, )EZ} of (1) satisfy
max x|, [7]) < B""exp {(8IN)*®UN+D(|D,|(4H)*"=V)¥(log (4H |Dy|))*N X

(13)
X[(lDL‘(4H)81(In—1))N!2+log B*]},

where N=n(n—1)(n—2).

. #) Further results concerning norm form equations in several unknowns will be referred to
in Section 3.

%) As usual, |F| denotes the maximum absolute value of the conjugates of the coefficients of a
polynomial F with algebraic coefficients.
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(7). (8) and (13) are best possible in terms of B. When L=Q, (13) provides
Feldman’s estimate [10] with an upper bound computed explicitly in terms of each
parameter. Following a more direct deduction (cf. [2], [10], [29], [33]), from the recent
estimates for linear forms in the logarithms of algebraic numbers one can derive
better bounds for the solutions of (1) in terms of H. See SPRINDZUK [29] and STARK
[33]. Their bounds*) can be further improved by using the recent estimates of
BAKER [5] and VAN DER POORTEN and LoxToN [23], see [21].

3. Explicit bounds for the integer solutions of norm form equations

As before, let L and K be algebraic number fields such that Lc K, L=K and
consider the norm form equation

(14) Ngp(gx,+...+a,x,) =

in algebraic integers x,, ..., x,, of L, where 0=#p<L and «,, ..., %, are linearly
independent elements of K over L.

First consider the classical case L=Q. The Z-module M={a,, ..., a,} is
called degenerate (see [7], p. 299), if the vector space ¥V over Q which is generated
by M contains a subspace ¥’ such that V'=/K" for some /€K and some subfield
K’ K, where K’ is neither Q nor an imaginary quadratic field. If M is degenerate,
there are f’s for which (14) has infinitely many rational integer solutions ([7], [25]).
On the other hand, if M is non-degenerate, by a well-known theorem of ScHMIDT
[25] (14) has only finitely many rational integer solutions for any fixed . However,
Schmidt’s proof is ineffective, that is it does not provide any algorithm for determin-
ing all the solutions or deciding the solvability of (14). For m=2 such an algo-
rithm was earlier established by BAKER [2]. For m=3 and for any K which is a to-
tally imaginary quadratic extension of a totally real number field GYOry and LovAsz
([19]; see also [12], Théoréme 6) obtained such an algorithm. Further, effective
bounds for the solutions of relatively special norm form equations in three
unknowns were given by SKOLEM [27], [28], BAKER [1] and FELDMAN [9]. As men-
tioned in Section 2, in [8] Feldman obtained effective results on norm form equa-
tions in an arbitrary number of unknowns, but with certain rather special algebraic
numbers o, ..., %,.

We return now to the general case when in (14) L is any proper subfield of
K and m=2 is an arbitrary integer. Under certain assumptions made on
%, ..., %,, Theorem 1 enables us to get explicit upper bounds for the sizes of the
solutions (xy, ..., X,) € Z] of (14).

If a,...,2,6K, denote by LY (x)=af'x;+...+a®x, (1=i=n) the con-
jugates of the form L(x)=ox,+...+2,X,, over L, where n=[K: L]. The numbers
Oyy ...y Oy Will be called  -connected with respect to K/L if the system of linear forms
LW, ... L™ js A-connected (c.f. Section 2). If this is the case, then any finite
subset of the Z;-module {x,, ..., 2,} is A-connected. Therefore we may say that
a finitely generated Zy-module M in K is /. -connected with respect to K/L if it has
a A-connected system of generators with respect to K/L.

*) Added in proof. For recent improvements and p-adic generalizations see Kotov and
SPRINDZUK (Izv. Akad. Nauk SSSR, 41 (1977). 723—751).
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The following theorem is a consequence of Theorem 1.

