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The Alexandroff property for vector
lattices of real-valued functions

By WOLFGANG ADAMSKI (München)

Abstract. If X is a topological space, then a classical result of A.D. Alexan-
droff states that the class of σ-smooth linear functionals defined on the vector lattice
of all bounded continuous real-valued functions on X is sequentially closed with respect
to pointwise convergence. It is the aim of this note to investigate this property for
arbitrary vector lattices of real-valued functions.

1. Introduction

In 1943 A.D. Alexandroff proved that the class of σ-smooth lin-
ear functionals defined on the vector lattice of all bounded continuous
real-valued functions on a topological space X is sequentially closed with
respect to pointwise convergence. In this note we study this property for
arbitrary vector lattices of real-valued functions defined on an abstract
set X. We first give a sufficient condition for this so-called Alexandroff
property. As an application of this general result we show that, for an
arbitrary δ-lattice L of subsets of X, the vector lattice of bounded L-
continuous functions has the Alexandroff property. In particular, if L is
the family of closed subsets of a topological space X, we obtain Alexan-
droff’s classical theorem. On the other hand, if X is a metric space then
it is shown by an example that the vector lattices of bounded uniformly
continuous functions and bounded Lipschitz continuous functions on X do
not have the Alexandroff property, in general.

Now we fix the notation. N denotes the set of positive integers. The
set R of real numbers is always assumed to be equipped with the Euclidean
topology.

Let X be an arbitrary set and let P(X) be the power set of X. 1Q

denotes the indicator function of a set Q ∈ P(X). If f is a function defined
on X then we write f | Q for the restriction of f onto the subset Q of X.
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Let L be a subset of P(X). L is said to be a lattice if ∅, X ∈ L and
L is closed under finite intersections and finite unions. A lattice that is
closed under countable intersections is called a δ-lattice. The lattice L
is said to be normal if, for any two disjoint sets L1, L2 ∈ L, there exist
disjoint sets K1,K2 ∈ L′ := {X − L : L ∈ L} such that Li ⊂ Ki for
i = 1, 2. Furthermore, the lattice L is called countably paracompact if, for
every decreasing sequence (Ln) ⊂ L with empty intersection, there exists
a sequence (Gn) of L′-sets with empty intersection such that Ln ⊂ Gn for
all n ∈ N. An L-step function is a finite linear combination of members of
{1L : L ∈ L}.

For a sequence (fn) of real-valued functions on X we write fn ↓ 0 if
(fn) is decreasing (i.e. fn+1 ≤ fn for all n ∈ N) and lim fn(x) = 0 for
every x ∈ X. An integral ∫ fdµ is usually written as µ(f).

If X is a topological space then C(X) [Cb(X)] denotes the vector lat-
tice of all [bounded] continuous real-valued functions on X, and we write
F(X),K(X),B(X) for the collection of all closed, compact, Borel sets in
X, respectively.

2. The main results

Let X be an arbitrary nonvoid set and E ⊂ RX a vector lattice of
real-valued functions on X. E∗ denotes the algebraic dual of E, i.e. E∗ is
the family of all real-valued linear functions (= linear functionals) defined
on E. In addition, let E+ := {f ∈ E : f ≥ 0}.

Definition. Φ ∈ E∗ is said to be
(i) order-bounded if sup{|Φ(h)| : h ∈ E, |h| ≤ f} < ∞ for all

f ∈ E+;
(ii) nonnegative if Φ(f) ≥ 0 whenever f ∈ E+;
(iii) σ-smooth if lim Φ(fn) = 0 for every sequence (fn) in E with

fn ↓ 0.

The relations between these concepts are described in

Lemma 2.1 ([7], 2.3). (a) Every σ-smooth Φ ∈ E∗ is order-bounded.
(b) Φ ∈ E∗ is order-bounded iff there are nonnegative Φ1,Φ2 ∈ E∗

such that Φ = Φ1 −Φ2. If, in addition, Φ is σ-smooth then Φ1, Φ2 can be
chosen to be σ-smooth, too.