Theorem 2. Let L be an algebraic number field of degree I, K an extension of
degree n=3 of L, and Dy the absolute value of the discriminant of K. Suppose
Oy, ... 0, are m=2 linearly independent elements of K over L with heights = ./,
such that they are A -connected with respect to K/L. Let f§ be any non-zero element
in L with height =%. Then all solutions (x,, ..., x,)€ ZT of (14) satisfy

(l 5) IT?gx_ I_x—:| = exp {(SI'N):’E“'\r* “D?(M"' (log DK)alN— 1(D:k'\';2n +log .d.?)]

where N=n(n—1)(n—2).

In the case L=Q Theorem 2 implies that any /A -connected Z-module of K
is non-degenerate. For A -connected Z-modules our Theorem 2 makes effective
Schmidt’s famous theorem [25].

We present only two consequences of Theorem 2, but it is easy to give various
other m-tuples of algebraic numbers «,, ..., %, satisfying the conditions of Theorem 2.

Corollary 2.1. Let L be an algebraic number field of degree I, and let «,, ..., 2,
be algebraic numbers with degrees n;=3 (2=i=m) over L and with heights =/
such that for K=L(x, ..., a,) [K:L]=n,...n,,=n. Let N, Dx and 8 be defined as in
Theorem 2 and let «,=1. Then all solutions of (14) in algebraic integers xy, Xy, ..., X,
of L satisfy (15).

Corollary 2.1 again implies Baker’s theorem on the Thue equation [2].

Combining Corollary 2.1 with a recent theorem of SCHINZEL [24] (cf. Lemma 5)
we can state explicitly a wide class of m-tuples of algebraic numbers 1, 2, ..., 2,
for which the above assertion holds. The following special case seems to be of
particular interest.

Corollary 2.2. Let n,, ..., n, be positive integers greater than 2 and let b be
a non-zero rational integer. Suppose a, ..., a,, are rational integers such that |a;| is
not a d;-th power with 1 <d;|n; (2=i=m), and for any distinct i, j, 2=i, j=n, n;, n;
or a;, a; are relatively prime. If afi=a; 2=i=m) and K=Q(a,, ..., 2,), then all
rational integer solutions x,, ..., x,, of the equation

(16) Nijo(X1+ %Xy +... +2pX,) = b
satisfy ,
(17) lrg&x |x‘| = exp {(SN)H(NHiABIN—l](lOg A)sN(AstN—l)#2+|og |b1)}!

where A=|a,...a,|, n=ny...n, and N=n(n—1)(n—2).

Our next theorem can be regarded as a generalization of Theorem 2 which
corresponds to the case s=1. For simplicity Theorem 3 will be stated only for
algebraic integers «,, ..., o,,.

Theorem 3. Ler L=K,cK,C...cK,=K be a sequence of algebraic number
fields with [K;: K;_4]1=3 for i=1, ...,s, [L:Q]=1, [K: L]=n, and Dg the discrimi-
nant of K. Let M;CZg, be a Z,-module with generators of size =A" which are
linearly independent over K,_, and are o~ -connected with respect to Ki/K;_,
(i=1, ...,s). Let further f be an integer in L with size at most B. If a,, ..., ®,, are
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linearly independent elements of M,...M,") over L with [a;=A for j=1,...,m,
then for any solution (x,, ..., x,)€Z} of (14)

(18)
max [x] = A™ = exp {2in(8IN)** "N+ | Dy 3¥/"(log |Dg[)*N -1 (|Dk[*N/*" +10g A’B)}

1=i=m
holds, where N=n(n—1)(n—2).
We state now such a consequence of this theorem which cannot be deduced
from Theorem 2.

Corollary. Let n=3 and a be rational integers such that |a| is not a d-th power

pm=1 pm=1

with 1<d|n, and let K=Q(Va), ,=(Va)"™" for i=2,...,m. Given a non-zero
rational integer b, all solutions of (16) in rational integers x,, ..., x,, satisfy

(12 max x| < exp {8N)**+2(la| log|a[}**(la[** + log b))},

where N=n""1(n""1=1)(n""1-2).

4. Explicit bounds for the integer solutions of discriminant form equations

Let Lc K be algebraic number fields with [K: L]=n=3, «,, ..., %,, clements
of K, and § a non-zero element in L. Consider the discriminant form®) equation

(20) Discryg (o %+ ... + %, X,,) = 8

in algebraic integers x,, ..., x,, of L. If 1,«,,...,«, are linearly dependent over
L and (20) is solvable, then it has infinitely many solutions in algebraic integers
of L. In what follows we shall suppose that 1, a4, ..., «,, are linearly independent
over L. Further, we may assume without loss of generality that o, ..., x, are
algebraic integers in K.

When L=Q, (20) was investigated by many authors in various special cases.
For references see our paper [20]. In a recent paper of the first named author [13]
(see also [14]) effective bounds have been established for the size of the integer
solutions of (20). In other words, in the case L=Q (20) has only finitely many
solutions in rational integers and these can be effectively determined. Our Theorem
1 enables us to generalize this result to arbitrary algebraic number fields L as
follows.

Theorem 4. Let LCK be algebraic number fields with degrees [L:Q]=,
[K:Ll=n=3, Dg the discriminant of K, and 6 a non-zero integer in L with |d|=d
and |Np,o(0)|=d”. Suppose m,, ...,n, are algebraic integers in K with sizes at

) By the product M,...M, we understand the Z,-module generated by the products of the
generators of M,, ..., M,.

) If K=L(e,, ..., 2,), the discriminant form Discrg;y (o x,+ ... + &, X,,) is a decomposable
form of degree n(n— 1) with coefficients in L, otherwise it is identically vanishing (see e.g. [13],[14]
or [20]).
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most A such that 1,u,, ...,u, are linearly independent over L. Then all solutions
(%15 ---s X EZY of (20) satisfy
3N

e OF aN AN
@1)  max [ < d™ exp{(SN)y™¥+V Dg|™ (log |Ds*~*(Dx ™ + log 4d")},

where N=In(n—1)(n—2).

It is easily seen that if K=L(a, ..., a,) (i.e. if the discriminant form is not
identically vanishing), then in (21) |Dg| can be estimated from above by
D} (2A)"™* D, being here the absolute value of the discriminant of L.

Using certain recent effective theorems on algebraic numbers with given dis-
criminant [15], [16], in [20] we sharpen (21) and give a p-adic generalization of
Theorem 4.

Finally we remark that from Theorem 4 one can deduce Theorem 3B of [15]
on algebraic integers with given relative discriminant, but only with a weaker
estimate than that of Theorem 3B in [15].

5. Preliminary results

To prove our theorems we need some lemmas. The proof of Lemma 1 is based
on a recent explicit estimate of VAN DER POORTEN and LoxTon [23] for linear forms
in the logarithms of algebraic numbers.

Lemma 1 (GYORY [18]). Let K be an algebraic number field with degree k, dis-
criminant Dy and regulator Rg. Let r denote the number of fundamental units of
K. Suppose vy, Vs, Y3, X1, Xa, X3 @re non-zero algebraic integers in K with 17| =G,
|Nx‘fQ(x|')| =N (l §f§3)’ sal‘fsf}‘fng