Define Λ(E) := {Φ ∈ E∗ : Φ is order-bounded}, Λσ(E) := {Φ ∈ Λ(E) :
Φ is σ-smooth}, Γ(E) := {Φ ∈ E∗ : Φ is nonnegative} and Γσ(E) := {Φ ∈
Γ(E) : Φ is σ-smooth}.
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In view of 2.1, Γ(E) ⊂ Λ(E) and Λσ(E) = {Φ ∈ E∗ : Φ is σ-smooth}.
E is said to be a Daniell lattice ([1]) if Γ(E) = Γσ(E). It is obvious

that E is a Daniell lattice iff Λ(E) = Λσ(E).
If X is a topological space, then a classical result of A.D. Alexandroff

(see [2], Theorem 19.3, or [10], Theorem II.19) states that Λσ(Cb(X)) is
sequentially closed in Λ(Cb(X)) with respect to pointwise convergence. In
the following we will investigate this property for arbitrary vector lattices
of real-valued functions.

Definition. We say that the vector lattice E ⊂ RX has the Alexan-
droff property if, for every sequence (Φn) in Λσ(E) and any Φ ∈ Λ(E),
limΦn(f) = Φ(f) for all f ∈ E implies Φ ∈ Λσ(E).

It is trivial that every Daniell lattice has the Alexandroff property. A
deeper result is given in

Proposition 2.2. E has the Alexandroff property provided that E
satisfies the following condition:

If f1, f2, . . . ∈ E+ and
∑

k∈N
fk ∈ E, then

∑

k∈A

fk ∈ E(2.1)

for all A ∈ P(N).

Proof. Let (Φn) ⊂ Λσ(E) and Φ ∈ Λ(E) be such that limΦn(f) =
Φ(f) holds true for every f ∈ E. To prove the σ-smoothness of Φ it suffices
to show Φ(

∑
k∈N

fk) =
∑
k∈N

Φ(fk) for every sequence (fk) in E+ with
∑
k∈N

fk ∈
E. Let such a sequence (fk) be given. In view of (2.1), we can define
µn(A) :=Φn(

∑
k∈A

fk) and µ(A) :=Φ(
∑

k∈A

fk) for A ∈ P(N) and n ∈ N. (µn)

is a sequence of finite signed measures on P(N) satisfying lim µn(A) =
µ(A) ∈ R for all A ⊂ N. By Nikodym’s theorem (see [6], III.7.4), µ is

also a signed measure on P(N). This implies
n∑

k=1

Φ(fk) = Φ(
n∑

k=1

fk) =

µ({1, . . . , n}) → µ(N) = Φ(
∑
k∈N

fk), i.e. Φ(
∑
k∈N

fk) =
∑
k∈N

Φ(fk). ¤

If (X,A, µ) is a measure space and p ∈ [1,∞), then it is an immediate
consequence of 2.2 that E :=Lp(X,A, µ) has the Alexandroff property.

We will now give another example of a vector lattice with the Alexan-
droff property. For this purpose consider a δ-lattice L of subsets of X. A
real-valued function f on X is said to be L-continuous if f−1(F ) ∈ L for
all closed subsets F of R. Note that a function f ∈ RX is L-continuous
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iff the sets {f ≥ t} and {f ≤ t} belong to L for all t ∈ R. Define
C(L) := {f ∈ RX : f is L-continuous} and Cb(L) := {f ∈ C(L) : f is
bounded}. Then C(L) and Cb(L) are vector lattices containing the con-
stants [3].

Examples 2.3. (a) Let L be a σ-algebra in X. Then C(L) [Cb(L)] is
the family of all [bounded] L-measurable real-valued functions on X.

(b) If X is a topological space, then C(X) = C(F(X)) and Cb(X) =
Cb(F(X)).

Proposition 2.4. Cb(L) has the Alexandroff property.

Proof. We show that E := Cb(L) satisfies (2.1). Let (fk) ⊂ E+ with
f :=

∑
k∈N

fk ∈ E be given. We must prove
∑

k∈A

fk ∈ E for every infinite

subset A of N. If N − A is finite, then
∑

k∈A

fk = f − ∑
k∈N−A

fk ∈ E. Thus

we assume that both A and N − A are infinite. Let A = {n1, n2, . . . }
with n1 < n2 < . . . and N − A = {r1, r2, . . . } with r1 < r2 < . . . .

For any t ∈ R we obtain
{ ∑

k∈A

fk ≤ t

}
=

⋂
m∈N

{
m∑

k=1

fnk
≤ t

}
∈ L and

{ ∑
k∈A

fk ≥ t

}
=

{
∑

k∈N−A

fk − f ≤ −t

}
=

⋂
m∈N

{
m∑

k=1

frk
− f ≤ −t

}
∈ L.