P1¥1+YaXa+73X3 = 0.
Then there exists a unit ¢ in K such that

(22) max Pxie] < exp {(16(r +3) k)'*+*(Rg log R)*(Rx +log (GN))}
and |
(23) max Tx;#] < exp {c,|Dg|(log | Dg)*~*(|Dx["* +1og (GN))},

k
where R =max(Rg.e) and ¢, =T6:.__§_(15(,-+ 3) k)10 +2),

Lemma 1 improves and generalizes Lemma 4 of [I11] and Lemma 3 of [13].
In proving our assertions we shall use some known properties of the heights
and the sizes of algebraic numbers (see e.g. [2], [29], [35]). Further, we shall need
the inequality
(24) o/ Bl = |a] - [B['7,
where « is any algebraic number, f is any non-zero algebraic integer and a/f lies
in a number field L of degree /. (24) follows at once from

loa/BIE%: 21 = | Ny, @)/ N (B)| = [N @) [N B = (l] [B[F-2)EK: 1,
K being here any number field containing «, f and L.
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__ Lemma 2. Let LCK be algebraic number fields with [L:Ql=1, u;€ Zg with
;;|=A4 (1=i=n, 1=j=m) and P K with |B|=B (1=i=n). Suppose that
X1y ...y Xy is the only solution in L of the system of equations

el 2; ayx; =P (I1=i=n).
J=

Then we have

(26) lmg;,;y( m = m""“’f’A""-IB,
=j=m

Proor. Consider the linear equation system consisting of all those equations
which are conjugate over L to the equations occurring in (25). x,, ..., Xx,, satisfy
this system of equations too. We shall show that this extended system of equations
has no other solutions in the field C of complex numbers.

Let [K:L]=k, and let o, ..., ®; be a basis for the extension K/L. Write

k

%= 2 Vijp®, With 7,;,€ L. Denote by KV =K, ..., K® the conjugate fields of
p=1

K over L and by aV=a, ...,a* the corresponding conjugates of any element
« of K. Consider the nXm matrix &/=(x;), the nkXm matrices o =(x;;),
A"=(aj;), and the nkXnk matrix #'=(w;;), where afjj=o}), a;=7y,, for
i=k(p—1)+gq, p=1,....n, g=1, ..., k, j=1, ...,m, and w;;=0® for i=kr+g,
qg=1, ..., k, j=kr+s, s=1,...,k, r=0,...,n—1 and w;;=0 otherwise. By the
assumption the column rank of & relative to L is m, so the column rank of "
relative to L is also m. Since the entries of &/” belong to L, its rank relative to C
is m. W being non-singular, &/’'=%zx" is also of rank m relative to C which was
to be proved.

m
We can now choose m equations, say 2 aj;x;=p7 (h=1,...,m), from the
=1

extended equation system so that det (o, Ji);-fJO. Solving this latter equation system
by Cramer’s rule, by virtue of (24) and the Hadamard’s determinant inequality
we get (26).

We remark that rank o/’=m implies m=nk. Furtkermore, it is easy to
verify that under the assumptions of the lemma even m=nN holds, where
[L(w,, ..., ): L]=N for each i with 1=i=m.

Lemma 3 (STARK [34)). Let K, ..., K,, be algebraic number fields with discrimi-
nants Dy, ..., Dy and let K=K, ...K,, with discriminant Dg. Suppose (K;:Q]=k;
and let k=[K:Q]. Then

Dy | JT DY~
i=1

Lemma 4. Let L be an algebraic number field and let K, ..., K,, be extensions
of L with [K;: Ll=n;=3 (1=i=m). Let M; be a finitely generated Z;-module in
K; and suppose that it is . -connected with respect to K;/L (1=i=m). Suppose
[K: Ll=ny...n,, where K=K, ...K,,. Then the Z,-module M,...M,, is » -connected
with respect to K/L.

PrOOF. We prove the assertion only for m=2. Then the general case easily
follows by induction on m.
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Let 2, and 2, be primitive elements of K,/L and K,/L, respectively. Denote
the conjugates of «, and o, over L by afV=x,...,a™ and afV=a,, ..., af™).
Then K=L(%,x) has n,n, conjugate ﬁelds over L and each conjugate field X’
of K over L is uniquely determined by the isomorphisms o, —a{", x,—a$ for
which K’'=L(x{", «{’), that is by a pair of indices (i, j) with l1=i=n,,
1 §j§ e

Let us fix some finite systems of generators of M, and M, and consider the
linear form /(x) whose coefficients are the products of the generators of M,; and
M,. We may denote the conjugates of / over L by /") (1=i=n,, 1=j=n,). By
the assumption made on M, and M, both /™), . [™md and (6D [Gn)
are A -connected systems for every i, j with 1=i=n,, 1=j=n,. So the system
of all conjugates of / over L is also A -connected. Consequently M, M, has a A -
connected system of generators, that is M; M, is A -connected with respect to K/L.

Lemma 5. (SCHINZEL [24]). Let L be any field and let n,, ..., n,, be positive in-
tegers. Assume that the characteristic of L does nor divide ny...n, and o =a;€ L*

(=ENO for i=1,...o0 [EAG, iyt Ll=n .. :fand only if for all primes
p [] afi=g® implies x;= O(mod p)(p|n) and H aft=—4g*,  n;x;=0(mod 4)
ping 2|n,

(2|n;) implies x;=0(mod 4) (2|n,)?).

This general theorem will be used in the special case when L is an algebraic
number field.

Lemma 6. Let LC K be algebraic number fields with [K:Ql=k=2, [K:L]=n,
and let Ry, Dg and r dencte the regulator, the discriminant and the number of funda-

mental units respectively of K. Suppose véN and o€ Zg with |Ng, (x)|=m. Then
there exist a unit ¢ and an integer f in K such that

a=¢P, Ngu)=1
and
A1 = mi/n exp {ve, Ry} = mi/" exp {ucy Dy [¥3(log [ Dy -1},
where co=nr (31rk®log 6k)" and cs=2c,/(k—1)*~3,

PROOF. Put |N,,(x)| = M. By a theorem of SiEGEL [26] and by Lemma 3 of
[18] there are a unit & and an integer y in K with the properties

o=y, @7]= M1, = MAT,, [y = M-*T, = MAT,,
where T)=exp {(1/2)vc, Rg} and T,=exp {(1/2) veg | Dg[V*(log |Dg|)*=*}. Thus for the

unit &,=Ng,, (&) lying in L &"= Ny, (2) Ng,.(y™?) holds. It is easy to verify that
e=¢j/e; and P=ejy satisfy the required conditions.

%) (p|n) means here “for all i such that p|n.”.
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6. Proofs of the theorems and their corollaries

PrOOF OF THEOREM 1. Suppose that (6) is solvable. Then the forms ,, ..., L,
are not identically vanishing. Since #={L,,...,L,} is a A-connected system,
there are two forms in % having a linear combination with non-zero coefficients
which belongs to .#. We may suppose without loss of generality that L,, L, is such
a pair.

Case (i). First suppose that L, and L, are not proportional and that, for con-
venience, L, can be expressed as a linear combination of L, and L, with non-zero

o pi a,;

algebraic coefficients. Let 4,,= (1=p, q=3), where i, j are chosen so

Upj %
that Alg?ﬁo. Then for }"1=423! ;.gzda]_, 113=A12

QN ML+iaLytigly =0, A,y 4€Zg., dgds# 0, [, P, [ = 24

hold.
Case (ii). If L, and L, are proportional and e.g. «,;=0, then for 1,=af;,
Let §=(¢;, ..., &€ ZY be an arbitrary but fixed solution of (6) and write
Bi=L;(€) (i=1, ..., n). From (6) we get
(28) By...B. = B.
Further, in Case (i) (27) implies
A Pr+AaPatrsPs =0

with the above A, 4,, 45, where ;€ Zg . and

[Ky9(8): L(A)]
|NKI.I:J'Q(ﬁJ)| = B KK = BN (] % j %3

Therefore, by Lemma 1 there exists a unit ¢ in K5 satisfying

(29) e8| =U, j=1,2,
where
U = exp {3N(16(N+2)N)1®¥+14(Rlog R*)*(R+log AB*)}.