Hence
∑

k∈A

fk is L-continuous. ¤

Remark 2.5. An analysis of the proof of 2.4 reveals that also C(L) has
the Alexandroff property. However, we know from [1], Corollary 2, that
C(L) is even a Daniell lattice.

From 2.3 and 2.4 we deduce

Corollary 2.6. (a) If L is a σ-algebra in X, then the vector lattice of
all bounded L-measurable real-valued functions on X has the Alexandroff
property.

(b) If X is a topological space, then the vector lattice of all bounded
continuous real-valued functions on X has the Alexandroff property.

For a lattice L of subsets of X we denote by MR(L) the family of all
bounded real-valued L-regular finitely additive measures defined on α(L),
the algebra generated by L. Moreover, let MR(σ,L) := {µ ∈ MR(L) : µ
is σ-additive}. According to [8] (or [9]), a normal δ-lattice L is called
an Alexandrov lattice if, for every sequence (µn) in MR(σ,L) and any
µ ∈ MR(L), lim µn(f) = µ(f) for all f ∈ Cb(L) implies µ ∈ MR(σ,L).
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It follows from 2.4 via the Alexandroff representation theorem ([2],
Theorem 7.1 combined with Theorem 10.1) that every countably para-
compact normal δ-lattice is an Alexandrov lattice. (Observe that it is not
the complete normality of the lattice but the weaker property of count-
able paracompactness that is needed in the proof of [2], Theorem 10.1.)
The following example shows that the countable paracompactness is not
necessary for a normal δ-lattice to be Alexandrov.

Example 2.7. Let L be a δ-lattice of subsets of X such that

(α) L − {∅} is closed under finite intersections and

(β) L is not countably paracompact.

(Note that in case X = N, L := {{x ∈ N : x ≥ n} : n ∈ N} ∪ {∅} is a
δ-lattice satisfying the conditions (α) and (β).)

In view of (α), L is normal vacuously. To prove that L is an Alexan-
drov lattice we need two auxiliary results.

2.7.1. Let µ ∈ MR(L) be nonnegative and nonzero. Then

(1) µ(G) = 0 for all G ∈ L′ − {X};
(2) µ is 2-valued and not σ-additive.

Proof. (1) Let G ∈ L′ − {X} be given. For any L ∈ L with L ⊂ G,
we have L = ∅ by (α) and hence µ(G) = sup{µ(L) : L ∈ L, L ⊂ G} = 0.

(2) If A ∈ α(L) satisfies µ(A) > 0, then µ(A) = inf{µ(G) : A ⊂ G ∈
L′} = µ(X) where the last equality holds by (1). Thus µ is 2-valued. In
view of (β), there exists a sequence (Ln) of nonvoid L-sets decreasing to ∅.
Then X =

⋃
n∈N

Gn where Gn := X −Ln ∈ L′ −{X} and hence µ(Gn) = 0,

n ∈ N, by (1). Consequently, µ is not σ-additive.

2.7.2. If µ1, µ2 ∈ MR(L) are nonnegative with µ1(X) = µ2(X), then

µ1 = µ2.

Proof. W.l.o.g. let µ1(X) = µ2(X) > 0. Assume µ1 6= µ2. Then
µ1(A) 6= µ2(A), say µ1(A) < µ2(A) for some A ∈ α(L). From 2.7.1 (2) we
infer µ1(A) = 0, µ2(A) = µ2(X) > 0. Since µ1 is L-regular, µ1(G) = 0 for
some G ∈ L′ with A ⊂ G. Then G 6= X and hence µ2(G) = 0 by 2.7.1 (1)
which contradicts µ2(A) > 0.
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2.7.3. L is an Alexandrov lattice.

Proof. Let (µn) ⊂ MR(σ,L) and µ ∈ MR(L) satisfy lim µn(f) =
µ(f) for all f ∈ Cb(L). From 2.7.1 (2) we infer, using the Jordan decom-
position, µn = 0 for all n ∈ N and consequently µ(f) = 0 for all f ∈ Cb(L).
In particular, for f = 1, we obtain µ(X) = 0, i.e. µ+(X) = µ−(X).
Now 2.7.2 implies µ+ = µ−. Thus µ = 0 ∈ MR(σ,L). ¤

For the case of a σ-algebra L it is an immediate consequence of
Nikodym’s theorem ([6], III.7.4), combined with the Daniell–Stone

theorem ([4], Satz 39.4), that the vector lattice of all L-step functions has
the Alexandroff property. However, if L is only an algebra, then the vector
lattice of all L-step functions does not have the Alexandroff property, in
general, as the following example shows.