In Case (ii) we can see in the same way that there is a unit ¢ in K, satisfying (29).

We are now going to show that for every j with 1=j=n there are ¢;, ;€ Zg
such that

(30) [P W, =U" and &B,= o,

with the above &. For j=1,2 these are implied by (29). Put j=3. £ being A-
connected, by definition there is a sequence L,=L;, L, ...,L;,=L; in & such
that for each 7, 1=t=s—1, L, and L;_, have a linear combination, say L;,, with
non-zero algebraic coefficients which belongs to .. Further we may assume s=n.
It follows now in the same way as above that there exists a unit ¢, in Kj, with
the properties

(31) 5rﬁi, = }'I.I‘! atﬁl'e,l — '}'r.l‘.”_a |Y!,I‘,|v l]”!,i,+;| = U (t - 1, ceny s_l)

lt'l-ljt
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Writing now eg,=¢, 7,,;, =8B, We get &_,/&=%_1,./7,: for t=1,..,s5-1,
whence

& =1 Kaq 5 =1
aﬁj = 1 Vs=1,i, = 'q T Vs—1,i, = ‘E Ye-1,i 'g Tnie) -

] s=1
By (31) qo_,-z' q Ye-1,;, and W,«:' ﬂl' 7:,i satisfy the required conditions.

With the notation ¢,=¢}~ [Ty, ¢,=¥3~* [J g, it follows from (28)
i oy
B? - ﬁajfgj (j — l! seey n)'
B; is of degree =N over Q for each j, thus by (24) and (30) we have
(32) 1L, = |B,| = BU™* (j=1,...,n)

Since (5) has no non-trivial solutions in L, the only solution in L of the system

of equations
Lix)=8; (j=1,...,m)

is §=(&,...,¢,)- Applying Lemma 2 and the estimate m=nN mentioned at
the end of its proof, by (32) we obtain
(33) max |§_‘} = m(ml-}-l),.‘sAml—lBlfnUEnN - Bl,‘nUhnN’
1=is=m
where /=[L:Q]. This implies (7).
If we use (23) of Lemma 1 in place of (22), we get (29) and (33) with

and (30)

N
U= exp {3 _—ﬁﬁ_‘ (16(N+2)N)5¥+V D (log Dy*¥~1(D'2 + log AB*)}

and (8) follows at once.
In order to prove (9) and (10) suppose that «;; are any (not necessarily
integer) elements in K. Denote the leading coefficient of the minimal defining pol-

ynomial of «; by a;;. Then a{;:[ ]]ai,] #; (1=i=n, 1=j=m) are integers in
s=1

K with sizes =2a™ and, if (6) is solvable in Z;, p’=B J[ ][ ai, is also an
i=1 s=1
integer in K with size =24a/™. Further, (6) is equivalent to the equation

_q (@ X+ ...+ 0 Xy = .

Repeating the above proof for this equation with 4=2o™, B=2#s/™ and
B*=(2B™)L#): Q) we can easily derive (9) and (10).

Remark. As it turns out from the above proof, in Theorem 1 it suffices to assume
that N, R and D are upper bounds for the degrees, regulators and absolute values
of the discriminants of those number fields K;; which were utilized in the course
of the proof.

9D
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Proor oF COROLLARY 1.2. Write (1) in the form
Fx,y)=a(x—ny)...(x—a,y) = b

and suppose that x, y€Z, is a solution of (1). Putting x’=ax, f’'=a""'bh and
a;=aq; for i=1,...,n, we get

(x'—ayy)...(x’—opy) = p

and we can apply Theorem 1. It is easy to see that |f’|=BH""', [Ny ,o(f)|=
=H™-"B* and « are integers with sizes <ja|+ H=2H for every i, |=i=n.
The degree /;; of the field K;;=L(x,a;, %) does not exceed IN (i, j, k=1, ..., n).
Further, by Lemma 3 the absolute value of the discriminant of Kjj can be estimated
from above by

(|Dg Do(a,)/0 (o)) [V D)0 (g;)lm,- D)0 (o)) = (|Dy| (4H)sl(£u-—1))h"
where 1,=[Q(x,):Q] (I1=s=n). By virtue of (24) X =|x'|H'", so (13) follows
from (8) of Theorem 1.

PROOF OF THEOREM 2. Denote the conjugate fields of K over L by KV, ..., K™
and let K,;=KPKDK® (@, j,k=1,..,n). By Lemma 3 the absolute values
of the discriminants of the fields K;; do not exceed D¥"~V"-% and [K;;:Q]=
=lnn—1)(n-2), 1=i, j,k=n. Since «,,...,, are linearly independent over L
and are 2 -connected with respect to K/L, we can apply Theorem | to (14), that is
to the equation

IT (x4 ... +aPx,,) = B.

i=1
From (10) we get (15) for every solution (x,, ..., x,,)€ Z7' of this equation.

ProOF OF COROLLARY 2.1. In view of n;=3 the numbers I, «; are A -connected
with respect to L(x,)/L, thus the Z,-module M;={l, %} is also 2 -connected with
respect to L(x)/L (i=2,...,m). By Lemma 4 the Z,-module M,...M,, as well
as the numbers 1, o,, ..., o, in this module are .. -connected with respect to K/L.
Since o, =1, %, ...,x, are obviously linearly independent over L, they satisfy
all conditions of Theorem 2 and so (15) holds for every solution (x,, ..., x,)€Z]
of (14).

PrROOF OF COROLLARY 2.2. By Lemma 5 we have [K:Q]=n,...n,. The absolute
value of the discriminant of «; is nfi|g|™~! (i=2, ..., m), thus by Lemma 3 the
absolute value of the discriminant of K=Q(x,, ...,%,) 18 not greater than

1
n”A"(l-K’). Applying now Corollary 2.1, we get (17) for every solution of (16) in
rational integers x,, ..., X,,.

PrOOF OF THEOREM 3. We first show by induction on s that ye M=M,... M,
and N, (y)=p imply
(34) ¥ = (n=1)A4" exp {In(8IN)*!"N+V| D 3% (log | Dy )*N =1 (|Dg*V/*" +-log 4" B)}.

Since the heights of the generators of the Z,-module M, do not exceed (24")"
and H(B)=(2B)", for s=1 (34) follows from Theorem 2. Suppose now that (34)
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is proved for s—1 with s=2. Put K,_,=K’, [K': L]=n,, [K: K']=n, and
M’'=M,...M,_,. Then we have

B= Ng(y) = NK';L(NM‘U’))-
By Lemma 6 there exist a unit ¢ and an integer f” in K* such that
(35 Ngix(y) =€"p’, Ngy(e) =1

and  |f|=B"" exp {c,| Dx-"2(log | Dg |y '-1), where cy=2nny(ny1—1)-
«(31(ny/—1)(Iny)? log 6/ny)™~*/(In,—1)™ =3 and Dy. signifies the discriminant of
K’. This latter inequality together with D3| Dg implies

(36) IB’| < BY™ exp {c;| Dg |2 (log |Dg ) '~}

with ¢;=(4/n,)*".

By the assumption y can be written as y=y,u, +...+y, i, with y, ...,y M’
and t=n,, where y,, ..., i, are such generators of size =A" of the Z -module
M which are linearly independent over K’ and are A -connected with respect to
K/K'. Writing y'=¢~ 'y, y/=¢"'y; (1=i=t), (35) implies

me'(}';.ul +oFVim) = Nx;x-(}") = p.
Applying Theorem 2 to this equation we obtain