Example 2.8. Let X be the set of nonnegative integers, L := {L ⊂
X : L or X − L is finite} and E the family of all L-step functions. For
L ∈ L, define µ(L) := 0 or 1 according as L is finite or not. Then µ is a

finitely additive measure on the algebra L. For f ∈ E, say f =
k∑

i=1

αi1Li

with αi ∈ R and Li ∈ L for i = 1, . . . , k, define Φ(f) :=
k∑

i=1

αiµ(Li) and

Φn(f) := 1
n

n−1∑
j=0

f(j), n ∈ N. Then (Φn) ⊂ Γσ(E) and limΦn(f) = Φ(f)

for every f ∈ E. However, Φ is not σ-smooth, since µ fails to be σ-additive
(cf. [4], Beispiel 39.4).

Next we will present two further examples of vector lattices that do not
have the Alexandroff property, in general. For this purpose we consider
a metric space (X, d). Recall that a real-valued function f on X is d-
Lipschitz continuous if there exists a constant c ∈ [0,∞) such that |f(x)−
f(y)| ≤ cd(x, y) for all x, y ∈ X. It is proved in [5] that the collection
BL(X, d) of all bounded d-Lipschitz continuous functions on X forms a
vector lattice. It is a sublattice of the vector lattice U b(X, d) of all bounded
uniformly d-continuous real-valued functions on X. It will be shown that
neither U b(X, d) nor BL(X, d) do have the Alexandroff property, in gene-
ral.
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Example 2.9. Let Y :=R ∪ {ω} be the one-point compactification of
the real line R. Since Y is metrizable, there exists a metric d on Y com-
patible with the topology of Y . Then (R, d) is a separable metric space
that is not complete.

For n ∈ N, let Pn be the normal distribution with expectation 0
and variance n. Defining Qn(B) := Pn(B ∩ R) for B ∈ B(Y ) and n ∈ N,
we obtain a sequence (Qn) of probability measures on B(Y ). If K ∈
K(R), then K has finite Lebesgue measure λ(K) and hence Pn(K) =
(2πn)−1/2

∫
K

exp
(
− x2

2n

)
dx ≤ (2πn)−1/2λ(K) → 0 for n → ∞ which im-

plies lim sup Qn(F ) ≤ 1F (ω) for all F ∈ F(Y ) = K(Y ). Thus, by the
portmanteau theorem ([5], 11.1.1),

(2.2) limQn(f) = f(ω) for all f ∈ C(Y ).

Now define T (f) := f |R for f ∈ C(Y ). T is a bijection from C(Y )
onto U b(R, d). From (2.2) we infer Pn(T (f)) = Qn(f) → f(ω) for f ∈
C(Y ), hence Pn(g) = Qn(T−1(g)) → Φ(g) := T−1(g)(ω) for g ∈ U b(R, d).
Observe that Pn ∈ Γσ(U b(R, d)), n ∈ N, and Φ ∈ Γ(U b(R, d)). To prove
that U b(R, d) fails to have the Alexandroff property, it suffices to show
Φ /∈ Γσ(U b(R, d)). For this purpose, define gn(t) := max

(
0, min

(
1, 1

n |t|
))

for t ∈ R as well as fn(x) := gn(x) for x ∈ R and fn(ω) := 1, n ∈ N. It
is easy to see that fn is continuous and so gn = T (fn) ∈ U b(R, d). Since
gn ↓ 0 and Φ(gn) = fn(ω) = 1 for every n ∈ N, Φ is not σ-smooth.

Furthermore, by [5], 11.2.4, there exists a function hn ∈ BL(Y, d)
satisfying hn ≥ 0 and |fn(y) − hn(y)| ≤ 2−n for all y ∈ Y . Then
vn := min(h1, . . . , hn) ∈ BL(Y, d) and T (vn) = vn|R ↓ 0. On the other
hand, hn(ω) ≥ fn(ω) − 2−n ≥ 1

2 and hence Φ(T (vn)) = vn(ω) ≥ 1
2 for

all n ∈ N. As T (vn) ∈ BL(R, d), n ∈ N, we have shown that Φ|BL(R, d)
is not σ-smooth. Consequently, BL(R, d) does not have the Alexandroff
property, too.
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