6Ny +1 3N, —1

(37)  max |¥7| < exp{cscq|Dx| ™ (log |Dy|)m!eNa+D=2(IDy| 2 +log A’B) = B,

where cg=In,(8In, N,)**mN2+1  and  N,=n,(n, —1)(n,—2). It follows from
(35) and (37) that Ny, (¥)=Ng ;L (¥))=p; with |B;|=(B")" (1=i=t). By the in-
duction hypothesis y;¢ M’ yields

i < (ny—1) A" exp {¢;| Dg- **/"(log | Dy )™ ~Y(|Dg. [*¥1/2m +-log A"B™)} <
< exp {n,c5c4¢q|Dg [PV (log | D [N =1 (|Dg[*¥/** +log A’B)} = T,

where Ny=n,(n,—1)(n,—2) and ¢,=In,(8IN,)**"N1*V_ Consequently [y[=n,A'T,
whence, in view of n,c;cqc;<In(8IN)*N+V (34) immediately follows.

Suppose now that (x,, ..., x,,)€ Z] is an arbitrary solution of (14). Writing
%X, +...+a,Xx,=Y, by virtue of the linear independence of «,, ...,a, over L
we can apply Lemma 2 and from (34) we get (18).

PrOOF OF THE COROLLARY TO THEOREM 3. Let Ko=Q, let K,=Q(otp_;s1),
and let M; be the Z-module in Zg, generated by 1, ,_;4, (i=1,...,m—1). By
Lemma 5 [K:Q]=[K,_,: Q]=n""", so [K;: K;_,J=n=3 for any i with 1=i=
=m—1, thatis a,_;,, is of degree n over K;_, for i=1, ..., m—1. Consequently,
I, 2,41 are linearly independent over K;_,, [&,,_;+; =|a|'" and M, is A -connected
with respect to K;/K;_, for i=1,...,m—1. Since o;=1,x,, ..., ®, are linearly
independent elements of M, ... M, _, over Q, we can apply Theorem 3 with L=Q.
The absolute value of the discriminant of K can be estimated by the absolute value

h=
pim=Vnm=tgm-1-1 of the discriminant of }Ja. Thus from (18) we get (19) for every
solution (x,, ..., x,,)6 Z™ of (16).
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PROOF OF THEOREM 4. Denote by K@, ..., K™ the conjugate fields of K over
L. Let L(X)=0y%;+...+a,xX, and let L®(x),..., L™(x) be the conjugates of
L(x) over L. Put

l;(x) = LO(x)—LP(x) = (f? —afM) %y +... + (@ —aP)x, (1 =i, j=n).

Suppose that (20) is solvable. Then /;;(x)Z0 for any i/ and so K=L(0,..., %y).
Since for any /;(x), Iy (x) with (i, j)#(’, j) and i=j, i’#j

LX)+ 1 (X) +1p3(x) = 0, 1jp(X)+1pp(x)+1;5(x) =0
if i"#j and
Ly () + 1y (X)+ 1 (x) = 0

if i"=j, the system of linear forms /;(x) with i=j, 1=i, j=n is A-connected.
Further, the system of equations

Lix)=0 (i=j,i,j=1,...,n)

is equivalent to the system of equations L™ (x)=...=L™(x). Because of the
linear independence of 1,04, ..., %, over L this latter system of equations
has no solutions x#0 with components in L. Thus the equation

‘ ﬁ ’U(") a— (_l)ntu-l)mé

i, j=1
i=]

which is equivalent to (20) satisfies all conditions of Theorem 1. Furthermore, in
the course of the above arguments we used the linear dependence of the linear
forms /,,(x), 1, (x), 1,.,(x) (u=v, 1 =u, v, w=n) only. Therefore, by the Remark
following the proof of Theorem 1 it suffices to estimate from above the absolute
values of the discriminants and the degrees of the fields K,,,=K®K® K™ con-
taining the coefficients of /,,, /. /... Hence, with the notation of Theorem 1,
we may choose N=/n(n—1)(n—2) and D=|Dg[*™ and (21) follows from (8).
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